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Homework

Announcements

Logical effort.

Homework 3, problem 9 will be moved to Homework 4.

Review DeMorgan’s Laws and gate design.
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Homework

Examples

f (a) = a.

f (a) = a

f (a, b) = ab

f (a, b) = ab (Check Figure 6-33 in J. Rabaey, A. Chandrakasan,

and B. Nikolic. Digital Integrated Circuits: A Design Perspective.
Prentice-Hall, second edition, 2003!)

f (a, b, c) = ab + bc (try both ways).

Derive and explain.
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Miller effect

If VD switches in the opposite direction of VG , the effect of CGD

is doubled.

Consider an inverter.

Model by using a 2CGD capacitor to ground.
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Stack effect
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Each series transistor drops
the voltage seen by the next
transistor.

VT = VT0 +

γ
(√
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)
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Dynamic hazards

Potential for two or more spurious transitions before intended
transition

Results from uneven path delays in some multi-level circuits
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Dynamic hazards
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Eliminating dynamic hazards

Some approaches allow preservation of multi-level structure

Quite complicated to apply

Simpler solution – Convert to two-level implementation
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Static hazards

Still have static hazards

Potential for transient change of output to incorrect value
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Problems with glitches

These transitions result in incorrect output values at some times

Also result in uselessly charging and discharging wire and gate
capacitances through wire, gate, and channel resistances

Increase power consumption
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Glitches increase power consumption
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Detecting hazards

The observable effect of a hazard is a glitch

A circuit that might exhibit a glitch has a hazard

Whether or not a hazard is observed as a glitch depends on
relative gate delays

Relative gate delays change depending on a number of factors –
Conditions during fabrication, temperature, age, etc.

Best to use abstract reasoning to determine whether hazards
might be observed in practice, under some conditions
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Eliminating static hazards

Ensure that the function has a term maintaining a 0 output for
all 0→0 transitions.

Ensure that the function has a term maintaining a 1 output for
all 1→1 transitions.

There are precisely defined algorithms for this, but they build on
a knowledge of logic minimization.
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Where do static hazards really come from?

Static-0: A A

Static-1: A + A

Assume SOP form has no product terms containing a variable in
complemented and uncomplemented forms

Reasonable assumption, if true, drop product term
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Where do static hazards really come from?

Assume POS form has no sum terms containing a variable in
complemented and uncomplemented forms

Reasonable assumption, if true, drop sum term

Assume only one input switches at a time

Conclusion: SOP has no 0-hazards and POS has no 1-hazards

In other words, if you are doing two-level design, you need not
analyze the other form for hazards
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Living with hazards

Sometimes hazards can be tolerated

Combinational logic whose outputs aren’t observed at all times

Synchronous systems

Systems without tight power consumption limits
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Differential cascode voltage switch logic
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Differential cascode voltage switch logic example
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Differential cascode voltage switch logic response
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NMOS-only wired and
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Level restoration
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Restorer sizing
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Depletion mode VT = 0V pass transistor

Consider leakage.
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Static vs. dynamic logic

Static logic relies only on steady-state behavior of system.
Eventually the output converges to a correct result.

Dynamic logic relies on transient behavior and is sensitive to
timing. Reliable design is generally trickier. Why use it?

Static logic requires (kP + kN) transistors for k-input gate.

Dynamic logic requires kN + 2 transistors for k-input gate.
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Dynamic logic

Two-phase operation.
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Dynamic logic example
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Dynamic logic operating principles I

1 Can only discharge output node once per clock period.

2 Inputs must make only one transition during evaluation.

3 Output can be in the high impedance state during and after
evaluation.

4 Logic function is implemented by the pull-down network only.

5 Requires only kN + 2 transistors.

6 Full swing outputs.

7 Non-ratioed - sizing of the devices does not affect the logic levels.

8 Reduced load capacitance due to lower input capacitance.

9 Reduced load capacitance due to smaller output loading. no Isc,
so all the current provided by PDN goes into discharging CL.
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Dynamic logic operating principles II

10 Power consumption usually higher than static CMOS.

Good: No static current.

Good: No glitching.

Bad: Higher transition probabilities.

Bad: More load on clock distribution network.

11 VM = VIH = VIL = VTN so noise margin is low.

12 Needs precharge and evaluation cycle.
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Upcoming topics

Example problems on recently covered material.

Latches and flip-flops.
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Review

What are dynamic hazards?

What are static hazards?

What problems do hazards cause?

What is the root cause of static hazards?

Let’s implement a function using DCVSL.

Derive and explain.
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Dynamic logic charge leakage

35 Robert Dick Digital Integrated Circuits

Non-idealities
DCVSL

Dynamic CMOS
Charge sharing

Homework

Dynamic logic charge leakage timing diagram
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Leakage prevention
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Charge sharing
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Charge sharing model

1 Determine condition by
setting ∆Vout = VTn.

2 This yields Ca
CL

= VTn
VDD−VTn

.
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Charge sharing equations

∆Vout =

{
V

(final)
out + VDD = −Ca/CL

(
VDD − V

(VX )
Tn

)
if ∆Vout < VTn

−VDD
Ca

Ca+CL
if ∆Vout > VTn

Note: The book has a sign error when deriving the boundary point.
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Preventing charge sharing problems
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Transition from combinational to sequential circuits

Inc

Instruction

fetch

A MUX

MUX

NPC

<0 0MUX

Instruction decode &

register fetch

Write

back

SP

PC

Memory

..
.

ALU

DMUX

Execute

I Decoder

MUX
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Upcoming topics

Sense amplifiers.

A more formal approach to gate sizing.
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Homework assignment

31 October: Read Sections 6.3 and 7.1 in J. Rabaey,

A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A
Design Perspective.
Prentice-Hall, second edition, 2003.

7 November: Project 4.
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