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Transmission gates Transmission gates

Other TG diagram TG example

v
|

o
Sl

4 R. Dick Introduction to Computer Engineering — EECS 203 5 R. Dick Introduction to Computer Engineering — EECS 203

Transmission gates

Two-level logic

Impact of control on input Practice w/ Boolean Minimization
0
0— = J/W
Simplify this expression so that it has the minimal possible literal
1 N . count:
0 TG’s resistance (a+5) @b+ cd)
j}i = W
1 TG’s resistance
a’s internal resistance
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Two-level logic Two-level logic

Two-Level Logic and Canonical Forms Canonical forms - SOP

@ The previous example illustrated one standard representation
(product of sums).
o These standard forms are known collectively as two-level logic:
s Product of Sums (POS) e.g.

For Sum of Products (SOP) the canonical form is constructed out of
minterms.

o Product term in which all variables appear in complemented or

f=(a+b)(@+b) uncomplemented forms once

+ Sum of Products (SOP) e.g. ° ilznopruincgr-ri]r;;i)::ﬁfg:stion corresponds to one of of 2" possible

f=3ab+ab o Use binary representation to enumerate minterms
o Can you see why these two are equivalent?

o Why is this known as two-level logic?
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X y z term symbol my mg mx m3 msg ms me my
0 0 0 Xxyz mo 1 0 0 0 0 0 0 0
0 0 1 Xyz my 0 1 0 0 0 0 0 0
0 1 0 Xyz my 0 0 1 0 0 0 0 0
01 1 Xyz ms 0 0 0 1 0 0 0 0
1 0 0 xyz my 0 0 0 0 1 0 0 0
1 0 1 xyz ms 0 0 0 0 0 1 0 0
1 1 0 xyz me 0 0 0 0 0 0 1 0
1 1 1 xyz my 0 0 0 0 0 0 0 1
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Two-level logic

Canonical forms — POS

For Products of Sums (POS) the canonical form is constructed out of

maxterms.
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© Sum term in which all variables appear in complemented or
uncomplemented forms once

o Use binary representation to enumerate maxterms (note:
function is not true for maxterms)
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Two-level logic
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Using Canonical Products of Sums Representation

Convenient representation uses || operator and minterms:

)((Xl7 ..

.,X,,)=HM,‘

For given function f, list all maxterms for which the function is false:
f(a,b,c)=(a+¢)(@ +b)
=M Mz M- Ms

=[[Mm1.3.45)

R. Dick

Two-level logic
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Logic minimization motivation

o Want to reduce area, power consumption, delay of circuits

o Hard to exactly predict circuit area from equations

o Can approximate area with SOP cubes

@ Minimize number of cubes and literals in each cube
o Algebraic simplification difficult
o Hard to guarantee optimality

R. Dick

Introduction to Computer Engineering — EECS 203

Using Canonical Sum of Products Representation

Convenient representation uses » , operator and minterms:

f(x1,... %) = Zm,-

For given function f, list all minterms for which the function is true:
f(a,b,c) =ab+3ac
= (mg + mz) + (mo + my)

=Y m(0,2,6,7)
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Two-level logic

Canonical forms — POS

X y z term symbol My My M, Mz My Ms Ms My
00 0 x+y+z Mo 0 1 1 1 1 1 1 1
00 1 x+y+z M, 1 0 1 1 1 1 1

01 0 x+y+z M, 1 1 0 1 1 1 1 1
01 1 x+y+z M 1 1 1 0 1 1 1 1
1 00 X+4+y+z M, 1 1 1 1 0 1 1 1
1 01 X+y+7z Ms 1 1 1 1 1 0 1 1
110 X+y+z Ms 1 1 1 1 1 1 0 1
111 X+y+7z My 1 1 1 1 1 1 1 0
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Two-level logic

More examples of two-level logic

f(a,b,c,d) = m(1,4,8,10,13,15)

f(w,x,y,z) = [[ M(5,13,14)

flu,v)=u+1v
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Two-level logic

Logic minimization motivation

o K-maps work well for small problems
o Too error-prone for large problems
o Don't ensure optimal prime implicant selection

o Quine-McCluskey optimal and can be run by a computer
o Too slow on large problems

@ Some advanced heuristics usually get good results fast on large
problems

o Want to learn how these work and how to use them?
o Take Advanced Digital Logic Design
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vo-level logic

Boolean function minimization

o Algebraic simplification

o Not systematic

o How do you know when optimal solution has been reached?
o Optimal algorithm, e.g., Quine-McCluskey

o Only fast enough for small problems

o Understanding these is foundation for understanding more

advanced methods

@ Not necessarily optimal heuristics

o Fast enough to handle large problems
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Kmaps

Kmaps

Karnaugh maps (K-maps)

o Fundamental attribute is adjacency

o Useful for logic synthesis

@ Helps logic function visualization

o General Idea: Circle groups of output values (typically 1's)

o Result: Circled terms correspond to minimized product terms
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Kmaps

Karnaugh maps

b
00,01,11,10
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cd
00,01,11,10
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Kmaps

Sum of products (SOP) - KMap

Equivalent way of expressing the same function:

0|1
0 0

1( O

(3ab) + (ab)
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Kmaps

Implicants

For now, treat x as a "wildcard”

f(ab b
(229 0010111110

0

a —

Prime implicants are not covered by other implicants Essential prime

mpolicon nigue qver minterm
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Sum of products (SOP) - Truth table

ol
o |

7= (ab) + (ot
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Kmaps

Some definitions

o implicant - a product term (or sum term) which covers/includes
one or more minterms (or maxterms)

e prime implicant - implicant that cannot be covered by a more
general implicant (i.e. one with fewer literals)

o essential prime implicants - cover an output of the function that
no other prime implicant (or sum thereof) is able to cover
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Kmaps

K-map example

e Minimize f(a, b,c,d) = >(1,3,8,9,10,11,13)
o f(a, b, c,d) =ab +bd+acd
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Kmaps Kmaps

K-map simplification technique K-map simplification technique

For all minterms

. . . . , . . o Revisit the 1's elements in the K-map.
o Find maximal groupings of 1's and X's adjacent to that minterm. P

o If covered by single prime implicant, the prime is essential, and

o Remember to consider top/bottom row, left/right column, and L LT
participates in final cover.

corner adjacencies.

L @ The 1's it covers do not need to be revisited.
@ These are the prime implicants.
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Kmaps Kmaps

K-map simplification technique Product of sums (POS)

If there remain 1's not covered by essential prime implicants,

@ Then select the smallest number of prime implicants that cover
the remaining 1's.

@ This can be difficult for complicated functions.

o Will present an algorithm for this in a future lecture.

(@+b)- (a+b)
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Kmaps

Kmaps

POS K-map techniques

POS K-map example

o Direct reading by covering zeros and inverting variables

Or . o Minimize f(a, b,c) = [[(2,4,5,6)
o Invert function o f(a,b,c)= (b +c)(@+b)
e Do SOP

o Invert again

o Apply De Morgan's laws
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Kmaps Kmaps

SOP from Karnaugh map

Six-variable K-map example

z(a,b,c.d.e,f) = > (2,8,10,18,24,26,34,37,42,45,50,53,58,61)
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Kmaps Kmaps

Six-variable K-map example Six-variable K-map example

EFN\J00 01 1 10 EF 00 1 Al
n8=p1 9/ i6/ o0/ b/ 24, a5-01 0| 1
o1/ 21/ 29/ 25, >
Wy on . " _ o
A ETRIA & F = z(a,b,c,d,e,f)=def +adef +3Cdf
o/ 1o/ =/ 2
EFN\Joo o1 1t 10 Ll 10
AB=p1 la8/ 52/ 6] 56
01/44/ 53/ 61/ 57,
Ysifss/ 63/ by
Weo/ 44/ 62/ s
EF\J00 o1 1t 10 e i
o0
aB=0 %/ 52/ 36/ i/ ag, Ae-10
o
01/33/ 37/ asf 41 1
! 35, 9/ 47, 3, .
s/
W/ a8/ aef 4 e i/
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Kmaps Kmaps

DoN'T CARE logic DoN'T CARE values

0

o All specified Boolean values are 0 or 1

o However, during design some values may be unspecified 1
o Don't care values (x)

o xs allow circuit optimization, i.e., Instead, leave these values undefined (x)
o Incompletely specified functions allow optimization o Also called DON’T CARE values

o Allows any function implementing the specified values to be used
o E.g., could use (ab) + (ab)
o However, best to use simpler 1
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Kmaps Kmaps

Satisfiability DON’T CARES Observability DON'T CARES

brake decision  output 0.1
sensor ¢ 0|1 o[1(1]|—
apply brake 0 0 010
wheel pulse brake 0 1 W4E 1)10]1
sensor 5, |invalid output 1 0
release brake 1 1

0,1 0,1
o Input can never occur mm 0
o This can happen within a circuit 1 Dﬂ 1 Ej

o Some modules will not be capable of producing certain outputs
Output will be ignored for certain inputs
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Kmaps Kmaps

Don't care K-map example Two-level logic is necessary

o Minimize f(w,x,y,z) =>(1,3,8,9,10,11,13) + d(5,7, 15) 0
o f(w,x,y,z) =wx +2z 1

Some Boolean functions can not be represented with one logic level
(@b) + (ab)
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Kmaps

Kmaps

Two-level logic is sufficient Two-level well-understood

o As we will see later, optimal minimization techniques known for
two-level
o However, optimal two-level solution may not be optimal solution

o Sometimes a suboptimal solution to the right problem is better
than the optimal solution to the wrong problem

o All Boolean functions can be represented with two logic levels
o Given k variables, 2X minterm functions exist
o Select arbitrary union of minterms
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Kmaps Kmaps

Two-level weakness

Two-level sometimes impractical

f(ab.cd) 00;01/11]10

ool 0 I8 0 [
o Two-level representation is exponential
01 . 0 . 0 @ However, it's a simple concept

ab n
Is Y7 x; odd?
110 [l o [ et . .
o Problem with representation, not function

10 [ o W] o
Consider a 4-term XOR (parity) gate: a® b® c® d
(@bcd) + (@bcd) + (abcd) + (3 bed) + (abc d) + (abed ) +
(abcd) + (abcd)
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Kmaps
Homework

Two-level weakness

Reading assignment

Two-level representations also have other weaknesses
o Conversion from SOP to POS is difficult e M. Morris Mano and Charles R. Kime. Logic and Computer

o Inverting functions is difficult Design Fundamentals. Prentice-Hall, NJ, fourth edition, 2008

o --ing two SOPs or +ing two POSs is difficult o Section 2.6
o Neither general POS f)r SOP are canonical o Also read TTL reference, Don Lancaster. TTL Cookbook.
o Equivalence checking difficult Howard W. Sams & Co., Inc., 1974, as needed

o POS satisfiability € NP-complete

48 R. Dick Introduction to Computer Engineering — EECS 203 50 R. Dick Introduction to Computer Engineering — EECS 203



