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Review

e When are the advantages and disadvantages of fixed-voltage
charging?
* When are the advantages and disadvantages of fixed-current
charging?
# In what situation is each of the following models important?
o Ideal.
o C.
* RC.
e RLC.
* What are d//dt effects? Under what circumstances do they
cause the most trouble?

Derive and explain.
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Interconnect: Rent’s rule and coupling capacitance
Elmore delay modeling

Logic design

Homework

Lecture plan

1. Interconnect: Rent's rule and coupling capacitance

2. Elmore delay modeling

w

. Logic design

4. Homework
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Interconnect: Rent’s rule and coupling capacitance

Rent’s rule

T = akP

e T: Number of terminals.
e a: Average number of terminals per block.
k: Number of blocks within chip.

p: Rent's exponent, < 1, generally around 0.7.
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Interconnect: Rent’s rule and coupling capacitance

Fringe vs. parallel plate capacitance
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Plot of Ciora for different gap ratios.

Robert Dick Digital Integrated Circuits



Interconnect: Rent’s rule and coupling capacitance

Inter-wire capacitance
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Interconnect: Rent’s rule and coupling capacitance

Impact of inter-wire capacitance
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Interconnect: Rent’s rule and coupling capacitance

Wire resistance

. R— gl
» Consider fixed-height, fixed-p square material, i.e., L/W = 1.
L R = %
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Interconnect: Rent’s rule and coupling capacitance

Interconnect resistance

Material  p (2 m) x10~8
Silver 1.6
Copper 1.7
Gold 2.2
Aluminum 2.7
Tungsten 5.5
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Interconnect: Rent’s rule and coupling capacitance

Reducing resistance

e Higher interconnect aspect ratios
e Material selection

« Copper

« Silicides

« Carbon nanotubes
e Structural changes

* More interconnect layers
e 3-D integration
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Interconnect: Rent’s rule and coupling capacitance

Silicides
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Interconnect: Rent’s rule and coupling capacitance

Resistances

Material

Sheet resistance (£2/0)

n- or p-well diffusion 1,000-1,500
nt or p* diffusion 50-150
silicided n™ or p™ diffusion 3-5
doped polysilicon 150-200
doped silicides polysilicon 4-5
Aluminum 0.05-0.1
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Interconnect: Rent’s rule and coupling capacitance
Elmore delay modeling

Logic design

Homework

Multi-layer interconnect
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Interconnect: Rent’s rule and coupling capacitance
Elmore delay modeling

Logic design

Homework

Side view of interconnect
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Interconnect: Rent’s rule and coupling capacitance

Interconnect summary

It is important to know which interconnect model to use in which
situation.

o Ideal.

e C.

* RC.

e RLC.

dl /dt effects are particularly important in power delivery
networks.

Capacitive coupling complicates design.
Cu and silicides can be used to reduce resistance.
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Interconnect: Rent's rule and coupling capacitance
Elmore delay modeling

Logic design

Homework

Lecture plan

1. Interconnect: Rent's rule and coupling capacitance
2. Elmore delay modeling
3. Logic design

4. Homework
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Elmore delay modeling

Delay modeling

® Single-node lumped model inaccurate.

o Full detailed accurate model intractable for manual analysis and
slow for automated analysis.

e Elmore delay model permits rapid analysis with often adequate
accuracy.
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Elmore delay modeling

Elmore delay

Problem definition
® Goal: Determine 7 for RC path.
* Note: Source node is implicit.
e C;: Self-capacitance of node i.
e R;i: Path resistance from source to node i.

® Rjx: Shared resistance from source to both nodes i and k.

N
=Y CeRy
k=1

Derive and explain.
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Elmore delay modeling

Special case: RC chains

Consider  network.

n i
Th=2i1G Zj:l R;.
Use homogeneous discretization.
V,N:2 G=0G

N+1
= rcl?——
rel®—x

What if N — 00? 7 — rcl?/2.
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Elmore delay modeling

Underlying continuous physical model

ot 6x2
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Elmore delay modeling

Response to step function over time and space

voltage (V)

x=LA0

2.5

time (nsec)
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Elmore delay modeling

Power delivery network considerations

IR drop.
dl/dt effects.

Location of parasitic inductance.

Methods to correct power delivery network non-idealities.
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Elmore delay modeling

Simplifying assumptions

e Ignore wire RC delay when wire delay does not much exceed that
of the driving gate, i.e.,

t te
L . P,83a
crit > \/ 0.38rc

e Ignore wire RC when rise time greater than RC delay.

Ignore for high-resistance wires: R > 0.2C.

Ignore when time of flight is large compared to rise or fall time:
trise, fall < 2.5tfight-
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24

Elmore delay modeling

Elmore delay summary

Pick simplest model for intended purpose: C, RC, or RLC.

Capacitive coupling complicates timing analysis.

Transition direction impacts C magnitude in simplified
ground-cap model.

Learn Elmore delay. It is a good first-order approximation of
network delay.
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Interconnect: Rent's rule and coupling capacitance
Elmore delay modeling

Logic design

Homework

Switch-based design

Lecture plan

1. Interconnect: Rent's rule and coupling capacitance
2. Elmore delay modeling
3. Logic design

4. Homework
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Logic design Switch-based design

Static CMOS design styles and components

Logic gates

Switch-based design
* MUX
DEMUX

Encoder

Decoder
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Logic design Switch-based design

Transistor sizing review

e Goal: equal 7 for worst-case pull-up and pull-down paths.
» Observations

« Adding duplicate parallel path halves resistance.
« Adding duplicate series path doubles resistance.
e Doubling width halves resistance.

» Consider logic gate examples.
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Legie ctstar Switch-based design

Section outline

3. Logic design
Switch-based design
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Legie ctstar Switch-based design

CMOS transmission gate (TG)

1

°C
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Legie ctstar Switch-based design

CMOS transmission gate (TG)

1

°C
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Legie ctstar Switch-based design

CMOS transmission gate (TG)
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Legie ctstar Switch-based design

CMOS transmission gate (TG)
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Legie ctstar Switch-based design

CMOS transmission gate (TG)

1

°C

29 Robert Dick Digital Integrated Circuits



Legie ctstar Switch-based design
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Legie ctstar Switch-based design
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Legie ctstar Switch-based design
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Legie ctstar Switch-based design

CMOS transmission gate (TG)

1

°C
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Legie ctstar Switch-based design

Other TG diagram
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Legie ctstar Switch-based design

Multiplexer (MUX) definitions

Also called selectors

e 2" inputs

n control lines

One output
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Legie ctstar Switch-based design

MUX functional table
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MUX truth table
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Logic design

Switch-based design
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Logic design

MUX using logic gates
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Switch-based design
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Logic design

MUX using TGs
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Logic design
MUX
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Switch-based design
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Logic design
MUX
C
N
¢ D
[ o

36 Robert Dick

Switch-based design

Digital Integrated Circuits



Logic design
MUX
C
N
¢ D
[ o

36 Robert Dick

Switch-based design

Digital Integrated Circuits



Logic design
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Logic design
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Logic design
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Logic design

Switch-based design

Hierarchical MUX implementation
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Legie ctstar Switch-based design

Alternative hierarchical MUX implementation
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Legie ctstar Switch-based design

MUX examples

IO—>

2:1

mux
S ——

A

Z= Z/o + Ah
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MUX examples

Legie ctstar Switch-based design

IO_>
Iy——

mux

A B

Z = ZEIO aF ZB/l aF A§I2 + ABI3
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Logic design

MUX examples

IO_>
Il—>
12—>
Iy —
I4—>
IS—>
16_>
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Switch-based design

8:1 Z
mux —

AN

Z=ABCly+ ABCl + ABCl, + ABClz+
ABCly + ABCls + ABCls + ABCk
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Legie ctstar Switch-based design

MUX properties

e A2":1 MUX can implement any function of n variables
e A2"1:1 can also be used
« Use remaining variable as an input to the MUX
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MUX example

Legie ctstar Switch-based design

F(A,B,C) = (0,2,6,7)

43

= ABC + ABC + ABC + ABC
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Truth table
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Logic design

Switch-based design
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Legie ctstar Switch-based design

Lookup table implementation
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Legie ctstar Switch-based design

MUX example

F(A,B,C) =) (0,2,6,7)
= ABC + ABC + ABC + ABC

Therefore,
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Truth table
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Logic design

Switch-based design
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Truth table
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Switch-based design

Logic design
A B C|F
0 0 O
0 0 1
0 1 O
0 1 1
1 0 0|0
1 0 110
1 1 0|1
1 1 1|1

F=C
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Legie ctstar Switch-based design

Lookup table implementation

S1 SO

2 In
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Legie ctstar Switch-based design

Logic design summary

e Logic gate, transmission gate, and pass transistor design each
have applications.

o MUX-based design provides a good starting point for
transmission gate and pass transistor based design.
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Legie ctstar Switch-based design

Examples

Instead of flying through a bunch of slides, let's try examples.

e f(a) = a.
™ f(a)=§
e f(a,b) = ab

)
e f(a,b) = ab (Check Figure 6-33 in J. Rabaey, A. Chandrakasan,

and B. Nikolic. Digital Integrated Circuits: A Design Perspective.
Prentice-Hall, second edition, 2003!)

e f(a,b,c) = ab+ bc (try both ways).

Derive and explain.
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Logic design

Upcoming topics

e Alternative logic design styles.
e Latches and flip-flops.

* Memories.
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Interconnect: Rent's rule and coupling capacitance
Elmore delay modeling

Logic design

Homework

Lecture plan

1. Interconnect: Rent's rule and coupling capacitance
2. Elmore delay modeling
3. Logic design

4. Homework
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Homework

Homework assignment

e 22 October: Read sections 4.4.1, 4.4.4, and 9.3.3 in J. Rabaey,

A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A
Design Perspective.
Prentice-Hall, second edition, 2003.

e 24 October: Read sections 6.2.2 and 6.2.3 in J. Rabaey,
A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A

Design Perspective.
Prentice-Hall, second edition, 2003.

e 25 October: Lab 3.
e 29 October: Homework 3.
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