
 1

ECE203 HW6 Solution
3. (10 pts)
For the RSE architecture we started discussing in class, show reasonable encodings for each of the
eight instructions. For example, the add instruction might have the following encoding:

instruction 0-2 3-5 6-8 9-11 12-15

add 000 RD RS1 RS2 XXXX

sub 001 RD RS1 RS2 XXXX

ldm 010 RD [RS] XXX XXXX

stm 011 [RD] RS XXX XXXX

ldi 100 RD i7-i5 i4-i2 i1i0XX

ldpc 101 RS XXX XXX XXXX

blz 110 RT RC XXX XXXX

bz 111 RT RC XXX XXXX

4. (5 pts)
Write RSE assembly code to multiply the contents of register A by three.
 add B,A,A
 add A,A,B

5. (10 pts)
Write RSE assembly code to write a value K…K +n, into a given memory range, M … M+n. For
example, if K=5, M=24, and n=2, then [24]=5, [25]=6 and [26]=7. K is initially in register A, M is
initially in register B, and n is initially in register C. Assume your first instruction sits at memory
location 2. For each instruction, supply a short comment (perhaps something as simple as “K=K+1”)
explaining the purpose of the instruction. Remember that you have five general-purpose registers.

This is just one possible solution.
 instruction comment
 ldi D, 1 store 1 to D
 ldi E, 6
 stm [B], A store a value to mem located at [B]
 add A, A, D K=K+1
 add B, B, D M=M+1
 sub C, C, D stop at 0.
 blz E,C if n<0, go to LOOP

 2

6. (5 pts)
How many bits must RSE's PC register have? Justify your answer in two or fewer sentences.

For the width of PC, it depends on several factors: first, whether there is any instruction which will
use the PC address. Second, whether the designer gives the specification on how big the memory is.
In our case, since we’re told that our memory is limited to 255 addresses, we can use 8-bits for the
PC.

7. (5 pts)
If you were permitted to make one or two simple changes to the RSE architecture, what would they
be?

Again, this answer is open to some variation, but some of the better ideas to change RSE would be to
add extra instructions. Since our opcode is 16 bits long, and all of the codes use at most 14 bits, we
can double the possible number of operations by simply increasing our instruction code by 1 bit.
Thus we can add useful operations including a branch when greater than zero. Another possible
change would be to increase the number of registers. This can be done without any loss of bits
because we only have 5 registers, but we can have up to 8 registers (since we use 3-bits to reference
them). This can save us clock cycles by allowing us to minimize the number of store/load operations.

