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when the load is large, as in this example, the parasitic delay is insignificant
compared to the effort delay. [

Multistage Logic Networks

The method of logical effort reveals the best number of stages in a multistage
network and how to obtain the least overall delay by balancing the delay among
the stages. The notions of logical and electrical effort generalize easily from
individual gates to multistage paths.

The logical effort along a path compounds by multiplying the logical efforts
of all the logic gates along the path. We use the uppercase symbol G to denote
the path logical effort, so that it is distinguished from g, the logical effort of a
single gate in the path. The subscript i indexes the logic stages along the path.

G=l—[gi (1.7)

The electrical effort along a path through a network is simply the ratio of the
capacitance that loads the last logic gate in the path to the input capacitance of
the first gate in the path. We use an uppercase symbol H to indicate the electrical
effort along a path.

— Cout
Cin

H (1.8)
In this case, C;, and Coys refer to the input and output capacitances of the path
as a whole, as may be inferred from context.

We need to introduce a new kind of effort, named branching effort, to account
for fanout within a network. So far we have treated fanout as a form of electrical
effort: when a logic gate drives several loads, we sum their capacitances, as in
Example 1.3, to obtain an electrical effort. Treating fanout as a form of electrical
effort is easy when the fanout occurs at the final output of a network. This
method is less suitable when the fanout occurs within a logic network because
we know that the electrical effort for the network depends only on the ratio of
its output capacitance to its input capacitance.

When fanout occurs within a logic network, some of the available drive
current is directed along the path we are analyzing, and some is directed off
that path. We define the branching effort b at the output of a logic gate to be
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% Con—path 15 Cojf—path L Crotal

b =
Con—path Cuseﬁd

(1.9)
where Con—parh is the load capacitance along the path we are analyzing and
Coff —parh 1s the capacitance of connections that lead off the path. Note that if the
path does not branch, the branching effort is one. The branching effort along

an entire path B is the product of the branching effort at each of the stages along
the path.

B=[]w (1.10)

Armed with definitions of logical, electrical, and branching effort along a
path, we can define the path effort F. Again, we use an uppercase symbol to
distinguish the path effort from the stage effort f associated with a single logic
stage. The equation that defines path effort is reminiscent of Equation 1.3, which
defines the effort for a single logic gate:

F=GBH (L.11)

Note that the path branching and electrical efforts are related to the electrical
effort of each stage:

BH = Cour ]_[ b; = ]_[ h; (1.12)
Cin

The designer knows Ci,, Cour, and branching efforts b; from the path specifi-

cation. Sizing the path consists of choosing appropriate electrical efforts h; for

each stage to match the total BH product.

Although it is not a direct measure of delay along the path, the path effort
holds the key to minimizing the delay. Observe that the path effort depends only
on the circuit topology and loading and not upon the sizes of the transistors used
in logic gates embedded within the network. Moreover, the effort is unchanged
if inverters are added to or removed from the path, because the logical effort of
an inverter is one. The path effort is related to the minimum achievable delay
along the path, and permits us to calculate that delay easily. Only a little more
work yields the best number of stages and the proper transistor sizes to realize
the minimum delay.

The path delay D is the sum of the delays of each of the stages of logic in
the path. As in the expression for delay in a single stage (Equation 1.5), we shall
distinguish the path effort delay Dr and the path parasitic delay P:
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D=) di=Dp+P (1.13)
The path effort delay is simply

Dr= Zg"hi (1.14)
and the path parasitic delay is

P=>p (1.15)

Optimizing the design of an N-stage logic network proceeds from a very
simple principle that we will prove in Chapter 3: The path delay is least when
each stage in the path bears the same stage effort. This minimum delay is achieved
when the stage effort is

f=ghi=F/N (1.16)

We use a hat over a symbol to indicate an expression that achieves minimum
delay.

Combining these equations, we obtain the principal result of the method of
logical effort, which is an expression for the minimum delay achievable along a
path:

D=NF/N4p (1.17)

From a simple computation of its logical, branching, and electrical efforts we
can obtain an estimate of the minimum delay of a logic network. Observe that
when N = 1, this equation reduces to Equation 1.5.

To equalize the effort borne by each stage on a path, and therefore achieve
the minimum delay along the path, we must choose appropriate transistor sizes
for each stage of logic along the path. Equation 1.16 shows that each logic stage
should be designed with electrical effort

hptsizae (1.18)

From this relationship, we can determine the transistor sizes of gates along a
path. Start at the end of the path and work backward, applying the capacitance
transformation:

(1.19)
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Figure 1.7 — A logic network consisting of three two-input NAND gates.

This determines the input capacitance of each gate, which can then be dis-
tributed appropriately among the transistors connected to the input. The me-
chanics of this process will become clear in the following examples.

ExampLE 1.4

SOLUTION

Consider the path from A to B involving three two-input NAND gates shown
in Figure 1.7. The input capacitance of the first gate is C, and the load
capacitance is also C. What is the least delay of this path, and how should
the transistors be sized to achieve least delay? (The next example will use the
same circuit with a different electrical effort.)

To compute the path effort, we must compute the logical, branching, and
electrical efforts along the path. The path logical effort is the product of
the logical efforts of the three NAND gates, G = gog1g2 =4/3 x 4/3 x 4/3 =
(4/3)® = 2.37. The branching effort is B = 1, because all of the fanouts along
the path are one, that is, there is no branching. The electrical effort is H =
C/C = 1. Hence, the path effort is F = GBH = 2.37. Using Equation 1.17,
we find the least delay achievable along the path to be D = 3(2.37)!/3 +
3(2piny) = 10.0 delay units.

This minimum delay can be realized if the transistor sizes in each logic
gate are chosen properly. First compute the stage effort jAr =2.3713 =4/3.
Starting with the output load C, apply the capacitance transformation of
Equation 1.19 to compute input capacitancez = C x (4/3)/(4/3) = C. Sim-
ilarly, y =z x (4/3)/(4/3) = z = C. Hence we find that all three NAND gates
should have the same input capacitance, C. In other words, the transistor
sizes in the three gates will be the same. This is not a surprising result: all
stages have the same load and the same logical effort, and hence bear equal
effort, which is the condition for minimizing path delay.
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Figure 1.8 — A schematic of a NAND gate from Example 1.4.

ExampLE 1.5

SorLuTtioN

A schematic of the NAND gate is shown in Figure 1.8, assuming pmos
transistors have half the mobility of Nmos transistors. Selecting transistor
sizes will be discussed further in Chapter 4. Since each input drives both a
PMOS and NMos transistor with capacitance C /2, the capacitance of each
input is C, as desired. [

Using the same network as in the previous example, Figure 1.7, find the least
delay achievable along the path from A to B when the output capacitance is
8C.

Using the result from Example 1.4 that G = (4/3)® and the new electrical
effort H = 8C/C = 8, we compute F = GBH = (4/3)> x 8 = 18.96, so the
least path delay is D = 3(18.96)1/3 + 3(2piny) = 14.0 delay units. Observe
that although the electrical effort in this example is eight times the electrical
effort in the earlier example, the delay is increased by only 40%.

Now let us compute the transistor sizes that achieve minimum delay. The
stage effort f = 18.961/3 = 83, Starting with the output load 8C, apply the
capacitance transformation of Equation 1.19 to compute input capacitance
z=8C x (4/3)/(8/3) = 4C. Similarly, y = z x (4/3)/(8/3) =z/2 =2C.
To verify the calculation, calculate the capacitance of the first gate y x
(4/3)/(8/3)=y/2=C, matching the design specification. Each successive
logic gate has twice the input capacitance of its predecessor. This is achieved
by making the transistors in a gate twice as wide as the corresponding
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Figure 1.9 — A multistage logic network with internal fanout.

transistors in its predecessor. The wider transistors in successive stages are
better able to drive current into the larger loads. ]

ExampLE 1.6 iOptimize Zthe circuit in Figure 1.9 to obtain the least delay along the path
om A to B when the electrical effort of the path is 4.5.

SorutioN The path logical effort is G = (4/3)>. The branching effort at the output
of the first stage is (y + y)/y = 2, and at the output of the second stage it is
(z + z + z) /z = 3. The path branching effort is therefore B= 2 x 3 = 6. The
electrical effort along the path is specified to be H = 4.5. Thus F = GBH =
64, and D = 3(64)'* + 3(2pin) = 18,0 delay. units.

To achieve this minimum delay, we must equalize the effort in each stage.
Since the path effort is 64, the stage effort should be (64)!/3 = 4. Starting
from the output, z =4.5C x (4/3)/4 = 1.5C. The second stage drives three
copies of the third stage, so y = 3z x (4/3)/4 =z = 1.5C. We can check the
math by finding the size of the first stage 2y x (4/3)/4=(2/3)y =C, as
given in the design spec. |

ExampLE 1.7 e circuit in Figure 1.10 for minimum delay. Suppose the load is 20
microns of gate capacitance and that the inverter has 10 microns of gate
capacitance.

SorLuTioN Assuming minimum-length transistors, gate capacitance is proportional to
gate width. Hence, it is convenient to express capacitance in terms of microns
of gate width, as given in this problem.
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ExamPLE 1.8

10 um gate cap

T 20 um gate cap

Figure 1.10— A multistage logic network with a variety of gates.

The path has logical effort G=1 x (5/3) x (4/3) x 1 = 20/9. The elec-
trical effort is H = 20/10 = 2, and the branching effort is 1. Thus, F =
GBH = 40/9, and f = (40/9)1/4 = 1.45.

Start from the output and work backward to compute sizes: z = 20 x
1/145=14,y =14 x (4/3)/145=13,andx =13 x (5/3)/1.45 = 15.
These input gate widths are divided among the transistors in each gate.
Notice that the inverters are assigned larger electrical efforts than the more
complex gates because they are better at driving loads. Also note that these
calculations do not have to be very precise. We will see in Section 3.6 that
sizing a gate too large or too small by a factor of 1.5 still results in circuits
within 5% of minimum delay. Therefore, it is easy to use “back-of-the-
envelope” hand calculations to find gate sizes to one or two significant
figures.

Note that the parasitic delay does not enter into the procedure for calcu-
lating transistor sizes to obtain minimum delay. Because the parasitic delay
is fixed, independent of the size of the logic gate, adjustments to the size of
logic gates cannot alter parasitic delay. In fact, we can ignore parasitic delay
entirely unless we want to obtain an accurate estimate of the time required
for a signal to propagate through a logic network, or if we are comparing
two logic networks that contain different types of logic gates or different
numbers of stages and therefore exhibit different parasitic delays. ]

Consider three alternative circuits for driving a loae input

capacitance of the circuit. The first design uses one inverter, the second uses
three inverters in series, and the third uses five in series. All three designs
compute the same logic function. Which is best, and what is the minimum
delay?
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SorutioN In all three cases, the path logical effort is 1, the branching effort is 1, and

|

the electrical effort is 25. Equation 1.17 gives the path delay D = N(25)/N +

Npi eN=1,3,or5.ForN = 1,wehavef) elay units; for N = 3,
=118;2nd for N =5,D @ he best choice is N = 3. In this design,
each stage will bear an effort of (25)!/% = 2.9, so each inverter will be 2.9

times larger than its predecessor. This is the familiar geometric progression
of sizes that is found in many textbooks. ]

This example shows that the fastest speed obtainable depends on the number
of stages in the circuit. Since the path delay varies markedly for different values
of N, it is clear we need a method for choosing N to yield the least delay; this is
the topic of the next section.

Choosing the Best Number of Stages

The delay equations of logical effort, such as Equation 1.17, can be solved to
determine the number of stages, N, that achieves the minimum delay. Although
we will defer the solution technique until Chapter 3, Table 1.3 presents some
results. The table shows, for example, that a single stage is fastest only if the
path effort F is 5.83 or less. If the path effort lies between 5.83 and 22.3, a two-
stage design is best. If it lies between 22.3 and 82.2, three stages are best. The
table confirms that the right number of stages to use in Example 1.8, which has
F = 25, is three. As the effort gets very large, the stage effort approaches 3.59.
If we use Table 1.3 to select the number of stages that gives the least delay,
we may find that we must add stages to a network. We can always add an even
number of stages by attaching pairs of inverters to the end of the path. Because
we can’t add an odd number of inverters without changing the logic function
of the network, we may have to settle for a somewhat slower design or alter the
logic network to accommodate an inverted signal. If a path uses a number of
stages that is not quite optimal, the overall delay is usually not increased very
much; what is disastrous is a design with half or twice the best number of stages.
The table is accurate only when we are considering increasing or decreasing
the number of stages in a path by adding or removing inverters, because the table
assumes that stages being added or removed have a parasitic delay equal to that of
an inverter. Chapter 3 explains how other similar tables can be produced. When
we are comparing logic networks that use different logic gate types or different
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current because of different input gate voltages, which leads to variations in
the delay of a logic gate due to different rise times of input signals. Long input
rise times increase the delay of the logic gate because the pullup and pulldown
networks are not switched fully on or off while the input voltage is near the
switching threshold. If all rise times are equal, our simple model again holds
because all logic gates will exhibit identical charging current waveforms and
thus the same output voltage waveforms. Because the method of logical effort
leads to nearly equal rise times by equalizing effort borne by all logic gates, we
are justified in omitting rise time effects from Equation 3.8.

Further evidence to support the model is obtained from detailed circuit
simulations, described in Section 5.1. Although the delay model is very simple,
it is quite accurate when suitably calibrated. It is, indeed, the basis of models
used by most static timing analyzers.

Minimizing Delay along a Path

The delay model for a single logic gate leads to a method for minimizing the
delay in a sequence of logic gates connected in series. The key result is that path
delay is minimized when the effort borne by each logic gate along the path is
the same.

Consider the two-stage path in Figure 3.3. The path’s input capacitance is Cy,
the input capacitance of the first stage. Capacitance Cs loads the second stage.
According to Equation 3.8, the total delay, measured in units of 7, is

D = (gih + p1) + (8212 + p2) (3.13) I

While the logical efforts g; and g» and parasitic delays p; and p; in this equation
are fixed, the electrical efforts in each stage can be adjusted to minimize the

Gate Gate ]

%)
Input capacitance: C, C, —
Logical effort: g IA
Parasitic delay:
Y P p,

Figure 3.3 — Generic two-stage path.
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delay. The electrical efforts are constrained, however, by the input capacitance
C; and the load capacitance Cs, which are fixed:

b= 2
G
G
hy=—
2=
and because the branching effort is 1:
G
£ h h —rrEai— H
2=z

The path electrical effort H is a given constant that we cannot adjust. Substitut-
ing h, = H/h, into Equation 3.13, we obtain

g

D=(g1h1+p1)+( 7
1

2 Pz) (3.14) ’

To minimize D, we take the partial derivative with respect to the only variable
hy, set the result equal to zero, and solve for h;:

E — o — gﬁ =0 (3.15)
o 8T W’ '
g =gh (3.16)

Thus, delay is minimized when each stage bears the same effort, which is the
product of the logical effort and the electrical effort. This result is independent
of the scale of the circuits and of the parasitic delays. It does not say that the delays
in the two stages will be equal—the delays will differ if the parasitic delays differ.

This result generalizes to paths with any number of stages (Exercise 3-3) and 3
to paths that include branching effort. The fastest design always equalizes effort y
in each stage.

Let us now see how to compute the effort in each stage. We have for a path
of length N:

hihy - - -hy =BH (3.17)

where the path electrical effort H is the ratio of the load on the last stage to the
input capacitance of the first stage, and the branching effort B is the product of
the branching efforts at each stage. Define the path logical effort to be
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818 gN=G (3.18)

Multiplying these two equations together, we obtain the path effort F:

(g1h1)(g2h2) - - - (gnhn) =GBH =F (3.19)

To obtain minimum delay, the N factors on the left must be equal, so that each
stage bears the same effort f = gh. Thus the equation can be rewritten as:

fN=F (3.20)
or
f=FWN (3.21)

Given G, B, H, and N for the path, we can compute F and therefore the stage

effort f that achieves least delay. (Recall that our notation places a hat over a

quantity chosen to achieve least path delay.) Now we can solve for the electrical

effort h; of each stage: h; = f /gi. To calculate transistor sizes, we work backward

or forward along the path, choosing transistor sizes to obtain the required

electrical effort in each stage. This is the procedure outlined in Section 1.3.
The path delay obtained by this optimization procedure is

D= (ghi+p)=NF/N+p (3.22)

Although the parasitic delays do not affect the procedure for designing the path
to obtain least delay, they do affect the actual delay obtained. We will see in the
next section that parasitic delay also influences the best number of stages in a
path.

3.4——Choosing the Length of a Path

Although equalizing the effort borne by each stage in a path minimizes delay
for a given path, the delay can sometimes be reduced further by adjusting the
number of stages in the path. This optimization is also a straightforward result
of our delay model.

Consider a path of logic gates containing n; stages, to which we append n,
additional inverters to obtain a path with a total of N = n; + n;, stages. Let us
assume that we may alter the original n; stages only by scaling because they per-
form necessary logic functions, but we may alter the number 1, of inverters if




