Multilevel minimization

Advanced Digital Logic Design — EECS 303

Multi-level example

http://ziyang.eecs.northwestern.edu /eecs303/

Teacher:  Robert Dick

Office: - L477 Tech o So far, we have talked about two-level logic

Email: dickrp@northwestern.edu X

Phone: 847-467-2208 o Fewest number of levels that is fully general

o However, there are some circuits that can more efficiently be
implemented using three or more levels

o Even basic functions, like NANDS and NORS, are commonly
composed of multiple gates if the fan-in is high
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Two-level form Two-level form

D
X(A,B,C,D,E,F,G) = ADF + AEF + BDF + BEF + CDF + CEF + G A
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] @ 6 x 3-input AND gates
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F
< o 1 x 7-input OR gate (may not exist!)
F

o 25 wires (19 literals plus 6 internal wires)
G
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Kern raction

Multi-level form Multi-level form

Factor: A
X(A,B,C,D,E,F,G) = ADF + AEF + BDF + BEF+ B
CDF + CEF + G C
=(A+B+C)(D+E)F+G
A D 3 X
B E
"] T
F
o) 2 3 X G
I— o 1 x 3-input OR gate, 2 x 2-input OR gates
F @ 1 x 3-input AND gate
G o 10 wires (7 literals plus 3 internal wires)
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Multi-level implementation of NAND8 Multi-level logic
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Multi-level logic
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Final network, redrawn

in NOR-only form
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Ad-hoc method

Multi-level minimization objectives

o Factor out common sub-logic (reduce fan-in, increase gate
levels), subject to timing constraints

o Map factored form onto library of gates

o Minimize number of literals (correlates with number of wires)

X = (AB+BC)(C+ D(E +AC))+ (D + E)(FG)
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Multi-level minimization

Advanced Digital Logic Design

o Recall that two-level minimization is difficult

o Quine-McCluskey is too slow for large problems
o Resort to potentially sub-optimal heuristic

o Espresso

o Multi-level minimization is much harder

o No known efficient algorithm gives optimal solution

o MIS uses heuristics to usual
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Decomposition

ly produce good solutions
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Kernel e

L=ABC+ABD+ACD~+B CD
=AB(C+D)+(A+B)C D
= AB(C + D) + (AB)(C + D)
M= AB
N=C+D
L=MN+M N
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NAND/NOR conversion for uneven paths
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Multi-level minimization

A
B
E
X C
D

Oy

Add double bubbles at inputs

A
X
B j :
F
¢ X F
\D

Insert inverters to fix mismatches

Advanced Digital Logic Design

Examples
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Kernel extractior

Can interactively apply the following operations

o Decomposition
o Extraction

o Factoring

o Substitution

o Collapsing

Robert Dick
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Decomposition
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Example:
Ad-hoc method
Kernel e

Take a single Boolean expression and replace it with a collection of

new expressions

L=ABC+ABD+A CD+B CD 12 literals

L rewritten as
L=MN+M N
M = AB
N=C+D

Robert Dick
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Decomposition

CORPUOFPU®EFOE >
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Before Decomposition

Robert Dick

8 literals
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Kernel extractior

After Decomposition
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Ad-hoc method
Kern

Multilevel minimization

Extraction

Extraction

o Extraction is decomposition applied to multiple functions

o The best decomposition for a single function may not be the best
if there are multiple outputs

o ldeally, extracted sub-function can be re-used in producing many
outputs
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Extraction

E A
A B—)
B L —) L
¢ H 7
E

Before Extraction After Extraction

Gate count has improved, literals is unchanged

Robert Dick Advanced Digital Logic Design

Multilevel minimization | (MRS
Kern action

Cube extraction

Can restrict divisors to single cubes

L=ABC + ABD + EG 16 literals
M = ABFG
N = BD + EF

We can obtain the best cube AB to divide the functions
L=PC+PD+EG 15 literals
M = PFG
N = BD + EF
P=AB
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Factoring
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Before Factoring After Factoring
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L=(A+B)CD+E 11 literals
M= (A+B)E
N = CDE
Can be re-written as
L=XY+E 11 literals
M= XE
N=YE
X=A+B
Y =CD
Robert Dick Advanced Digital Logic Design
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Kernel extractior

vel minimization

Extraction example

Given equations of a Boolean Network
L= AF + BF + AG + CG + ADE + BDE + CDE 33 literals
M = AF + BF + ACE + BCE
N = ADE + CDE

Find the best kernel of these functions. If the kernel is (A + B), then

L= DEM + FP + AG + CG 22 literals
M = CEP + FP
N = ADE + CDE
P=A+B
23 Robert Dick Advanced Digital Logic Design
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Kernel extraction

Factoring

Expression in two-level form re-expressed in multi-level form without
introducing intermediate functions

L=AC+AD+BC+BD+E 9 literals
Can be rewritten as
L=(A+B)(C+D)+E 5 literals
Robert Dick Advanced Digital Logic Design

N I Example:
Multilevel minimization R

Kernel extractior

Substitution

Express L in terms of M

L=A+BC 5 literals

M=A+B

L rewritten in terms of M
L=M(A+C) 5 literals

M=A+B
Robert Dick Advanced Digital Logic Design
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Multilevel minimization

Collapsing Redundancy

Reverse of substitution. Sometimes eliminates levels to meet timing
constraints.
o Minimizing gate count and literals isn't always good for

L=MA+C) 5 literals performance or power consumption
M=A+B only 2 additional o Using redundant sub-circuits can result in improvements
o The wiring required to re-use sub-functions can result in larger
L=(A+B)A+C) delays than redundant sub-functions
=AA+ AC + AB + BC
=A+BC
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- . Examples - .

Multilevel minimization Multilevel minimization
Ad-hoc method

K tion

Boolean division Boolean division

L=PQ+ Finding divisors that lead greatest number of common subexpressions
P divisor is difficult
Q quotient L=AD+BCD+E
M=A+B
X=AC+AD+BC+BD+E M does not divide L under algebraic division rules
Y=A+8 M does divide L under Boolean rules (very large number of these!)
X divided by Y expressed as L/M = (A+ C)D

X=Y(C+D)+
P and @ are symmetrical
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Example:
Ad-hoc method
Kernel extractior

Multilevel minimization | (MRS
Kern action

Boolean division

Boolean division

This follows from writing L in MQ + R form

L=AD+BCD+E L=M(A+C)D)+E
M=A+B =(A+B)(A+C)D+E
L=(A+B)(AD+ CD)+E =(AA+AC+AB+BC)D+E
=(A+B)(A+C)D+E =(A+BC)D+E
=AD+BCD+E
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Kernel extraction

Multi-level minimization definitions Multi-level minimization definitions

o A variable is a symbol representing a single coordinate in a
Boolean space, e.g., Aor B

o Literal is a variable or its negation, e.g., A or A o Equation is cube-free if no cubes divide it evenly

o A cube, C, is a set of literals, e.g, ABC or AB o AB + C is cube-free
o AB + AC is not cube-free
o Divided evenly by A

o Consider a sum-of-products expression
L= AF + BF + AG + CG + ADE + BDE + CDE
o The primary divisors of an expression form a set of expressions
D(L) = {L/C|C is a cube}
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Kernel extraction Kernel extraction

Multi-level minimization definitions Kernel

L= AF + BF + AG + CG + ADE + BDE + CDE

o The kernels of an expression are sets of expressions . L
P P Cube Primary divisor Kernel (cube free)

K(L) ={G|G € D(L) and G is cube-free} A (F+ G + DE) PA
@ In other words, the kernels are divisors of the function for cube B (F + DE) ko
quotients that can not be evenly divided (remainder-free) by C (G + DE) k3
other cubes D (AE + BE + CE) no
E
F
G

o The cube C used to divide L to obtain the kernel K(L) is called (AD + BD + CD) no

the co-kernel (A +B) ka
(A+0Q) ks
DE (A+B+0Q) ke
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Multilevel minimization SXamp Multilevel minimization

Ad-hoc methoc
Kernel extraction

d-hoc metho
Kernel extraction

Divisor selection

Divisor selection

Kernels are often good divisors, extract and substitute

L= AF + BF + AG + CG + ADE + BDE + CDE 17 literals L = Fk4 + AG + CG + DEkg
Divide by ks = (A+ B + C) Remaining kernel: ks = (A+ C)
L= AF + BF + AG + CG + DEkg L = Fky + AG + CG + DEkg
Remaining kernels: ky = (F + G),ka = (A+ B), ks = (A+ C) L = Fky + Gks + DEke
Pick one End result
L = Fky + AG + CG + DEkg L=F(A+B)+ G(A+ C)+ DE(A+ B+ () 11 literals
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Multilevel minimization Multilevel minimization

Kernel extraction Kernel extraction

Node simplification

Node simplification

o During multi-level logic synthesis, representation broken into
sub-functions
o Each sub-function (e.g., SOP form) needs to be minimized
L = AF + BF + AG + CG + ADE + BDE + CDE
o Similar to using Karnaugh Maps, Quine McCluskey, or Espresso
to simply expressions

L B+ AC + BC

B+ AC

=A
=A
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Delay models
Thresholds,
Hazar

Multilevel minimization .
d-hoc metho e se, and debouncing
Kernel extraction e

Delay models

Node simplification

o Recall that two-level simplification can be improved using DON’T
CARE information —
o Need to find DON’T CARE automatically from Boolean network A
o Take advantage of satisfiability DON’T CAREs
o Input can never occur
o Take advantage of observability DON’T CAREs

o Output is ignored for certain inputs B \

| ﬂﬁdﬂiﬂ)ort

time
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Timing u Timing

Delay models Delay models

o Inertial — Transitions that are not stable for more than some

o |deal — No delay, outputs respond instantly to inputs threshold period of time are absorbed by the gate
o Transport — Output shifted by some fixed duration o Provides a coarse approximation to real digital logic gate behavior
o All input changes reflected at output o Real — Outputs quickly respond to input changes

o However, output changes have limited slew-rates
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Delay models Delay models
Th olds, n

Thresholds, noise, and debouncing e, and debouncin
1

ard:

RC delay IO thresholds

Timing \ Timing M

o What happens when a transistor drives another transistor?
o Recall how CMOS transistors work
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Delay model:
Thresholds, noise, and debouncing
Hazar

Delay mod:

Timing  hresholds, nose, and debouncing Torive

Molten transistor

|O thresholds

o Digital is a simplifying concept in a (macroscopically) analog
world

o To treat signals as digital, need to define a dividing line between
false and true

o What actually happens to the next stage when the voltage is at
that line?

o NMOS Vgs > V7
o PMOS Vgs < — V7
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Delay models
Thresholds, noise, and debouncing
Hazar

Delay model

I
Thresholds, noise, and debouncing
Hazards

Timing Timing

|O thresholds

|O thresholds

o Better — However, still have a problem
o What happens if the output of a gate is near that threshold?

o Define valid ranges of logic high and logic low signals
g g g g g o Slight variation between gates might result in crossing this

o Undefined signals considered invalid threshold for next gate

o How to compensate?

o Use separate input and output thresholds
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Delay model Delay model:
Thresholds, noise, and debouncing Thresholds, noise, and debouncing
Hazards

Timing | Jresho

Timing

Separate |0 thresholds Schmitt triggers

o Now, we can safely treat the system as digital

o However, digital systems talk with analog systems A

o It is necessary to deal with noisy signals

o Real slew isn't ideal

=

transition I
® ]
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Delay model:
Thresholds, noise, and debouncing
Hazards

Delay model

Timing ‘T‘hveshiolds noise, and debouncing Timing

CMOS NOT is RC network

Reason for gradual transition

VDD VDD
.
A B

o A logic stage is an RC network
o Whenever a transition occurs, capacitance is driven through

resistance Vss Vss
o Consider the implementation of a CMOS inverter
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Delay model:
Thresholds, noise, and debouncing
Hazar

Timing  hresholds, nose, and debouncing Torive

What is driven in NAND2?

Debouncing

@ Mechanical switches bounce!
o What happens if multiple pulses?
o Mutliple state transitions

o Need to clean up signal
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Thresholds, noise, and debouncing

Delay model
Thresholds, noise, and debouncing
Hazards

Timing Timing b
Debouncing Improving device delay
5 T T T T
AU WO b
“r Schmidt trig. —— 1
RC
0.75 -
1.65
sl ] o Decrease driven resistance and load

o Use smaller transistors
> o Use shorter wire
o Use wider wire (can increase load)

L L L L
-1.0e-03 -5.0e-04. 0.0400 5.0e-04 1.0e-03 1.5e-03
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Delay model Delay model:

e Thresholds, noise, and debouncing Thresholds, noise, and debouncing
iming |\ Timing | Jresho

Improving device delay Driving large loads

. . . . . . o Sometimes large loads need to be driven
o Increase drive by increasing width of driving transistors .
o Long wires
o Causes problems

o Larger transistors provide larger loads to their inputs o Output pads
o In general, keep transistors small unless they absolutely need to o What happens if we go from a minimum-size inverter to a huge
drive large loads inverter?

o Huge delay driving huge inverter's gate
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Delay model:
Thresholds, noise, and debouncing
Hazards

Delay model

Timing ‘T‘hveshiolds noise, and debouncing Timing

Tapered buffer chain Useful delay: Debouncing

o Instead, gradually increase buffers in chain

o Optimal number of stages: In (Csi6/Csuarr) @ Mechanical switches bounce

o Stage width exponentially increases in « o Noisy transition

Wi = Wy - o o Use RC delay network to decrease transition speed
Ws = Wiy - ot o Convert multiple noisy to single smooth transition
Wa = W, a2 o Use Schmitt trigger to clean signal

3= WMy - o
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Thresholds, noise, and debouncing
Hazar

Delay model
Thresholds, noise, and debouncing
Hazard:

Timing

Timing

Topological sort

Delay estimation in multi-level circuits

o Can get delay for a gate by knowing its drive (resistance) and the
load it drives (RC)
o Gate libraries will have this information
o Still need to get network delay
o Conduct topological sort of network to find earliest start times
(EST)

o Always visit a node’s parent before visiting it

o EST is maximum any parent's EST plus it's delay

max(9, 11) 13
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Delay models
Thresholds, noise, and debouncing
Hazar

Thresholds, noise, and debouncing
Hazards

Timing Timing

Useful delay: Rising edge pulse shaping

A C

o Can use reverse topological sort from end nodes (given some F
target delay) to get latest start time (LST)

o Subtract delays and take minimum over children instead of
adding delays and taking maximum over parents N

o Subtract EST from LST to get node slack
o Gates with lowest slack are on critical path

o Make this path faster. ..

moaws>
|

o ...or save area (at the expense of speed) on non-critical paths

Problem: Pulse width poorly controlled
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hresholds, noise, and debouncing
is

Timing B Timing

Hazards

Useful delay: Pulse rising/falling edge pulse shaping Dynamic hazards

1 1

¥ o Potential for two or more spurious transitions before intended
Resistor e
% transition
A B
Open M o Results from uneven path delays in some multi-level circuits

Closed switch Open switch

l Iniliallyundefiﬁﬂ/ 0 0
\l\li\l‘/l}\\l\\l\\

A Dynamic
B —
c ™ 4 1 1 hazards
NS E [N S—
D o L
Problem: Pulse width poorly controlled 0 0
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Delay model:

Delay model:
Threst and debouncing Ids, noise, and

Timing Hazarde

Threshol
Hazards

Timing

mic hazards

Dynamic hazards

o Some approaches allow preservation of multi-level structure
1010 o Quite complicated to apply

o Simpler solution — Convert to two-level implementation

Very slow
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Dela
Thre:
Hazards

nodel
hold:

noise, and debouncing

Timing Timing

Hazards

Problems with glitches

o Still have static hazards

o Potential for transient change of output to incorrect value

1 1

o These transitions result in incorrect output values at some times

Static o Also result in uselessly charging and discharging wire and gate
capacitances through wire, gate, and channel resistances
0 1- hazard o Increase power consumption
1
Static
0O-hazard
0 0
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Timing Timing

Hazards

Glitches increase power consumption

Detecting hazards

1 °

Voo Voo

The observable effect of a hazard is a glitch

o A circuit that might exhibit a glitch has a hazard

°

Whether or not a hazard is observed as a glitch depends on
relative gate delays
VSS VSS

L]

Relative gate delays change depending on a number of factors —
Conditions during fabrication, temperature, age, etc.

°

Best to use abstract reasoning to determine whether hazards
N might be observed in practice, under some conditions
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Timing

Eliminating static hazards

ABCD = 1100 ABCD = 1101
input change within product term

B [———]
D 00 01 11 10

ofo o [T
o1 (g 1 1)
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Delay model
ds, noise, and debouncin

Timing | e

Eliminating static rds

o Add redundant primes covering all 1-1 transitions in SOP
o Add redundant primes covering all 0-0 transitions in POS

o Clearly primes can be used, consider contradiction stemming
from assumption that non-prime is necessary to cover a transition
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Timing Am .

Where do static hazards really come from?

Delay model:
Thresholds,

Timing Hazards

Eliminating static hazards

ABCD = 0101 (A is 1)
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Delay model:
ds, n

Timing ': Ws“

Where do static hazards really come from?

o Static-0: AA
o Static-1: A+ A

o Assume SOP form has no product terms containing a variable in
complemented and uncomplemented forms

o Reasonable assumption, if true, drop product term
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sholds,

Timing Hazards

Living with hazards

o Assume POS form has no sum terms containing a variable in
complemented and uncomplemented forms
o Reasonable assumption, if true, drop sum term

o Assume only one input switches at a time
o Conclusion: SOP has no 0-hazards and POS has no 1-hazards

o In other words, if you are doing two-level design, you need not
analyze the other form for hazards
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H noise, and debouncinj
Timing Hazarde

Summary

o Brief review of cascaded carry lookahead adder
o Common ALU operations
o Overview of memory types

o Timing behavior
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Sometimes hazards can be tolerated
o Combinational logic whose outputs aren't observed at all times
@ Synchronous systems
o Systems without tight power consumption limits

86 Robert Dick Advanced Digital Logic Design



