Digital Integrated Circuits — EECS 312

http://robertdick.org/eecs312/

Teacher: Robert Dick GSl: Shengshou Lu @ Design a non-trivial logic gate.

Office: 2417-E EECS Office: 2725 BBB . . .
Email dickrp@umichedu  Email:  luss@urmich edu ° Wh?t happen?s to inverter delay as the driving MOSFET widths
Phone:  734-763-3329 are increased?

Cellphone:  847-530-1824 o What happens to inverter delay as the driven MOSFET widths

are increased?

o What impact does non-instantaneous rise/fall time have on the
propagation delay for the subsequent logic stage?
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Inverter sizing

Lab 3 Dependence of delay on width (R)

3.8

3.6
3.4

@ Input inverters. a2

o Implications of sizing on energy consumption.

t (sec)

2.6

2.4

28

o Fix R C; and vary W.

o Eventually, self-loading dominates.
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Inverter sizing Inverter sizing

Inverter chain delay optimization Intuition

Given

@ Size (width) of first inverter in chain,

Given two inverters (first fixed) and a large load (Cp), how
o Driven load, should the second be sized to minimize delay?
@ Transistors are minimal length, and

o Cgr = Cg1 (minimal)?
o Wo/w, = 2 approximately balances t,n; and tp 4. o Cor> ()7
. o Cgr= (7
o Some other setting?
@ Optimal number of inverters in chain and o Why?

@ Optimal size (width) of each inverter

to minimize chain delay.
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Inverter sizing Inverter sizing

Derivation | Derivation Il

Consider the impact of scaling factor S.

B R o
t, = 0.69 (§sc,m (1 + 5%))

Let W= W, =W,/2 tp = 0.69RCipe (1 . )
R=R,=R, SCint
Tor = Toun = 0.69RC, b=t (1 N 5%)
W int
=3 W,+1 Cunit tpo: Intrinsic delay.
unit

t, = 0.69R(Cine + C1) @ Scaling doesn't impact intrinsic delay.
@ Scaling does impact total delay.
@ tp, = tpp as S — oo.

@ Diminishing returns with increasing S.

8 Robert Dick Digital Integrated Circuits 9 Robert Dick Digital Integrated Circuits

Inverter sizin, Inverter sizin,
g g

Consider chain of inverters | Consider chain of inverters Il

tp7Chal'n = tpl + tp2 44 tpn

Coit1
tpi ~ tpO (1 + =gitl
vCe,i and
_ ¢ v = Cint ~ 1 (technology-dependent constant).
tp,chain = Z tpi Cg
i=1
N
C.:
g,i+1
tp,chain = tpO Z (1 + T
i=1 g
Given that
Ceni1=Cp
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Inverter sizing Inverter sizing

Sketch of derivation Sizing for optimal inverter chain delay

For each i, find otp.chain/oC, ;.

Solve for otp.chain/oC, ; = 0,V;=1 N.

. ) ) o Optimal stage-wise sizing factor: /-5
o Result is S — —CCg_”l. P g g o
g, g,i—
o Each stage size geometric mean of previous and next: @ Minimum path delay: t; chain = Ntpo (1 + 4 ﬁifl /’Y)

Cg,i =V Cg,iflcg,iﬂ-

Constant factor relates sizing of all adjacent gate pairs.

Each stage has same delay.
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Inverter sizing Inverter sizing

Example of inverter sizing Optimizing N |

-
iven . ‘.
° IflL =16GC. = o
° =4,
t in = Nt 1 Vo
Per-stage scaling factor: {/16C;/C; =2 p.chain = Nepo | 1+ ~
d Voin (¢
tpcnsin i =7 + V& - 20 (®)
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Inverter sizin, Inverter sizin,
g g

Optimizing N [I Optimizing N Il

Set this to zero.

Let ¢ = Vb
In (pN 1
0 7*‘25*7“/&/&6) ¢ = et
. In (¢N) Hard to deal with this for v # 0. Consider implications for v = 0.
0==-+1—-—-+~
o N p=e
v Nin(¢)
0=—-+1-
o TN
~y
0=—=+1-In(o
s ()
5
In(¢)=—+1
(¢) "
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Inverter sizing Inverter sizing

Optimal stage sizing factor tp,chain(P)

[} Unbuffered N =2 Optimal N

10 11 8.3 8.3
100 101 22 16.5
1,000 1,001 65 24.8
10,000 10,001 202 33.1

o Optimal tapering factor for v =0: e =~ 2.7.
@ 3.6 for v = 1.
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Inverter sizing Inverter sizing

Buffering example Upcoming topics

o Alternative logic design styles.

1 >Q? 64 —— 2 8 18 @ Interconnect.
o

1I> 2.8>08—D zz,al: 64=T 4 28 153
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eommprios Power consumption in synchronous CMOS

P = PswitcH + PstorT + PLEak
Pswitch = C- Vpp® - f-A

@ How can the optimal number of inverters in a load-driving chain b 3
be determined? T PsHorT = E(VDD 2.V f-A-t
@ How can the optimal size of each inverter in the chain be Preak = Voo - (Isus + leate + Lunction + laipr)
ided?
decided? . . . . . . C : total switched capacitance Vpp : high voltage
@ How do determine optimal sizes of logic gates in arbitrary £ itching f A- switchi .
structures? . switching frequency © switching activity
o May cover this near end of course. b: MOS transistor gain V1 . threshold voltage
e Do example problem. t: rise/fall time of inputs

T Pstort usually < 10% of PswircH

Smaller as Vpp — VT
A < 0.5 for combinational nodes, 1 for clocked nodes.
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Impact of nput voltage function on energy consumption Fixed voltage charging

Reasons for power consumption

Estep — / Vi (£) I (£) dt
t=0

00 V,
E;tep _ / VR (t) R (t) dt
t=0

@ Dynamic R
o Charging and discharging RC loads. oo Vhpe YRC
o Egn=C, Vop2. Els?tep = / VDDeit/RCDDTdt
o Pyyn = C.Vpp°f. t:02
e But f < Vpp. EStep _ Vbp o0 e—Zt/Rdt
e So de,, = CL VDD3- R B R t=0
o Static ESteP _ VD02 (_E) [e*ZT/RC) o
o Sub-threshold leakage. R R 2 t=0
o Gate leakage. —Vrn2C
Estep _ DD (0 _ 1)
@ Short-circuit: Pull-up and pull-down networks briefly both on. R 2
peo_ Vo0?C
RoO72
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Impact of input voltage function on energy consumption Impact of input voltage function on energy consumption

Fixed current charging | Fixed current charging Il

IrT
Voo = "¢
o — CVpp
o'e] R — T
ramp __
Eg 7/t: Vg (t) Ig (t) dt Vi = Rl
. - . T
Let T be the voltage ramp duration, I is fixed. Vg is fixed. E"r;mp _ / Ir(t) Vi (t) dt
t=0
Eramp — T CVDD RCVDD dt
R =0 T T
RVDD2 C2 T
ESM™P = —— / 1dt
R T2 t=0
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Impact of input voltage function on energy consumption Impact of input voltage function on energy consumption

Fixed current charging Il Break-even point

Estep — gramp

R R
2 2
Erampe _ VDD2C2R T M = M&
R = T2 2 2 T
2RC
Ermp _ VDD2 C2R 1=—
L T
T =2RC
Eramp _ VDD2C 2RC
R 2 T
o Properly controlling Vg (t).
@ Performance.
@ In limit, permits reversible computation with low/no power
consumption during charging and discharging.
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Impact of input voltage function on energy consumption

Interconnect modeling

Charging methods summary Capacitive load modeling
ging

Vo
o
. . . & Cab2
@ /(t) influences energy consumption for same change in V. v, g«lm —| = v,
@ In theory, keeping voltage differences very small can permit © I J 1
extremely low-power operation. | Capt_| Cw
) o ) | [ =
o Leakage, current control, and preserving reversiblity make this Intarconr et
challenging. -
Fanout
Simplified

Model
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Interconnect modeling

Interconnect modeling
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Interconnect modeling

Interconnect modeling

Interconnect capacitance

Current flow

w Electicatfield lines

tai F A Dielectric
'

Subsfrate

Cc=w

tox

35 Robert Dick Digital Integrated Circuits

Interconnect modeling

Permittivity (k)

Material €

Vacuum 1

Aerogels  ~1.5
Polyimides  3-4

SiO, 3.9
Glass-epoxy 5
SizNg 7.5
Alumina 9.5
Silicon 11.7
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Interconnect modeling

Trends in interconnect design

Fringing

o _—
S AR ETIE R
@
v v v A\ iii
(b)

€ox 2T€ox

Cwire = Cpp + Cfringe = W : W
ox OX

w
N
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Interconnect modeling

Upcoming topics

@ More metal layers.
@ Lower aspect ratios.
o More coupling.

@ Smaller transistors, but similar-length global interconnect.
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o Alternative logic design styles.
@ Latches and flip-flops.

@ Memories.
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Homework

Homework assignment

@ 10 October: Homework 2.
@ 10 October: Read sections 5.4, 5.5, 5.6, and 3.5 in J. Rabaey,
A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A

Design Perspective.
Prentice-Hall, second edition, 2003.

@ 17 October: Read sections 6.2.1, 4.1, and 4.3.2 in J. Rabaey,
A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A

Design Perspective.
Prentice-Hall, second edition, 2003.

@ 22 October: Lab 3.
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