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There be Dragons here

Today’s material might at first appear difficult

Perhaps even a bit dry

. . . but follow closely

Trust me, if you really get it, there is great depth and beauty here
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Two-level logic minimization

Goal: two-level logic realizations with fewest gates and fewest number
of gate inputs

Algebraic

Karnaugh map

Quine–McCluskey

Espresso heuristic
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Optimal two-level logic synthesis is NP-complete

Upper bound on number of prime implicants grows 3n/n where n is the
number of inputs

Given > 16 inputs, can be intractable

However, there have been advances in complete solvers for many
functions

Optimal solutions are possible for some large functions
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Logic minimization methods

For difficult and large functions, solve by heuristic search

Multi-level logic minimization is also best solved by search

The general search problem can be introduced via two-level
minimization

Examine simplified version of the algorithms in Espresso
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Espresso two-level logic minimization heuristic

Generate only a subset of prime implicants

Carefully select prime implicants in this subset covering on-set

Guaranteed to be correct

May not be minimal

Usually high-quality in practice
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Espresso

Start with a potentially optimal algorithm

Add numerous techniques for constraining the search space

Use efficient move order to allow pruning

Disable backtracking to arrive at a heuristic solver

Widely used in industry

Still has room for improvement

E.g., early recursion termination
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Boolean space
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If g and h are two Boolean
functions s.t. the on-set of g is a
subset of the on-set of h then

h covers g or. . .

. . . g ⊆ h
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Redundancy in Boolean space

If a formula contains AB and B , AB ⊆ B ⇒ AB is redundant

Sometimes redundancy is difficult to observe

If f = BC + AB + AC , then AB is redundant
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Espresso moves
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Add a literal to a cube (reduce)

Remove a literal from a cube (expansion)

Remove redundant cubes (irredundant cover)
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Espresso moves
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Sometimes necessary to increase cost to escape local minima

Add a literal to a cube (reduction)

To later allow expansion in another dimension
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Irredundant functions need not be minimal
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B C + A C + AB C

Reduce: AB C + A C + AB C

Expand: AB + A C + AB C

Irredundant cover: AB + A C
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Espresso algorithm

Repeat the following

1 Reduce sometimes necessary to contain cubes within others

Another cover with fewer terms or fewer literals might exist
Shrink prime implicants to allow expansion in another variable

2 An Irredundant Cover is extracted from the expanded
primes

Similar goals to the Quine-McCluskey prime implicant chart
Good performance requires a few tricks

3 Expand implicants to their maximum size

Implicants covered by an expanded implicant are removed from
further consideration
Quality of result depends on order of implicant expansion
Heuristic methods used to determine order
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Espresso algorithm

Repeat sequence Reduce, Expand, Irredundant Cover to find
alternative prime implicants

Keep doing this as long as new covers improve on last solution

A number of optimizations are tried, e.g., identify and remove
essential primes early in the process
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Espresso pseudocode

Procedure Espresso(F, D, R)

1: /* F is ON set, D is don’t care, R OFF */
2: R = Compliment(F+D); /* Compute complement */
3: F = Expand(F, R); /* Initial expansion */
4: F = Irredundant(F,D); /* Initial irredundant cover */
5: E = Essential(F,D) /* Detecting essential primes */
6: F = F - E; /* Remove essential primes from F */
7: D = D + E; /* Add essential primes to D */
8: while Cost(F) keeps decreasing do

9: F = Reduce(F,D); /* Perform reduction, heuristic which cubes */
10: F = Expand(F,R); /* Perform expansion, heuristic which cubes */
11: F = Irredundant(F,D); /* Perform irredundant cover */
12: end while

13: F = F + E;
14: return F;
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Espresso example

00 01 11 10

01 1 0
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1 11 1

1 11 1
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f(a,b,c ,d) ab

cd

Irredundant but not minimal Reduce Expand Irredundant

Cover
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Espresso input

f (A, B, C , D) =
P

(4, 5, 6, 8, 9, 10, 13) + d(0, 7, 15)

Input Meaning
.i 4 # inputs
.o 1 # outputs
.ilb a b c d input names
.ob f output name
.p 10 number of product terms
0100 1 AB C D = 1
0101 1 AB C D = 1
0110 1 AB C D = 1
1000 1 A B C D = 1
1001 1 A B C D = 1
1010 1 A B CD = 1
1101 1 A B C D = 1
0000 - AB C D = X
0111 - AB C D = X
1111 - A B C D = X
.e end
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Espresso output

f (A, B, C , D) =
P

(4, 5, 6, 8, 9, 10, 13) + d(0, 7, 15)

Output Meaning
.i 4 # inputs
.o 1 # outputs
.ilb a b c d input names
.ob f output name
.p 3 number of product terms
1-01 1 A C D = 1
10-0 1 A B D = 1
01– 1 AB = 1
.e end

g(A, B, C , D) = AC D + AB D + AB
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Two-level heuristic minimization summary

Generating all prime implicants can be too expensive

Make incremental changes: Expand, Reduce, and

Irredundant Cover to improve cover

Determining whether incremental change represents same
function is difficult

Need to use clever algorithms to speed it up
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Irredundant cover

After expansion, it’s necessary to remove redundant cubes to
reach a local minimum

First, find the relatively essential cubes

For each other cube, check to see whether it is covered by
relatively essential cubes or don’t-cares

If so, it’s totally redundant

If not, it’s partially redundant
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Irredundant cover

Relatively essential cubes must be kept

Totally redundant cubes can clearly be eliminated

A subset of the partially redundant cubes need to be kept

Formulate as a unate covering problem

We’ll come back to this in a moment
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Irredundant cover

After expansion, it’s necessary to remove redundant cubes to
reach a local minimum

First, find the relatively essential cubes

For each other cube, check to see whether it is covered by
relatively essential cubes or don’t-cares

If so, it’s totally redundant

If not, it’s partially redundant
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Tautology check for relatively essential cubes

c is a 1-cube

Check to see whether the union of 1-cubes and don’t-care cubes
minus c , cofactored by c , is a tautology

Let A be the set of 1-cubes

Let D be the set of don’t-care cubes

((A ∪ D) − c)c 6= 1 ⇔ c is relatively essential

That’s it: You can use tautology checking to determine whether
a cube is relatively essential

Of course, an example would make it clearer
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Terminology example

a b c f

0 X X 1
X 0 X 1
X X 1 1
1 X 1 1
1 0 0 X

Find the relatively essential cubes

Find totally redundant cubes

Find partially redundant cubes
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Detecting relatively essential cubes

How to determine whether a cube is fully covered by other 1 and
don’t-care cubes?

Could decompose everything to minterm canonical form

Recall that there may be 2n minterms, given n variables

Decomposition is a bad idea

Exponential
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Recursive pivoting?

Could also recursively pivot on variables if inclusion fails

0XX|1
↓

00X|1, 01X|1
↓

000|1, 001|1, 010|1, 011|1

Lets us terminate recursion as soon as cube is covered by single
other cube, e.g., 01X|X

However, even with pruning, this is still slow in practice

Worst-case time complexity?
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Definition: Cofactor by variable

fx1
= f(1, x2, . . . , xn)

fx1
= f(0, x2, . . . , xn)

Note that it’s commutative,

(fx1
)x2

= (fx2
)x1
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Definition: Cofactor by cube, usage

Given that c is a cube, and literals l1, l2, . . . ln ∈ c , cofactoring the
function by the cube is equivalent to sequentially cofactoring by all
cube literals, i.e.,

fc = fl1,l2,...ln

c ⊆ f ⇐⇒ fc = 1

A tautology is a function that is always true
A cube is less than or equal to a function, i.e., is fully covered by the
function, if and only if the function cofactored by the cube is a
tautology
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Problem conversion

Thus, we have taken the problem

Determine whether a cube, c , is covered by a set of 1-cubes, A, or
don’t-care, D, cubes.

and converted it to

Determine whether a set of 1-cubes, A, and don’t-care cubes, D,
cofactored by cube c is a tautology.
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Conversion benefits

Cofactoring eliminates variables, speeding analysis

Tautology is a straight-forward and well-understood problem

However, tautology checking is not easy

Could pivot on all variables. . .
. . . but this is too slow
Example?
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Unate functions

f(x1, x2, . . . , xn) is monotonically increasing in x1 if and only if
∀x2, . . . , xn : f(0, x2, . . . , xn) ≤ f(1, x2, . . . , xn)

f(x1, x2, . . . , xn) is monotonically decreasing in x1 if and only if
∀x2, . . . , xn : f(0, x2, . . . , xn) ≥ f(1, x2, . . . , xn)

A function that is neither monotonically increasing or
monotonically decreasing in x1 is non-monotonic in x1

A function that is monotonically increasing or monotonically
decreasing in x1 is unate in x1

A function that is unate in all its variables is unate
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Unate functions
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Unate covers

Unate functions are difficult to identify

A cover is unate as long as the complemented and
uncomplimented literals for the same variable do not both appear

Identifying unate covers is easy

39 Robert Dick Advanced Digital Logic Design

Heuristic two-level minimization
Homework

Review of logic minimization
Definitions
Espresso algorithm
Espresso phases
Tautology checking

Identifying unate covers is easy

a b c f

0 0 X 1
X 1 1 1
X 1 0 1
0 1 1 X

Scan the columns for the presence of a 0 and 1

Note, some unate functions can have non-unate covers

Unate covers always express a unate function
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Unate cover tautology checking

A unate cover is a tautology if and only if it contains a 1, i.e.,
XXX|1

Think of it this way: There is some point or cube in the input
space of the function at which all cubes intersect

Thus, the only way to have a tautology is for one of the cubes to
be a tautology

Thus, it’s trivial to check unate covers for tautology

Search for a tautology cube
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Fast tautology checking using unate covers

Given that C is a cover containing cubes composed of variables
x1, x2, . . . , xn

Tautology(C )

if C is unate then

if C contains a 1-row then

Return true

end if

else

Return Tautology(Cx1
) ∧ Tautology(Cx1

)
end if
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Fast tautology checking using unate covers

What if the cover isn’t unate?

Can still accelerate

If cover C is unate in a variable, x1, then factor out x1

C = x1 · F1(x2, . . . , xn) + F2(x2, . . . , xn)

or
C = x1 · F1(x2, . . . , xn) + F2(x2, . . . , xn)
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Example of unate cofactoring

a c + bc + a b c

Cover unate only in a
(

a c + bc + a b c
)

a
= bc

(

a c + bc + a b c
)

a
= c + bc + b c

Notice anything nice about this?
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Fast tautology checking using unate covers

Assume
C = x1 · F1(x2, . . . , xn) + F2(x2, . . . , xn)

Then the Cx1
cofactor is

F1(x2, . . . , xn) + F2(x2, . . . , xn)

and the Cx1
cofactor is

F2(x2, . . . , xn)
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Example of unate cofactoring

a c + bc + a b c

Cover unate only in a
(

a c + bc + a b c
)

a
= bc

(

a c + bc + a b c
)

a
= c + bc + b c

F1 = c + b c

F2 = bc
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Fast tautology checking using unate covers

Cx1
= F1(x2, . . . , xn) + F2(x2, . . . , xn)

Cx1
= F2(x2, . . . , xn)

Clearly,
Cx1

⊆ Cx1

Therefore we need only consider Cx1
for tautology checking,

significantly simplifying the problem, i.e., if Cx1
is a tautology, then

Cx1
is obviously also a tautology.
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Tautology checking final version

Given that C is a cover containing cubes composed of variables
x1, x2, . . . , xn

Tautology(C )

if C is unate then

if C contains a 1-row then

Return true

end if

else

Return Tautology(Cx1
)

end if
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Summary: Fast tautology checking

Identify unate covers

No columns with 1s and zeros

If unate, scan for an XXX |1 row

If not unate, cofactor on (preferable) unate variable

Only need to consider uncomplemented or uncomplemented
cofactor

Why? F2 ≤ F1 + F2
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More complicated example

a b c f

0 X 0 1
1 0 X 1
X 1 1 1
1 X 1 1
X 0 0 1
1 0 0 X

Relatively essential check for 0X0|1?
Full check on c .
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Two-level heuristic minimization summary

Generating all prime implicants can be too expensive

Make incremental changes: Expand, Reduce, and

Irredundant Cover

Determining whether incremental change represents same
function is too expensive

Use cofactoring to convert it to a tautology check

Use unateness to make the tautology check fast in most cases
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Espresso summary

Reduce: Allows expansion in another direction, get out of local
minima

Expand: Decreases complexity, in practice blocking matrix used for
expansion. Search with would also work but would be slower in most
cases.

Irredundant cover: Remove redundant cubes

Tautology check used in many places, gave example of use in
Irredundant cover use

We have only scratched the surface!
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CAD

Computer–Aided Design (of Integrated Circuits and Systems)

Also called Electronics Design Automation (EDA)

Without it, computers wouldn’t work
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Questions

What is the unate covering problem?

Where have we seen it used?

What can tautology checking be used for?

How do we make it fast?
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Next lecture: Implementation technologies

PALs, PLAs

MUX, DEMUX review

Steering logic
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M. Morris Mano and Charles R. Kime. Logic and Computer

Design Fundamentals. Prentice-Hall, NJ, fourth edition, 2008

Chapter 4

M. Morris Mano and Charles R. Kime. Web supplements to Logic

and Computer Design Fundamentals. Prentice-Hall, NJ.
http://www.writphotec.com/mano4/Supplements

VLSI Programmable Logic Devices, document 1
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