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Problem 4: (5 points) Minimize the following following functions using K-maps. Give your answer in POS form.
In this notation, the zeros and don’t-cares are specified instead of the ones and don’t-cares. You can use either of the
techniques presented in class.

L f=T1(1.4.5.9.11,14) +d(0,2,7,8,13)
2. f=T1(2,7,10,11,14) + d(1,4,6)

L f=(a+e)(@+b+c+d)(a+b+d)
2 f=(a+b+¢)(@+b+7T)(T+d)

Problem 5: (5 points) Define the following terms:

1. Observability Don’t-care

2. Satisfiability Don’t-care

1. Observability Don’t-care

For some input patterns, the outputs of the system won’t change if one output bit of some subsystem changes.
So that bit of that subsystem is a don’t-care for such input patterns.

2. Satisfiability Don't-care
Some input patterns never appear. The outputs of the system are don’t-cares for such input patterns.

Problem 6: (10 points) What techniques are available for two-level logic minimization? Briefly (a word or two for
each), what are the advantages and disadvantages of each?

1. Algebraic
Not a systematic method. Hard to reach optimal.
2. K-map

Fast for human beings with no more than 4 variables. Hard to design an algorithm based on it. Hard for human
beings when the size of the problem increases,

3. Quine-McCluskey

A systematic method to convert the logic minimization problem into the unate covering problem. However,
consume a lot of space and time.

4. Expresso

Fast heuristic algorihtms that can be built into software. Only give near-optimal solutions.

Problem 7: (5 points) Cube f(a,b) = a. Cube g(a,b) = ab. Does f cover g? Does g cover I

The cube f covers g but g does not cover f.



Problem 8: (5 points) In two or three sentences, describe how Espresso searches for good implicants? Does it find all
primes?

Expresso searches for good implicants by repeating reduce, irredundant cover, and expand (o find alternative prime
implicant. A cost function is used to determine if the new covers are improved. Heuristics are applied to pick the
cubes that would be processed next. It won't find all primes.

Prablem 9: (5 points) Cofactor f(a,b,c.d) = @b+ ac +abd by the cube ab.

fo = (fla,b.e,d))a
= (@b+ac+abd),
= 0-b+l-c+1-bd

ctbd
f,,.jj - {fu) b
= (c+bd)g
= c+0-d

= ¢

Problem 10: (10 points) Consider the following set of cubes:

0
X
|
1

—- e —_
- oo M
wo— D

Tautology checking can be used for expansion checking. Espresso uses tautology checking to solve a number of
problems, for example, irredundant cover. However, Espresso doesn’t use tautology checking for expansion checking.

You would like 1o expand the 111X][1 cube to 11XX]|1. However, you need to confirm that this expansion is valid.

1. Write down new cube that must be checked for containment,
Treating cubes like sets of minterms, that's the expanded cube minus the original cube.

VXX 111X]1 = 110X]1

AB
00 01 11 10
00 —newly covered
CD ?1 - expanded
1
10 ~original




2. Write down the set of cubes within which it must be contained.

00 X 0f1
X 1 0 X|1
1 X 0 1]1

By the way, it will work just fine even if 111X]1 is left in, If this doesn’t make sense, cofactor the cover with
111X|1 left in and see what happens.

3. Cofactor the set of cubes by the new cube and use the result to determine whether the cube is contained.

000 X 01 e
2 SRS =X X X 1/1
1 X 0 11

10X

4. Repeatedly cofactor on unate variables of the cover until it is clear that the expansion is valid or invalid.
We determine that the cover is unate, even before cofactoring. Therefore we need only scan the rows for a 1
(XXXX|1).

5. Explain why cofactoring on unate variables (instead of non-unate variables) makes validity checking (or, in
general, tautology checking) faster.

If we cofactor on variable in which the cover is unate, then we know that the variable’s column does not contain
both zeros and ones. Thus, in a SOP expression for the cover, the variable appears only in its complemented
or uncomplemented form. Without loss of generality, assume that the variable vy appears only in its uncomple-
mented form. We can clearly write the n-variable function in the following form:

Fvo,vi,..ovm) =vo- filvi,va,... va) + falvi,va, .. )
Cofactoring by the uncomplemented form, vy, we get
fvo,vi,- vy = filviva, . vn) + falviva, o, )
Cofactoring by the complemented form, 7, we get
flvo,v1,- .. vn)ds = f2(vi,v2,...,Va)
For f(vo,v1,...,va) to be tautological, both f(vo,vi,. .., v}y, and f{ve,vi,..., v, )7 must be tautological.
Hlvivacov) S filvivaeevm) + falvive, .o v)

... therefore, we need only evaluate f3(vy,va....,v,), cutting the problem size in half

In summary, we cofactor a set of cubes by another cube. If the resulting cover is tautological, then the set of
cubes covers the cube. We need to do the tautology check but this could be slow. We use two tricks to accelerate
it. If a cover is unate, we check for a tautological cube. If we find one, it's a tautology. If we don’t find one, it is
not a tautology. If the cover isn’t unate, but it is unate in one or more variables, we decompose on that variable.
This way, we only have to check one half of the decomposition. If there are no unate variables in the cover, we
decompose on another variable. We may need to check both halves of the decomposition. However, if we hit a
leaf that is not tautological, we can stop because we know the whaole cover cannot be tautological.

I hope it’s really clear now. R.D.



