Embedded System Design and Synthesis Status
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http://robertdick.org/esds/ @ Specification, languages, and modeling
Ofﬁce: EECS ?417‘E ) o Computational complexity, synthesis and optimization
Department of Electrical Engineering and Computer Science .
o L @ Real-time systems

University of Michigan
@ Scheduling
@ Embedded operating systems
@ Today: Power, temperature, and reliability
@ Next: Wireless distributed sensing applications
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Power consumption

Acoustic phonons Optic phonons

@ Minimum frequency, regardless of wavelength

Only occur in lattices with more than one atom per unit cell
@ Lattice structure Optic phonons out of phase from primitive cell to primitive cell
@ Transverse and longitudinal waves Positive and negative ions swing against each other
@ Electron—phonon interactions Low group velocity

Interact with electrons

Importance in nanoscale structure modeling?

Boundary scattering and superlattices
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Embedded system p: consumption optimization p mption optimizatior

Why do wires get hot? Why do transistors get hot?

@ Scattering of electrons due to destructive interference with waves

@ Scattering of electrons due to destructive interference with waves in the lattice
in the lattice. @ Where do these waves come from?

o What are these waves? @ Where do the electrons come from?

@ What happens to the energy of these electrons? o Intrinsic carriers

@ What happens when wires start very, very cool? o Dopants
. . . i ?

o What is electrical resistance? o What happens as the.serTnconductor heats up?
) ] o Carrier concentration increases

o What is thermal resistance?

o Carrier mobility decreases
o Threshold voltage decreases
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Power and temperature
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Power consumption : Power consumption

Cooling Power consumption trends

Initial optimization at transistor level

Further research-driven gains at this level difficult
Research moved to higher levels, e.g., RTL

Trade area for performance and performance for power

Clock frequency gains linear

Voltage scaling Vpp? — very important
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Power consumption Power consumption

nption optimization p mption optimizatior

Power consumption in synchronous CMOS Adiabatic charging

P = Pswitch + PsHorT + PLeak
Pswirch = C - Vpp®-f- A
b o Voltage step function implies £ = CVcap?/2
T PsHorT = E(VDD*Q' Vi3 f-A-t

@ Instead, vary voltage to hold current constant:

Preak = Vpp - (Isus + leate + Lunction + lipL) E = CVcap?- RC/t
C : total switched capacitance Vpp : operating voltage o Lower energy if T > 2RC
f : switching frequency A : switching activity @ Impractical when leakage significant
b: MOS transistor gain V1 . threshold voltage
t: rise/fall time of inputs

T Psnort usually < 10% of PswitcH
Smaller as Vpp — V71
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Wiring power consumption

Gate Leakage Subthreshold
Leakage
G 9
: . S D
o In the past, transistor power >> wiring power | |
@ Process scaling = ratio changing NN NN
@ Conventional CAD tools neglect wiring power n+ /‘ n+
@ Indicate promising areas of future research
7~ ant Leakage
Junction Leakage |~ Punchthrough Leakage
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Simplified subthreshold leakage current

Power consumption

Subthreshold leakage current

w ., —Vps
lsubthreshold = ASTVT l1—e 7 Je

where A is a technology-dependent constant,
Vip is the threshold voltage,

L and W are the device effective channel leng
Vs is the gate-to-source voltage,

n is the subthreshold swing coefficient for the
Vps is the drain-to-source voltage, and

vT is the thermal voltage.
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Exponential?

(Ves—Vin)
T

th and width,

transistor,

A. Chandrakasan, W.J. Bowhill, and F. Fox. Design of High-Performance
Microprocessor Circuits. IEEE Press, 2001
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Vps > v and v = £-. q is the charge of an electron. Therefore,
equation can be simplified to

kT
q

2
w (E) e‘?(Vcnsk;_Vrh) (1)

/subthresho/d = As*
L\gq
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Piece-wise linear error
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Leakage model error (%)
w

o . i
PWL1 PWL2 PWL3 PWL4 PWL5 PWL10 PWL15
Piece-wise linear leakage model name
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Design level power savings

Tor \™ V.V,
lote = WLA, ( TX) Ve Vo g Teto- bl el
ox ox

Power reduction opportunities Power analysis iteration times

o where Ay, B, a, b, and c are technology-dependent constants, System level
@ nt is a fitting parameter with a default value of one, 9
. . . Behavior level ko 2
@ V, is the voltage across gate dielectric, S S
8 S
o Tox is gate dielectric thickness, Register-transfer level ?, S
N =
@ Tox is the reference oxide thickness, g S
) - ) ) . Logic level 2 2
@ V,ux is an auxiliary function that approximates the density of 8 2
. . . g £
tunneling carriers and available states, and Transistor level g a
= [
2
. o
o V, is the gate voltage. <
Layout level

K. M. Cao, W. C. Lee, W. Liu, X. Jin, P. Su, S. K. H. Fung, J. X. An, B. Yu, and
C. Hu. BSIM4 gate leakage model including source-drain partition. In [EDM From Anand Raghunathan
Technology Dig., pages 815-818, December 2000
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Power consumption conclusions Reference

Voltage scaling is currently the most promising low-level
power-reduction method: V2 dependence.

@ As Vpp reduced, V+ must also be reduced. G. Chen, R. Yang, and X. Chen. Nanoscale heat transfer and

@ Sub-threshold leakage becomes significant. thermal-electric energy conversion. J. Phys. IV France, 125:499-504,
@ What happens if PLeak > PswitcH? 2005

@ Options to reduce leakage (both expensive):

o Liquid nitrogen — diode leakage
o Silicon-on-insulator (SOI) — Isys
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Power consumption B Power consumption

Power minimization techniques

What can be done to reduce power

@ Reduce switching activity/clock frequency, glitching
consumption in embedded systems? o Reduce voltage (quadratic)
@ Reduce capacitance
@ Reduce temperature or increase threshold to reduce leakage
Please take/refer to your notes for this portion of the lecture. @ Power/clock gating
It is meant to be interactive. @ System-level power management, prediction
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Homework Homework

Embedded operating system assignments | Embedded operating system assignments |l

@ Due 6 October: L. Yang, Robert P. Dick, Haris Lekatsas, and
Srimat Chakradhar. High-performance operating system
controlled on-line memory compression. ACM Trans. Embedded
Computing Systems, 9(4):30:1-30:28, March 2010.

@ Due 11 October: Preeti Ranjan Panda, Nikil D. Dutt, and @ Due 25 October: Main project selection.
Alexandru Nicolau. On-chip vs. off-chip memory: the data
partitioning problem in embeddeed processor-based systems.
ACM Trans. Embedded Computing Systems, 5(3):682-704, July
2000.

@ Due 13 October: Mini-project presentation.

Due 20 October: Mini-project report.

Due date for main project presentation to be announced.

@ Due 13 December: Main project report.

@ Due 14 October (emailing the summary is fine): M. Tim Jones.
Anatomy of real-time Linux architectures. Technical report, April
2008 (this is fun and light reading).
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Homework Homework

Example mini-project report format Upcoming topics

@ Introduction and Motivation: Overview of what you are trying to
accomplish, and reason why it is important.

@ Past Work and Contributions: Survey of related work. Most
reports will find at least five relevant prior publications.

Summarize them, and contrast your work with past work. o Wireless distributed sensing applications.

© Problem Statement: Give a formal definition for the problem you ® Human-centered computer design.
are trying to solve. @ Energy supply in embedded systems.

@ Proposed Solution: Explain how you have solved the problem.

© Experimental Evaluation: Give any experimental, simulation, or
analytical parameters studies here.

@ Conclusions: Did you reach your goal? If not, why not? What
new knowledge have your efforts yielded?
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