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Review

© Explain each transistor operating region.
® What is pinch-off?

© How does body bias work?

@ What is velocity saturation?

© What is sub-threshold operation?
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1. Device trends

2. Fabrication

3. Layout and design rules

4. Packaging and board-level integration

5. Homework
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Device trends

Process variation

Given our current knowledge of transistor operation, what impact will
variation in

# dopant concentrations,

e oxide thickness,

e transistor width, and

e interconnect width

have?
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FinFETs

From Freescale.
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Device trends

Carbon nanotubes and nanowires

Structure of Carbon Nanotube Transistor

Top Gate
l | Carbon Nanotube

Source Drain
= &
Fig. 1 (B) Optical Microscope Image
Siicon Nitide Film |~~~ of Carbon Nanotube
Silicon Oxide '
Carbon Nanotubd
Back Gate

Fig. 1 (A) Structure of Carbon Nanotube Transistor

Fig. 1 (C) Scanning Electron Microscope Image

From AIST.
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Quantum cellular automata

e Binary information encoded in device configuration.

e Signals are propagated through nearest neighbor interaction.

A Device

P =+1 (Binary 1) L
%~ Quantum L) L]

Dot i i i i
Election Signal Propagation Direction

P =-1 (Binary 0)
Wire Cross in the Plane

Majority Gate _
Il 2 (input) 4——-”' 45-degree wire
O ell 4 (device)

oY «
inpu =
\ 90-degree wire

From Professor Xiaobo Sharon Hu.
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Quantum cellular automata

arithmetic-logic unit
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From Professor Xiaobo Sharon Hu.
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Single-electron tunneling transistors

Insulator
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Device trends

Common problems

Difficult to get high-quality devices where they are needed.

High susceptibility to thermal noise.

High susceptibility to charge trap offsets.

e Low gain.
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Device trends

What does the future hold

CMOS for another decade or so, until devices consist of a small
integer number of atoms.

Nobody knows what comes next.

Nothing? New device technology?

Implications for information technology?
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5. Homework

12 Robert Dick Digital Integrated Circuits



Fabrication

Review

® List a few different alternatives to CMOS for use in digital
systems.

® |Indicate their advantages and disadvantages relative to CMOS.
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NMOSFET

14

Polysilicon

Fabrication

-substrate
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Fabrication

Insulator properties

e Low-k: reduced capacitance, useful for isolating wires.

e High-k: increased capacitance, useful for maintaining k despite
increased gate thickness.
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Fabrication
High-level fabrication process overview

gate-oxide

Dual-Well Trench-Isolated CMOS Process
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Fabrication

Schematic of circuit to fabricate

17 Robert Dick Digital Integrated Circuits



Fabrication

Layout of circuit to fabricate
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Fabrication

Overview of fabrication process

optical
mask
oxidation

photoresist photoresist coating
removal (ashing)
stepper exposur

Typical operations in a single
photolithographic cycle (from [Fullman]).
photoresist
developmen
acid etch

process spin, rinse, dry
step
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Fabrication process details

WAFER PRODUCTION
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FIGURE 1.37. General semiconductor production process.

From Richard C. Jaeger. Introduction to Microelectronic Fabrication.
Addison-Wesley, 1993.



Fabrication

SiO, patterning

(a) Silicon base material

Photoresist

(b) After oxidation and deposition
of negative photoresist

UV-light

Patterned
optical mask

Yvyw
T T ]4Exposed resist

(c) Stepper exposure

Robert Dick

TN

[ Hardened resist

Si-substrate

(d) After development and etching of resist,

chemical or plasma etch of SiO2

[ Hardened resist
SiO.

(f) Final result after removal of resist
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Fabrication

Etching
(e ] . |
AT % 25102
Si Si
) ®)

Fig. 2.5 Etching profiles obtained with (a) isotropic wet chemical etching and (b) dry anisotropic
etching in a plasma or reactive-ion etching system.

From Richard C. Jaeger. Introduction to Microelectronic Fabrication.
Addison-Wesley, 1993.
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Fabrication

Summary of processing steps

Define active areas.

Etch and fill trenches.

Implant well regions.

Deposit and pattern polysilicon/metal gate layer.
Implant source and drain regions, and substrate contacts.

Create contacts and via windows.

o6

Deposit and pattern metal layers.

23 Robert Dick Digital Integrated Circuits



Step 1: epitaxial layer

24

Fabrication
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Fabrication

Step 2: gate oxide and sacrificial nitride layer deposition
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Fabrication

Step 3: plasma etching
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Fabrication

Step 4: trench filling, CMP, etching, SiO, deposition
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Fabrication

Step 5: n-well and V7, adjustment implants
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Fabrication

Step 6: p-well and V7, adjustment implants
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Fabrication

Step 7: polysilicon/metal deposition and etch
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Fabrication

Step 8: n* and p™ source, drain, and poly implantation
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I
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Fabrication

Step 9: SiO, deposition and contact etch
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Fabrication

Step 10: deposit and pattern first interconnect layer

mnmn
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Fabrication

Step 11: deposit SiO,, etch contacts, deposit and pattern
second interconnect layer
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Interconnect layers
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Fabrication

Al vs. Cu

For Al, can deposit and etch metal layers.

Cu alloys with Si.

Cannot safely deposit Cu directly on Si.

Cu difficult to controllably etch.

Instead, build SiO> shield and etch contact regions.
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Fabrication

Damascene process

¢+ Oxide deposition

* Stud and wire
metal deposition

* Stud lithography and

reactive ion etch

* Metal chemical-
mechanical polish

* Wire lithography and
reactive ion etch

From IBM.
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Interconnect layers
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39 Robert Dick Digital Integrated Circuits



Layout and design rules

Layout production

Must define 2-D structure for each mask/layer.

Initial topology planning often done.

Can be partially or fully automated.

Must adhere to design rules.
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Stick diagrams
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Layout and design rules

Stick diagram of inverter
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Layout and design rules

Faults and variation

o Clearly cannot have two wires crossing each other.

# Variation imposes further constraints.
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Possible faults

Vbp
a
b
Vss
43 Robert Dick
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b
Vss
43 Robert Dick

Vbp
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Possible faults
Vpp
stuck-open
y fault
DD
[ ]
, - z
b
Vss
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Vbp
a
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Possible faults
Vbp
| stuck-at
Voo fault
b
b
Vss
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Possible faults

Vbp
a
b
Vss
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Layout and design rules

Design rules

Summary
» Automatically-checked layout rules.
* Reduce fault probabilities.

* Generally regarded as necessary.

Caveats
* Recent studies show many rules are not beneficial.
# Interaction range is increasing relative to .

« Complicates design rules, making manual comprehension difficult.

® Design rule checking can be slow.
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Device trends
Fabrication

Layout and design rules

Packaging and board-lex

Meanings of colors in

Layer

Well (p,n)

Active Area (n+,p+)

Select (p+,n+)
Polysilicon

Metal1

Metal2

Contact To Poly
Contact To Diffusicn
Via

45
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Homework

layouts

Color Representation

Yellow
Green
Green
Red
Blue
Magenta
Black
Black
Black
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Layout layers
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Layout and design rules

nplus pplus
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Layout and design rules

Intra-layer design rules

Same Potential Different Potential

Polysilicon .
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Via design rules

Metalto 1
Active Contact|
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Layout and design rules
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Layout editor
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Layout and design rules

Design rule checker
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Packaging and board-level integration

Packaging requirements

Electrical: Good insulators and conductors.

Mechanical: Reliable, doesn't stress IC.

Thermal: Low thermal resistance to ambient. In some cases,
consistency more important.

e Cost.
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Packaging and board-level integration

Wire bonding
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Substrate

Robert Dick
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Packaging and board-level integration

Tape automated bonding

54 Robert Dick

Sprocket
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Packaging and board-level integration

Tape automated bonding die attachment

Film + Fattern

S5older Bump
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Packaging and board-level integration

Flip-chip bonding

56

Interconnect
L E—

layers

Substrate
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Packaging and board-level integration

Through-hole PCB mounting
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Packaging and board-level integration

Surface mount

58
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Example package types

FIXILINX®
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Device trends
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Chip cap
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Device trends
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Heat pipe
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Packaging and board-level integration

Heat pipe details

Casing

High Temperature nvironment Temperature Low Temperature

Heat pipe thermal cycle

1) Working fluid evaporates to vapour absorbing thermal energy.

2) Vapour migrates along cavity to lower temperature end.

3) Vapour condenses back to fluid and is absorbed by the wick,
releasing thermal energy

4) Working fluid flows back to higher temperature end.
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Packaging and board-level integration

Example of variation in package parameters

Type C (pF) L (nH)
68-pin plastic DIP 4 35
68-pin ceramic DIP 7 20

256-pin PGA 5 15
Wire bond 1 1
Solder bump 0.5 0.1
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Packaging and board-level integration

System-on-chip

# Instead of integrating more ICs, put more on an IC.
e Advantages: Lower cost per device, compact.

e Disadvantages: Requires integration of devices fabricated with
different processes.
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Packaging and board-level integration

Move from lead solder

Tin—lead solder was commonly used.

Lead is toxic, accumulates in the body, and is difficult to dispose
of.

Pure tin works in the short term.

May be acceptable as solder in the long term.

Problems with plating.
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Packaging and board-level integration

Tin whiskers

66

connec
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Screw dislocations, primarily caused by plating.
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Multi-chip modules

Better C than board-level
integration.

Integrate multiple processes.

Somewhat compact.

e Expensive.
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Packaging and board-level integration

Multiple active layer 3-D integration

Heat sink—»

2-D chip-multiprocessor 3-D chip-multiprocessor

Potential for thermal problems.
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Packaging and board-level integration

Heterogeneous system 3-D integration

Integrate
e Logic.
e Memory.
* Analog.

Research on discrete components (with soldering).
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Packaging and board-level integration

Microchannel cooling

3D Stack

CMOS Circuitry

Through Silicon Via

Credit to David Atienza at EPFL.
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Packaging and board-level integration

Vapor-phase cooling

IHIIEI!IIP.-II- ‘-I-cl“ljl.-'-ﬂ

Substrate

Credit to Michael J. Ellsworth, Jr. and Robert E. Simons at IBM.
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Packaging and board-level integration

Summary

72

CMOS is the most economical way to build digital logic now, but
potential alternatives being developed.

Fabrication process is essentially repeated deposition, masking,
etching, and polishing steps to dope and build material layers.

Al—Cu.
SiO» — High-x and Low-k.
Cu interconnects use damascene process.

Poly-Si—metal.
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Packaging and board-level integration

Upcoming topics

e MOSFET dynamic behavior.
o Wires.
e CMOS inverters.
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Homework

Homework assignment

e 24 September: Read Mark T. Bohr, Robert S. Chau, Tahir

Ghani, and Kaizad Mistry. The High-k Solution.
IEEE Spectrum, October 2007.

e 24 September: Homework 1.
e 3 October: Lab 2.
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http://spectrum.ieee.org/semiconductors/design/the-highk-solution
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