Digital Integrated Circuits – EECS 312

http://robertdick.org/eecs312/

Teacher: Robert Dick GSI: Shengshou Lu
Office: 2417-E EECS Office: 2725 BBB
Email: dickrp@umich.edu Email: luss@umich.edu

Phone: 734–763–3329 Cellphone: 847–530–1824

Announcement

- 1 I will be in Montreal on Tuesday presenting a research paper at Embedded Systems Week.
- 2 I will lecture at the Friday discussion time and location.
- Mr. Lu will hold discussion at the Tuesday lecture time slot and location.

Review

- 1 How many metal layers are there in modern processes?
- 2 What is the problem with isotropic etching?
- 3 Explain a method of anisotropic etching.
- 4 Why Cu?
- Why damascene?
- 6 What is CMP?
- What is DRC?

Example low-k dielectric materials

- Still active area.
- Porous SiO₂.
- Carbon-doped SiO₂.
- Polymer.

Synchronous integrated circuit organization

- Combinational networks separated by memory elements.
- When memory elements clocked, changed signals race through next stage.
- Clock frequency must be low enough to allow signal to propagate along worst-case combinational path in circuit.

Derive and explain.

Lecture plan

- 1. Transistor dynamic behavior
- 2. Inverter switch model
- 3. Inverter transfer curves and parameter optimization
- 4. Homework

RC curves

$$v(t) = v_f + (v_i - v_f)e^{-t/RC}$$

Inverter transfer curves and parameter optimiz Home

Diode dynamic behavior

MOSFET capacitances

Gate capacitance

Gate capacitance schematic

Mode	C_{GCB}	C_{GCS}	C_{GCD}	C_G
Cutoff	$C_{ox}WL$	0	0	$C_{ox}WL + 2C_{O}W$
Triode	0	$C_{ox}WL/2$	$C_{ox}WL/2$	$C_{ox}WL + 2C_{O}W$
Saturation	0	$^{2}/_{3}C_{ox}WL$	0	$^{2}/_{3}C_{ox}WL + 2C_{O}W$

 C_O is the overlap capacitance.

Gate capacitance variation with V_{GS}

Gate capacitance variation with saturation

Diffusion capacitance diagram

Diffusion capacitance expression

$$C_{diff} = C_{bot} + C_{sw}$$

 $C_{diff} = C_j A + C_{jsw} P$
 $C_{diff} = C_j L_S W + C_{jsw} (2L_S + W)$

- *C*_{bot}: Bottom capacitance to substrate.
- C_{sw} : Side-wall capacitances for three non-channel sides.
- $\overline{C_j}$: Junction capacitance constant in $\overline{F/m}^2$ (base units).
- A: Diffusion area.
- C_{jsw} : Junction side-wall capacitance constant in F/m.
- P: Perimeter for three non-channel sides.
- L_S: Length of diffusion region.
- W: Width of diffusion region (and transistor).

Junction capacitance

- C_{isw} is actually the diode capacitance we considered before.
- What happens as reverse bias increases?
- Can use worst-case approximation.

Capacitance linearization I

- Can approximate variable capacitance as fixed capacitance.
- Uses fitting.

$$egin{aligned} C_{eq} &= rac{\Delta Q_{j}}{\Delta V_{D}} \ C_{eq} &= rac{Q_{j} \left(V_{high}
ight) - Q_{j} \left(V_{low}
ight)}{V_{high} - V_{low}} \ C_{eq} &= K_{eq} C_{j0} \ K_{eq} &= rac{-\phi_{0}^{m}}{\left(V_{high} - V_{low}
ight) \left(1 - m
ight)} \left(\left(\phi_{0} - V_{high}
ight)^{1 - m} - \left(\phi_{0} - V_{low}
ight)^{1 - m}
ight) \end{aligned}$$

Capacitance linearization II

- C_{j0} : Capacitance when voltage bias of diode is 0 V.
- m: Grading coefficient used to model effects of sharp (0.5) or linear (0.33) junction transition (see Page 82 in textbook).
- $\phi_0 = \phi_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$: Built-in potential, i.e., voltage across junction due to diffusion at drift–diffusion equalibrium.

Capacitance parameters for default $0.25\,\mu m$ process technology

		C_{OX}	C_O	$\overline{C_j}$	
	(fF	$/\mu m^2$	$(fF/\mu m)$	$(fF/\mu m^2)$	
NMOS	;	6	0.31	2	
PMOS		6	0.27	1.9	
	m_j	$\phi_{m{b}}$	C_{jsw}	m_{jsw}	ϕ_{bsw}
		(V)	$(fF/\mu m)$		(V)
NMOS	0.5	0.9	0.28	0.44	0.9
PMOS	0.48	0.9	0.22	0.32	0.9

Properties of bottom and sidewall.

Upcoming topics

- MOSFET dynamic behavior.
- Wires.
- CMOS inverters.

Review

- What are the five most important to model capacitances for MOSFETs?
- Explain their locations/sources.
- How do they depend on operating region?
- How are drain and source capacitances calculated?

Review: diode capacitance

$$C_J = \frac{C_{J0}}{\left(1 - V_D/\Phi_0\right)^m}$$

m=0.5 for abrupt junctions, m=0.33 for linear junctions

A change to gate insulation

- Mark T. Bohr, Robert S. Chau, Tahir Ghani, and Kaizad Mistry.
 The High-k Solution.
 IEEE Spectrum, October 2007.
- What was the problem?
- What was its cause?
- What was the solution?
- Key concepts: gate leakage, tunneling, high- κ dielectric, charge traps, single atomic layer deposition, and threshold voltage control.

Lecture plan

- 1. Transistor dynamic behavior
- 2. Inverter switch model
- 3. Inverter transfer curves and parameter optimization
- 4. Homework

Simple inverter context

Inverter layout

Implications of cell-based design

Power and ground sharing breaks isolation.

Simplest switch model of inverter

Switch model transient behavior

- Repeatedly charging/discharging load C.
- $t_{pHL} = f(R_{on}C_L)$.
- Why?

Inverter switch model t_{pHL} derivation

Both t_{pHL} and t_{pLH} defined as time from $0.5\,\mathrm{V_{DD}}$ input crossing to $0.5\,\mathrm{V_{DD}}$ output crossing. Assume step function on input.

$$V_C = V_{DD} e^{-t/RC} \tag{1}$$

Solve for $V_C = V_{DD}/2$.

$$V_{DD}/2 = V_{DD}e^{-t/RC} \tag{2}$$

$$1/2 = e^{-t/RC} \tag{3}$$

$$\ln\left(\frac{1}{2}\right) = -t/RC \tag{4}$$

$$t = -RC \cdot -0.69 \tag{5}$$

$$t = 0.69RC = 0.69\tau \tag{6}$$

Lecture plan

- 1. Transistor dynamic behavior
- 2. Inverter switch model
- 3. Inverter transfer curves and parameter optimization
- 4. Homework

NMOSFET I-V characteristics

Review: Is this a velocity-saturated short-channel device? How can you tell?

Inverter load characteristics

CMOS inverter transfer curve

Switching threshold derivation I

Find voltage for which $V_{in} = V_{out}$. Known: Both NMOSFET and PMOSFET saturated at this point. Recall that

$$I_{DSAT} = \mu C_{ox} \frac{W}{L} \left((V_{GS} - V_T) V_{DSAT} - \frac{V_{DSAT}^2}{2} \right)$$
 (1)

Switching threshold derivation II

Working to find V_M . Find V_{GS} at which NMOSFET and PMOSFET I_D values equal.

$$= kV_{DSAT} \left(V_{GS} - V_{T}\right) - \frac{V_{DSAT}}{2}$$

$$0 = k_{n}V_{DSATn} \left(V_{M} - V_{Tn} - \frac{V_{DSATn}}{2}\right) +$$

$$k_{p}V_{DSATp} \left(V_{M} - V_{Tp} - \frac{V_{DSATp}}{2}\right)$$
(3)

Switching threshold derivation III

Solve for V_M .

$$V_{M} = \frac{\left(V_{Tn} + \frac{V_{DSATn}}{2}\right) + r\left(V_{DD} + V_{Tp} + \frac{V_{DSATp}}{2}\right)}{1 + r}.$$
 (4)

$$r = \frac{k_p V_{DSATp}}{k_n V_{DSATn}} = \frac{\nu_{satp} W_p}{\nu_{satn} W_n}$$
 (5)

$$\nu = \frac{\mu \xi}{1 + \xi/\xi_c} \tag{6}$$

- ν : Charge carrier speed.
- ξ : Field strength.
- ξ_c : Field strength at which scattering limits further increase in carrier speed.

Inverter threshold dependence on transistor conductance ratio

Upcoming topics

- CMOS inverter dynamic behavior.
- Logic gates.

Lecture plan

- 1. Transistor dynamic behavior
- 2. Inverter switch model
- 3. Inverter transfer curves and parameter optimization
- 4. Homework

Homework assignment

- 1 October: Read sections 3.3.3, 5.1, 5.2, 1.3.2, and 1.3.3 in
 - J. Rabaey, A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective*.
 - Prentice-Hall, second edition, 2003. Read as much as you can by 27 September.
- 26 October: Extended Homework 1 due date due to difficulty getting help during office hours.
- 3 October: Lab 2.