Instruction processors

Introduction to Computer Engineering — EECS 203
http://ziyang.eecs.northwestern.edu/~dickrp/eecs203/

Change in style

Instructor: Robert Dick TA: Neal Oza
Office: L477 Tech Office: Tech. Inst. L375
Email: dickrp@northwestern.edu Phone: 847-467-0033 @ Micro-controller based design
Phone: 847-467-2298 Email: nealoza@u.northwestern.edu . L.)
@ In this lecture, | want a lot of help and participation
TT: David Bild .
Office: Toch Inst. L470 @ You now have the fundamental knowledge to design a processor
Phone: 847-491-2083 o Let's build a simple one on paper
Email: d-bild@northwestern.edu

@ You'll be programming a slightly more complex processor in next
week's lab assignment

NORTHWESTERN
UNIVERSITY

3 R. Dick Introduction to Computer Engineering — EECS 203

Instruction processors Instruction processors

RSE processor RSE registers

o All registers are 8-bit
o Four general-purpose registers, A, B, C, and D

o Already understand building FSMs o Used to do computation

o Can use array of latches to store multiple bits: register o Program counter PC

o Stack pointer SP (sometimes called TOS for top of stack),
which may also be used as a general-purpose register

o ALU capable of adding (0) and subtracting (1)

o Consider simple processor, called RSE (Rob's simplified example)

4 R. Dick Introduction to Computer Engineering — EECS 203 5 R. Dick Introduction to Computer Engineering — EECS 203

Instruction processors Instruction processors

RSE arithmetic instructions RSE data motion

o Idm RD, [R_g]
o Load from memory location indicated by the source register into
destination register
o stm [Rp], Rs
o Store to memory location indicated by the destination register

o add RD, R51, R52
@ sub Rp, Rs1, Rs>

Do computation on source registers and put result in destination from source register
register o Idi Rp, /
o Load immediate into destination register
o |dpc Rs

o Load from program counter to destination register

6 R. Dick Introduction to Computer Engineering — EECS 203 7 R. Dick Introduction to Computer Engineering — EECS 203

Instruction processors Instruction processors

Branch instructions Architecture

Instruction decode &

. register fetch Execute
Instruction
fetch
blz R, R Write

@ blz kT, Rc back

o Set PC to Ry if Rc <0 @_
e bz R, RC

e Set PC to RT if Re =0

What

8 R. Dick Introduction to Computer Engineering — EECS 203 9 R. Dick Introduction to Computer Engineering — EECS 203

Instruction processors Instruction processors

Instruction encoding Initialization

o How many instructions? . .
o Chip has reset line
o Worst-case operands?
o 3 registers (each how many bits?) © Set PC to byte 2
o 1 register and 1 immediate o Start running. ..
o To pack or not to pack?

10 R. Dick Introduction to Computer Engineering — EECS 203 11 R. Dick Introduction to Computer Engineering — EECS 203

Instruction processors Instruction processors

Program counter

Every clock tick the processor

o Fetches an instruction from the memory location pointed to by
PC

Decodes the instruction

o Acts like a collection of byte-wide registers

o Address using a decoder

[

o Can put other devices at some memory locations

[

o Memory-mapped input-output Fetches the operands

Executes the instruction

®

o Can also use special-purpose output instructions or registers

[

o Let's build some from D flip-flops Stores the results

[

o Multiplexing address and data lines? Increments the program counter

®

Can jump to another code location by moving a value into the
PC

12 R. Dick Introduction to Computer Engineering — EECS 203 13 R. Dick Introduction to Computer Engineering — EECS 203

Instruction processors Instruction processors

Example high-level code Example low-level code

Sum up the contents of memory locations 2-6

. 2.A=0 Idi A, 0Oorsub A A A
Sum up the contents of memory locations 2-6 4 B2 i B, 2
0 A=0 6. C = [B] (loop start point) Idm C, [B]
© For Bfrom2to6 8. A=A+ C add A, A C
o A=A+[B] 10. B=B+1 Idi C,1—add B, B, C
14. C = 6 (loop start) Idi C, 6
16. If B<6 (B <7)branchto C Idi D, 7—sub D, B, D —blz C,
D
(Done)
14 R. Dick Introduction to Computer Engineering — EECS 203 15 R. Dick Introduction to Computer Engineering — EECS 203

Instruction processors Instruction processors

Error conditions Assemble to our encodings

@ What happens on overflow or underflow?

o Special register? o After assembling, can put program contents into memory,

o Special value associated with each register? starting at byte 2

o Single-instruction compare and branch? o Compiling from higher-level languages also possible

o Advantages and disadvantages of each?

16 R. Dick Introduction to Computer Engineering — EECS 203 17 R. Dick Introduction to Computer Engineering — EECS 203

Instruction processors Instruction processors

Example high-level code

o With only a few registers and instructions, powerful actions are
possible
Sum up the contents of memory locations 2-6 o Less time and power efficient than special-purpose hardware

Q=0 design

@ For j from 2 to 6 o Instruction processors are flexible

(5] =i+ o Allows massive use of a single type of IC
o Assembly is painful
o However, much better than doing hardware design
o Compilation also possible

18 R. Dick Introduction to Computer Engineering — EECS 203 19 R. Dick Introduction to Computer Engineering — EECS 203

Instruction processors
Homework

Today's topics Assigned reading

o Architecture @ M. Morris Mano and Charles R. Kime. Logic and Computer
@ Assembly Design Fundamentals. Prentice-Hall, NJ, fourth edition, 2008
o Compilation o Refer to Chapter 7 and 8
o PIC16C74A o Read Sections 9.1-9.7, 10.1-10.6, 10.8

20 R. Dick Introduction to Computer Engineering — EECS 203 22 R. Dick Introduction to Computer Engineering — EECS 203

Homework

Computer geek culture references

o Building multicontroller-based devices for the fun of it

o http://www.bdmicro.com

o http://www.commlinx.com.au/microcontroller.htm

o http://members.home.nl/bzijlstra/

o http://www.robotcafe.com/dir/Companies/Hobby/more3.shtml
o Etc.

23 R. Dick Introduction to Computer Engineering — EECS 203

