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Abstract. We present the algebra of assume-guarantee (AG) contracts.
We define contracts, provide new as well as known operations, and show
how these operations are related. Contracts are functorial: any Boolean
algebra has an associated contract algebra. We study monoid and semir-
ing structures in contract algebra—and the mappings between such struc-
tures. We discuss the actions of a Boolean algebra on its contract algebra.

1 Introduction

The design of complex cyber-physical systems (CPS) involves fundamental chal-
lenges in modeling, specification, and integration. Among the modeling chal-
lenges, the need to model the interconnection of components modeled using
discrete transitions with those using differential equations is fundamental. It is
the opposition between the discrete and the continuous, which René Thom calls
“the fundamental aporia of mathematics.” Specification is well known to be hard
in system engineering: practitioners consistently rank the generation of specifi-
cations for a project among the top challenges in system design [23,27]. Finally,
integration has seen steep increases in magnitude in the 20th century, bringing
technical challenges to engineering (how do we design, build, and maintain such
systems?)4 and organizational challenges to the business landscape (how does an
organization change to support the development, construction, and maintenance
of such systems?)5. The organizational challenges of system engineering are so
salient that some authors categorize the field as a branch of management [7,17].

⋆ This paper is based on Chapter 6 of [14].
4 We read, for example: “We are increasingly experiencing a new type of accident that

arises in the interactions among components (electromechanical, digital, and human)
rather than in the failure of individual components” [19]. “Almost all SI [system
integration] failures occur at interfaces primarily due to incomplete, inconsistent, or
misunderstood specifications” [20].

5 Hobday et al. [11] argue that “systems integration has evolved beyond its original
technical and operational tasks to encompass a strategic business dimension becom-
ing, therefore, a core capability of many high-technology corporations. . . The more
complex, high-technology, and high cost the product, the more significant systems
integration becomes to the productive activity of the firm. . . Systems integration
capabilities are inextricably linked to decisions on whether to make in-house, out-
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Werner Damm has championed two key concepts to address system design
challenges: rich components and contracts. In [5], he observes that “the design of
components in complex systems inherently involves multi-site, multi-domain and
cross-organizational design teams” and that “in spite of well-defined and enforced
process models, such as the V-model, a multitude of ‘disturbances’ may lead to
undesirable design iterations. ‘Disturbances’ in this context take a variety of
forms, such as late or incomplete sets of requirements, late requirement changes,
unspecified assumptions, unexpected disruption in a supply chain sub-process,
the failure to meet non-functional constraints such as communication latencies,
implicit interdependencies, etc.” One way to deal with these disturbances is by
characterizing the domains of validity of our models. In [5], a rich component is
proposed as a classical component upgraded by

(1) extending component specifications to cover all viewpoints necessary
for electronic system design; (2) explicating the dependency of such spec-
ifications on assumptions on the context of a component; (3) providing
classifiers to such assumptions, relating both the positioning in a layered
design space (horizontal, up, down), as well as to their confidence level.

The idea of representing components using assume-guarantee (AG) contracts
launched a major research effort in system engineering [3,4,12,25,28]. We wanted
to streamline two key aspects of complex system design: relationships between
a system integrator and its suppliers (cross-organizational design) and the in-
teractions between multiple engineering organizations within the same company
(cross-domain design). In contract-based design, to each component in our sys-
tem we assign an assume-guarantee specification—or contract. A rich contract
algebra [4,14] allows us to relate global system properties to the local properties
of the components it comprises. This algebra provides mathematical support for
key aspects of the system design process. In this paper, we present this algebra
and discuss its role in system design.

Contracts. AG contracts can be understood as formal specifications split in two
parts: (i) assumptions made on the environment, and (ii) responsibilities assigned
to the object satisfying the specification when it is instantiated in an environ-
ment which meets the assumptions of the contract. Contracts were introduced to
streamline the integration of complex systems and to support concurrent design.
System integration pertains to the composition of multiple design objects into a
coherent whole. For example, suppose a company wishes to implement a system
with a specification C; designers may realize that there are two sub-specifications
C1 and C2 such that the composition of their implementations always yields an
implementation for the top level specification. In the language of AG contracts,
we would say that the composition of C1 and C2, written C1 ‖ C2, refines C. This
company may now develop an implementation M1 for C1, and assign C2 to a

source, or collaborate in production and competition.” Davies et al. [6] claim that “
the traditional advantages of the vertically-integrated systems seller offering single-
vendor designed systems is no longer a major source of competitive advantage in
many industries.”
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third-party OEM to deliver an implementation M2. If M2 is an implementation
for C2, the original company knows that M1 and M2 can be composed and that
this composition meets the top-level specification C. In this setting, frictions
in the supply chain are alleviated as companies exchange formal specifications
expressed as contracts.

An additional use of contracts is as follows. Suppose our company wants to
implement a system with a specification C using a component M1 with specifi-
cation C1 that is not sufficient to implement C. Contracts provide an operation
called quotient which yields the specification whose implementation is exactly
the component M ′ such that M1 composed with M ′ meets the specification C.
The operation of quotient has uses in synthesis (when we have made incremental
progress towards meeting a goal) and in every situation where we need to find
missing components.

To say that contracts support concurrent design refers to another aspect of
the design process. The design of some components involves multiple engineers
working on different aspects of the same object. For example, a team may work
on the functionality aspects of an integrated circuit, while another works on its
timing characterization. If the functionality team generates a specification Cf ,
and the timing team generates a specification Ct, the two teams can combine
their specs into a single contract object C through an operation called merging.
In contract theory, these various aspects of a component are called viewpoints.

The work on the assume-guarantee reasoning of Floyd-Hoare logic [8, 10],
on assume-guarantee specifications of Lamport and Abadi [1, 18], on design by
contract by Meyer [22], on interface automata by de Alfaro and Henzinger [2],
and applications of formal specifications to cyber-physical systems by Damm [5],
yielded that formal assume-guarantee specifications could be used to design and
analyze any cyber-physical system, including their discrete and continuous as-
pects. Assume-guarantee contracts were thus introduced for this purpose by
Benveniste et al. in [3]. Cyber-physical-system design methodologies using con-
tracts were described in [25, 29].

Two questions of practical relevance (the related discussions are written in
blue) inform our discussion below. Question 1: how can multiple specifications
be combined to generate a system specification? This leads us to consider binary
operations on assume-guarantee contracts and their uses in the system design
process. The question has a corollary: when a system is decomposed across mul-
tiple suppliers, as well as across multiple viewpoints, is there a right order for
applying the contract operations? Does the result depend on this order? This
question will lead us to consider how the various operations interact among
themselves.

The second question has to do with computational complexity. We know that
abstracting specifications tends to yield computationally-friendlier semidecision
procedures. Question 2: how can we compute contract abstractions? Part of our
answer to this question will make use of semiring actions.

The structure of the paper is as follows. Section 2 begins to address Question 1
by covering the standard definitions of contracts [4] and all known contract
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operations. The content of this section is a review, except for the operations of
implication and coimplication, which, to the best of our knowledge, have not been
published before. Section 3 treats contracts as an algebra associated with any
Boolean algebra and presents a study of monoid and semiring structures within a
contract algebra. In other words, this section deals with how the various contract
operations interact with each other, yielding insight into compositional design
methodologies using contracts. We use these results to define contract actions,
which play a role in answering Question 2. Section 4 covers two ways in which a
Boolean algebra can act on its contract algebra, and Section 5 discusses contract
abstractions. Sections 3-5 summarize the contributions of this paper.

2 Assume-guarantee contracts

This section defines assume guarantee contracts and addresses Question 1: how
can multiple specifications be combined to generate a system specification?

We discuss four binary operations that allow us to combine contracts. We also
explore adjoint operations that allow us to carry out contract decompositions
optimally. The content in this section borrows from [4, 24], and the references
in the text. Its contributions are the closed-form expressions for implication and
coimplication and the use of duality to unify the presentation of the contract
operations.

Let B be a set called the universe of behaviors. Its elements are called be-
haviors. The universe of behaviors fixes the modeling formalism we have chosen
in our application. A property is defined as a subset of B. A component is also
a subset of B. The difference is semantics: we think of components as the set
of behaviors they can display. Properties contain behaviors meeting a certain
criterion. We say that a component M satisfies a property P , written M |= P if
M ⊆ P . Assume-guarantee contracts are pairs of properties.

Definition 1. A contract C is a pair of properties C = (A,G). We call A as-
sumptions, and G guarantees.

Components can have two types of relationships with respect to a contract.

Definition 2. Let C = (A,G) be a contract. We say that a component E is an
environment for C, written E |=E C, if E |= A.

Environments are those components which meet the assumptions of a con-
tract. Implementations are those which meet the guarantees of the contract when
operating in an environment accepted by the contract.

Definition 3. Let C = (A,G) be a contract. We say that a component M is an
implementation for C, written M |=M C, if M ‖ E |= G for every environment
E of C.

Now that we have definitions for environments and implementations, we de-
fine a relation on contracts that declares two contracts equivalent when they
have the same environments and the same implementations:
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Definition 4. Let C and C′ be two contracts. We say they are equivalent when
they have the same environments and the same implementations.

This means that for C = (A,G) and C′ = (A′, G′) to be equivalent, we
must have A = A′ and G ∩ A = G′

∩ A′ = G′
∩ A (because A′ = A). The

largest G′ meeting this condition is G′ = G∪¬A (the complement is taken with
respect to B). Enforcing this constraint for a contract allows us to have a unique
mathematical object for each set of environments and implementations. We thus
define an AG contract in canonical form as follows:

Definition 5. A contract in canonical form is a contract C = (A,G) satisfying
A∪G = B.

From now on, we assume all contracts are in canonical form.

2.1 Duality

There is a unary operation which is helpful in revealing structure for AG con-
tracts.

Definition 6. Let C = (A,G) be a contract. We define a unary operation called
reciprocal as follows: C−1 = (G,A).

This operation flips environments and implementations, i.e., it gives us the
“environment view” of the specification C. Note that the reciprocal respects
canonicity.

Definition 7. Let ◦ and ⋆ be two binary operations on AG contracts, we say
that the operations are dual when (Ca ◦ Cb)

−1
= C−1

a ⋆ C−1
b .

2.2 Order

Definition 8. Suppose C and C′ are two contracts. We say that C is a refinement
of C′, written C ≤ C′, when all implementations of C are implementations of C′

and all environments of C′ are environments of C.

The association we make of a specification being a refinement is that it is
harder to meet than another. This is why we say that a specification accepting
more environments is a refinement of one accepting less. We can express this
order relation using assumptions and guarantees.

Proposition 1 (Theorem 5.2 of [4]). Let C = (A,G) and C′ = (A′, G′) be
two contracts. Then C ≤ C′ when G ⊆ G′ and A′ ⊆ A.
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2.3 Conjunction and disjunction

The notion of order provides a lattice structure to AG contracts in canonical
form. Given contracts C = (A,G) and C′ = (A′, G′), their meet (GLB) and join
(LUB) are given by

C ∧ C′ = (A∪A′, G∩G′) and C ∨ C′ = (A∩A′, G∪G′).

We leave it to the reader to verify that conjunction and disjunction are mono-
tonic with respect to the refinement order. Also, conjunction and disjunction
furnish our first example of dual operations: C ∧ C′ = (G ∩ G′, A ∪ A′)−1 =

((G,A) ∨ (G′, A′))
−1

=
(

C−1 ∨ C′−1
)−1

.

If we interpret a contract as the entailment A ⇒ G, then contract conjunction
is the conjunction of such entailments. Conjunction can be used to combine
viewpoints. Disjunction has an application in product lines.

2.4 Composition

The notion of composition of AG contracts yields the specification of systems
obtained from composing implementations of each of the contracts being com-
posed. Contract composition formalizes how contracts with suppliers result in a
system level contract. This operation is defined by axiom as follows:

Suppose C1 and C2 are two specifications to be composed. Call C the com-
posite specification. Let M1 and M2 be arbitrary implementations of C1 and C2,
respectively, and let E be any environment of C. We define C to be the small-
est contract satisfying the following constraints: the composite M1 ‖ M2 is an
implementation of C; the composite M1 ‖ E is an environment of C2; and the
composite M2 ‖ E is an environment of C1.

The first requirement states that composing implementations of the specs
being composed yields an implementation of the composite specification. The
second requirement states that instantiating an implementation of C1 in an en-
vironment of the composite specification yields an environment for C2. And the
last requirement is the analogous statement for C1. This principle, which states
how to compose specifications split between environment and implementation
requirements, was stated for the first time by M. Abadi and L. Lamport [1]. We
can obtain a closed-form expression of this principle for AG contracts:

Proposition 2 (Theorem 5.2 of [4]). Let C1 = (A1, G1) and C2 = (A2, G2)
be two AG contracts. Their composition, denoted C1 ‖ C2, is given by C1 ‖ C2 =
(A1 ∩A2 ∪ ¬(G1 ∩G2), G1 ∩G2).

We state without proof an important property of composition:

Proposition 3. Composition of AG contracts is monotonic with respect to the
refinement order.
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2.5 Strong merging (or merging)

We said that AG contracts are used to handle the specifications of the various
viewpoints of the same design element. Suppose C1 and C2 are specifications
corresponding to different aspects to the same design object, e.g., functionality
and power. We define their merger, denoted C1 • C2, to be the contract which
guarantees the guarantees of both specifications when the assumptions of both
specifications are respected: C1 • C2 = (A1 ∩A2, G1 ∩G2 ∪ ¬(A1 ∩A2)) . This
contract is equivalent to contract (A1 ∩A2, G1 ∩G2), which is exactly what we
defined merging to be. Merging can be used to combine viewpoints. Merging and
composition are duals, as pointed out in [24].

2.6 Adjoints

We have introduced four operations on AG contracts: two were obtained from the
partial order, and two by axiom. Now we obtain the adjoints of these operations.
Adjoints are used to compute optimal decompositions of contracts.

Quotient (or residual) The adjoint of composition is called quotient. Let C
and C′ be two AG contracts. The quotient (also called residual in the literature),
denoted C/C′, is defined as the largest AG contract C′′ satisfying C′ ‖ C′′ ≤ C.

Due to the fact that the quotient is the largest contract with this property,
Proposition 3 tells us that any of its refinements has this property.

If we interpret C as a top-level specification that our system has to meet (e.g.,
the specification of a vehicle), and C′ as the specification of a subset of the design
for which we already have an implementation (e.g., a powertrain), then the quo-
tient is the specification whose implementations are exactly those components
that, if added to our partial design, would yield a system meeting the top-level
specification. The following proposition gives us a closed-form expression for the
quotient of AG contracts:

Proposition 4 (Theorem 3.5 of [13]). Let C = (A,G) and C′ = (A′, G′) be
two AG contracts. The quotient, denoted C/C′, is given by

C/C′ = (A∩G′, G∩A′
∪ ¬(A ∩G′)) .

For an in-depth study of the notion of a quotient across several compositional
theories, see [16]. We can readily show that

C/C′ = C • (C′)−1. (1)

Separation Just like composition has an adjoint operation (the quotient), merg-
ing has an adjoint. For contracts C and C′, we define the operation of separation,
denoted C ÷C′, as the smallest contract C′′ satisfying C ≤ C′ •C′′. This operation
has a closed-form solution:
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Proposition 5 (Theorem 3.12 of [26]). Let C = (A,G) and C′ = (A′, G′) be
two AG contracts. Then C ÷ C′ = (A∩G′

∪ ¬(G∩ A′), G∩A′).

Separation obeys C ÷ C′ = C ‖ (C′)−1. From this identity and (1), it follows
that quotient and separation are duals. For examples of merging and separation,
see [26].

Implication and coimplication Given contracts C and C′, the definition of
implication, denoted C′ → C, in a lattice is ∀C′′. C′′ ∧ C′ ≤ C ⇔ C′′ ≤ (C′ → C).
In other words, C′ → C is the largest contract C′′ satisfying C′′ ∧ C′ ≤ C. The
following proposition tells us how to compute this object:

Proposition 6. Let C = (A,G) and C′ = (A′, G′) be two contracts. Implication
has the closed form expression C′ → C = ((A∩ ¬A′)∪ (G′

∩ ¬G), G∪ ¬G′).

Dually, we can ask what is the smallest contract C′′ satisfying C′′∨C′ ≥ C. We
will denote this object C′

9 C. A similar proof yields the following proposition.

Proposition 7. Let C = (A,G) and C′ = (A′, G′) be two contracts. The smallest
contract C′′ satisfying C′′ ∨ C′ ≥ C has the closed form expression C′

9 C =
(A∪ ¬A′, (G∩ ¬G′)∪ (A′

∩ ¬A)).

We observe that

C′ → C = (G∪ ¬G′, (A∩ ¬A′)∪ (G′
∩ ¬G))

−1
=
(

(C′)−1
9 C−1

)−1
,

which shows that implication and coimplication are duals.

2.7 Summary of binary operations

The following diagram shows how all AG contract operations are related.

Conjunction Implication

Order

Disjunction Coimplication

Dual

Right adjoint

Left adjoint

Dual

Composition Quotient

Axiom

Merging Separation

Dual

Right adjoint

Left adjoint

Dual

Two operations—conjunction and disjunction—come from the definition of
order, and two—composition and merging—are defined by axiom. The rest of
the operations are adjoints of these four.

3 Algebraic structures within contracts

In this section, we investigate the corollary of Question 1: Since both viewpoints
and subsystems specifications need to be combined, does the order among these
operations influence the result? If yes, is there a best order?

Inspection of the various binary formulas for AG contracts suggests that
contracts can be defined over any Boolean algebra, not just that corresponding
to properties over a set of behaviors. From now on, we deal with contracts defined
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Conjunction Disjunction
C ∧ C′ = (a ∨ a′, g ∧ g′) C ∨ C′ = (a ∧ a′, g ∨ g′)
Composition Merging
C1 ‖ C2 = (a1 ∧ a2 ∨ ¬(g1 ∧ g2), g1 ∧ g2) C1 • C2 = (a1 ∧ a2, g1 ∧ g2 ∨ ¬(a1 ∧ a2))
Quotient Separation
C/C′ = (a ∧ g′, g ∧ a′ ∨ ¬(a ∧ g′)) C ÷ C′ = (a ∧ g′ ∨ ¬(g ∧ a′), g ∧ a′)
Implication Coimplication
C′ → C = ((a ∧ ¬a′) ∨ (g′ ∧ ¬g), g ∨ ¬g′) C′

9 C = (a ∨ ¬a′, (g ∧ ¬g′) ∨ (a′ ∧ ¬a))

Table 1: Closed-form expressions of operations for contracts over a Boolean algebra

over an arbitrary Boolean algebra and embark on a study of the relations between
the various contract operations.

Let B be a Boolean algebra with bottom and top elements 0B and 1B, re-
spectively. We form the contract algebra C(B) associated with B. The elements
of C(B) are all pairs (a, b) ∈ B2 such that a∨ b = 1B. The notions of order and
the binary operations work exactly the same as for AG contracts over sets of
behaviors. Table 1 summarizes these operations.

The contract 1 = (0B, 1B) is larger than any contract. 0 = (1B, 0B) is smaller
than any contract. The contract e = (1B, 1B) is an identity for composition and
merging. 1 is an identity for conjunction, and 0 for disjunction. Table 2 shows
how various operations behave with respect to the distinguished elements.

0 1 e

C ∧ 0 = 0 C ∧ 1 = C (a, g) ∧ e = (1B , g)
C ∨ 0 = C C ∨ 1 = 1 (a, g) ∨ e = (a, 1B)
C ‖ 0 = 0 (a, g) ‖ 1 = (¬g, g) C ‖ e = C
(a, g) • 0 = (a,¬a) C • 1 = 1 C • e = C

C/0 = 1 (a, g)/1 = (a,¬a) C/e = C
0/(a, g) = (g,¬g) 1/C = 1 e/C = C−1

(a, g)÷ 0 = (¬g, g) C ÷ 1 = 0 C ÷ e = C
0÷ C = 0 1÷ (a, g) = (¬a, a) e÷ C = C−1

(a, g) → 0 = (g,¬g) C → 1 = 1 (a, g) → e = (¬a, 1B)
0 → C = 1 1 → C = C e → (a, g) = (¬g, g)

C 9 0 = 0 (a, g) 9 1 = (¬a, a) (a, g) 9 e = (1B,¬g)
0 9 C = C 1 9 C = 0 e 9 (a, g) = (a,¬a)

Table 2: Contract operations and the distinguished elements

3.1 Monoids

We begin to study the interactions among the various operations. We recall that
a monoid is a semigroup with identity, i.e., a set together with an associative
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binary operation and an identity element for that operation. A contract algebra
contains several monoids:

Proposition 8. C
M
∧ (B) = (C(B),∧, 1B), C

M
∨ (B) = (C(B),∨, 0B), C

M
‖ (B) =

(C(B), ‖, e), and C
M
• (B) = (C(B), •, e) are idempotent, commutative monoids.

It turns out these monoids are isomorphic:

Proposition 9. The monoids C
M
∧ (B), CM

∨ (B), CM
‖ (B), and C

M
• (B) are iso-

morphic. Moreover, the following diagram commutes, where θg(a, g) = (¬(a ∧
g), g) and θa(a, g) = (a,¬(a ∧ g)):

C
M
∧ (B) C

M
∨ (B)

C
M
‖ (B) C

M
• (B)

θg

≃

(·)−1

≃

θa≃

(·)−1

≃

(2)

3.2 Maps between monoids

The previous result showed how to express contract operations in terms of others.
Now we explore how to map contract monoids across their underlying Boolean
algebras.

Suppose we have two Boolean algebras, B and B′. Due to Proposition 9, it
is sufficient to study the structure of the maps between the contract monoids
C

M
‖ (B) and C

M
‖ (B′) in order to understand the structure of the maps between

all contract monoids associated with each Boolean algebra. First we study maps
that allow us to construct and split contracts. Then we consider the general
maps.

Let M∧(B) and M∨(B) be the monoids M∧(B) = (B,∧, 1B) and M∨(B) =
(B,∨, 0B). We define the two monoid maps

ιa : M∧(B) → C
M
‖ (B) a 7→ (a, 1B)

ιg : M∧(B) → C
M
‖ (B) g 7→ (1B, g).

These maps generate an epic monoid map π : M∧(B) × M∧(B) → C
M
‖ (B)

defined as
(a, g) 7→ ιa(a) ‖ ιg(g) = (g → a, g).

Similarly, we have monoid maps that allow us to split a contract:

πg : C
M
‖ (B) → M∧(B) πg(a, g) = g

πa : C
M
∧ (B) → M∨(B) πa(a, g) = a.

We use the monoid isomorphisms (2) to obtain a map C
M
∧ (B) → M∧(B) from

the last morphism:

¬ ◦ πa ◦ θg : C
M
‖ (B) → M∧(B)

(a, g) 7→ a ∧ g.
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The two maps C
M
‖ (B) → M∧(B) yield the monic monoid map

ι : CM
‖ (B) → M∧(B)×M∧(B)

(a, g) 7→ (a ∧ g, g).

This map is left-invertible:

π ◦ ι = e.

The elementary maps just described enable us to find the general structure
between the monoid maps between the parallel monoids corresponding to two
Boolean algebras.

Theorem 1. Let f : CM
‖ (B) → C

M
‖ (B′). Then we can write f as

f = π ◦ (la(ag)lg(g)ra(ag)rg(g), ra(ag)rg(g)) ◦ ι,

where la, lg, ra, rg : M∧(B) → M∧(B
′) are monoid morphisms.

3.3 Semirings

Now that we have four isomorphic monoids, we look for additional algebraic
structure within the contract algebra, namely, the existence of semirings. This
will capture the interactions between algebraic operations. First we study the
distributivity of the binary operations. Distributivity and semi-distributivity an-
swer the corollary of Question 1: Does the order between subspecification com-
position and viewpoint combination matter?

Conjunction Disjunction Composition Merging

Conjunction
C ∧ (C′ ∧ C′′) =

(C ∧ C′) ∧ (C ∧ C′′)

C ∧ (C′ ∨ C′′) =

(C ∧ C′) ∨ (C ∧ C′′)

C ∧ (C′ ‖ C′′) =

(C ∧ C′) ‖ (C ∧ C′′)

e ∧ (1 • 0) 6=

(e ∧ 1) • (e ∧ 0)

Disjunction
C ∨ (C′ ∧ C′′) =

(C ∨ C
′

) ∧ (C ∨ C
′′

)

C ∨ (C′ ∨ C′′) =

(C ∨ C
′

) ∨ (C ∨ C
′′

)

e ∨ (1 ‖ 0) 6=

(e ∨ 1) ‖ (e ∨ 0)

C ∨ (C′ • C′′) =

(C ∨ C
′

) • (C ∨ C
′′

)

Composition
C ‖ (C

′

∧ C
′′

) =

(C ‖ C′) ∧ (C ‖ C′′)

C ‖ (C
′

∨ C
′′

) =

(C ‖ C′) ∨ (C ‖ C′′)

C ‖ (C
′

‖ C
′′

) =

(C ‖ C′) ‖ (C ‖ C′′)

1 ‖ (0 • e) 6=

(1 ‖ 0) • (1 ‖ e)

Merging
C • (C′ ∧ C′′) =

(C • C′) ∧ (C • C′′)

C • (C′ ∨ C′′) =

(C • C′) ∨ (C • C′′)

0 • (1 ‖ e) 6=

(0 • 1) ‖ (0 • e)

C • (C′ • C′′) =

(C • C′) • (C • C′′)

Table 3: Distributivity of contract operations

Proposition 10. Table 3 shows whether the binary operations displayed in the
rows distribute over the binary operations in the columns.
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If we use conjunction to combine viewpoints, then the distributivity of compo-
sition over conjunction says that combining viewpoints and composing subspec-
ifications can be performed at will, in any order. This is wrong if we use merging
to combine viewpoints. Nevertheless, the following proposition expresses that,
if we use merging to combine viewpoints, it is preferred to combine viewpoints
first, and then compose subspecifications, than the converse.

Proposition 11. Let Ci be a contract for 1 ≤ i ≤ 4. We have the following
semi-distributions:

(C1 ∧ C2) ⋆ (C3 ∧ C4) ≤ (C1 ⋆ C3) ∧ (C2 ⋆ C4) and

(C1 ∨ C2) ⋆ (C3 ∨ C4) ≥ (C1 ⋆ C3) ∨ (C2 ⋆ C4),

where ⋆ is any of the operations conjunction, disjunction, composition, or merg-
ing.

The sub-distributivity of parallel composition over conjunction is proved in
Chapter 4 of [4]. We will now use the distributivity results to look for semiring
structure within the algebra of contracts. We recall the definition of a semiring
(see, e.g., [9]):

Definition 9. A semiring (R, ·,+, 1R, 0R) is a nonempty set R where (a) (R,+,
0R) is a commutative monoid; (b) (R, ·, 1R) is a monoid; (c) r(s + t) = rs + rt
and (s+ t)r = sr + tr for all r, s, t ∈ R; (d) r · 0R = 0R · r = 0R for all r ∈ R;
and (e) 0R 6= 1R.

A map of semirings f : (R, ·,+, 1R, 0R) → (R′, ·,+, 1R′, 0R′) satisfies (a)
f(0R) = f(0R′), (b) f(1R) = f(1R′), (c) f(r + s) = f(r) + f(s), and (d) f(r ·
s) = f(r) · f(s).

The following result provides the semiring structures available in the contract
algebra.

Proposition 12. Using the operations of conjunction, disjunction, composi-
tion, and merging, we have exactly four semirings: (a) the conjunction semiring
C

S
∧(B) = (C(B),∧,∨, 1, 0), (b) the disjunction semiring C

S
∨(B) = (C(B),∨,∧,

0, 1), (c) the composition semiring C
S
‖ (B) = (C(B), ‖,∨, e, 0), and (d) the merg-

ing semiring C
S
• (B) = (C(B), •,∧, e, 1).

These four semirings have two isomorphisms.

Proposition 13. We have the isomorphisms C
S
∧(B) ∼= C

S
∨(B) and C

S
‖ (B) ∼=

C
S
• (B). There are no isomorphisms between these two pairs.

3.4 Some semiring maps

Let S∧(B) and S∨(B) be, respectively, the semirings (B,∧,∨, 1, 0) and (B,∨,∧,
0, 1). We first observe that complementation is a semiring isomorphism for S∧(B)
and S∨(B). We define maps ∆g : S∧(B) → C

S
∧(B) and ιg : S∧(B) → C

S
‖ (B) as

follows: ∆g(b) = (¬b, b) and ιg(b) = (1B, b).
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Proposition 14. ∆g and ιg are semiring homomorphisms.

Observe that ∆g can be used to obtain a semiring map from S∨(B) to C
S
∨(B)

using the semiring isomorphisms ¬ : S∧(B)
∼
−→ S∨(B) and (·)−1 : CS

∧(B)
∼
−→

C
S
∨(B) as follows:

S∨(B) S∧(B) C
S
∧(B) C

S
∨(B)

b ¬b (b,¬b) (¬b, b)

¬ ∆g (·)−1

This means that ∆g is also a semiring homomorphism S∨(B) C
S
∨(B).

∆g

The following diagram commutes in the category of semirings:

S∧(B) S∨(B)

C
S
∧(B) C

S
∨(B)

∆g

¬
≃

∆g∆a

(·)−1

≃

The commutativity of the diagram gives rise to the diagonal arrow ∆a = (·)−1 ◦
∆g = ∆g ◦¬. This map is a semiring homomorphism from S∧(B) to C

S
∨(B) and

from S∨(B) to C
S
∧(B). Explicitly, this map is

∆ab = (∆g(b))
−1 = (¬b, b)−1 = (b,¬b) (b ∈ B).

If we use the map ιg, we can obtain ι′a : S∨(B) → C
S
• (B) as follows:

S∨(B) S∧(B) C
S
‖ (B) C

S
∨(B)

b ¬b (1B,¬b) (¬b, 1B)

¬ ιg (·)−1

We obtain the diagram below.

S∧(B) S∨(B)

C
S
‖ (B) C

S
• (B)

ιg

¬
≃

ιa
ι′a

ι′g

(·)−1

≃

The commutativity of the diagram provides the semiring maps S∧(B) C
S
• (B)

ιa

and S∨(B) C
S
‖ (B)

ι′g
given by ιa = (·)−1 ◦ ιg and ι′g = ιg ◦ ¬.

Now we consider maps to S∧(B). The map πg : (a, g) 7→ g is a semiring
homomorphism from C

S
∧(B) to S∧(B) and from C

S
‖ (B) to S∧(B). Similarly, the
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map π′
a : (a, g) 7→ ¬a is a semiring homomorphism from C

S
∧(B) to S∧(B). The

following diagrams commute and define the maps not specified before.

S∧(B) S∨(B)

C
S
‖ (B) C

S
• (B)

πg

¬
≃

πa

π′

aπ′

g

(·)−1

≃

S∧(B) S∨(B)

C
S
∧(B) C

S
∨(B)

πg

¬
≃

πa

π′

aπ′

g

(·)−1

≃

S∧(B) S∨(B)

C
S
∧(B) C

S
∨(B)

π′

a

¬
≃

π′

g

πg
πa

(·)−1

≃

4 Actions

One of the questions we sought to answer was: how can we compute contract
abstractions? Abstractions are useful to carry out refinement verification in less
costly computational environments. We will define abstractions through contract
actions.

The semiring maps just described can be used to generate actions of the
semirings S∧(B) and S∨(B) over the contract semirings. Consider, for example
the map ∆g : S∧(B) → C

S
∧(B). For a contract C = (a, g), we have ∆g(b) ∧ C =

(¬b, b) ∧ (a, g) = (b → a, b ∧ g).
Now consider the map ιg : S∧(B) → C

S
‖ (B): ιg(b) ‖ C = (1B, b) ‖ (a, g) =

((b ∧ g) → a, b ∧ g) = (b → a, b ∧ g). We observe that S∧(B) acts in the same
way on the semirings C

S
∧(B) and C

S
‖ (B). This leads us to

Definition 10. The right action of B on C(B) is (a, g) · b = (b → a, b ∧ g).

Similarly, the semiring map ∆a : S∧(B) → C
S
∨(B) yields ∆a(b)∨C = (b,¬b)∨

(a, g) = (b ∧ a, b → g), and the semiring map ιa : S∧(B) → C
S
• (B) results in

ιa(b) • C = (b, 1B) • (a, g) = (b ∧ a, b → g). S∧(B) acts in the same way on the
semirings C

S
∨(B) and C

S
• (B). We thus obtain

Definition 11. The left action of B on C(B) is given by b·(a, g) = (b∧a, b → g).

The left and right actions have the practical meaning of adding assumptions
or guarantees, respectively, to a contract. The following proposition shows several
properties of these actions.

Proposition 15. The identities for the left and right actions shown in Table 4
hold.

The left action on contracts can be used to generate an abstraction for the
guarantees of a contract. Given a contract C and b ∈ B, we know from Table 4
that C ≤ b · C. This tells us that we can obtain a more relaxed contract by
adding assumptions. Subsequently, we may make use of this additional assump-
tion to coarsen the guarantees of the contract. This operation is rich in algebraic
properties, as shown in Table 4. For algorithmic manipulations of contracts, see
Chapter 7 of [14].



Some Algebraic Aspects of Assume-Guarantee Reasoning 15

Order
b · C ≥ C C · b ≤ C
C ≤ C′ ⇒ b · C ≤ b · C′ C ≤ C′ ⇒ C · b ≤ C′ · b

Reciprocal
(b · C)−1 = C−1 · b

Associativity
(b ∧ b′) · C = b · (b′ · C) C · (b ∧ b′) = (C · b) · b′

Distributivity over the Boolean algebra
(b ∨ b′) · C = (b · C) ∧ (b′ · C) C · (b ∨ b′) = (C · b) ∨ (C · b′)

Actions and the contract operations
b · (C ∧ C′) = b · C ∧ b · C′ (C ∧ C′) · b = C · b ∧ C′

b · (C ∨ C′) = b · C ∨ C′ (C ∨ C′) · b = C · b ∨ C′ · b
b · (C ‖ C′) = b · C ‖ b · C′ (C ‖ C′) · b = C · b ‖ C′

b · (C • C′) = b · C • C′ (C • C′) · b = (C · b) • (C′ · b)

Actions and the adjoint operations
b · (C/C′) = C/(C′ · b) = (b · C)/C′ (C/C′) · b = (C · b)/(b · C′)
b · (C ÷ C′) = (b · C) ÷ (C′ · b) (C ÷ C′) · b = (C · b) ÷ C′ = C ÷ (b · C′)
b · (C′ → C) = C′ → b · C = C′ · b → C (C′ → C) · b = b · C′ → C · b
b · (C′

9 C) = C′ · b 9 b · C (C′
9 C) · b = C′

9 C · b = b · C′
9 C

Table 4: Identities for the left and right actions of a Boolean algebra B over its contract
algebra (b, b′ ∈ B and C, C′ ∈ C(B))

5 Contract abstractions

It is often useful to vary the level of detail used to represent objects. More
detail may be needed to carry out some analysis tasks, but too much detail may
hinder computation. We will explore Question 2: how can we compute contract
abstractions?

5.1 The Galois-connection abstraction

Suppose we have a monotone operator α : Bc → Ba, where Ba and Bc are
Boolean algebras called abstract and concrete domains, respectively. Suppose
that α is also a monoid map α : M∨(Bc) → M∨(Ba), i.e., it commutes with
disjunction and maps 1Bc

to 1Ba
. We can define a map ᾱ : C(Bc) → C(Ba) as

ᾱ : (a, g) 7→ (α(a), α(g)). (3)

The map is well-defined since α(a)∨α(g) = α(a∨g) = α(1Bc
) = 1Ba

. Moreover,
the monotonicity of ᾱ follows from the monotonicity of α. This abstraction is a
slight generalization of that proposed in Chapter 5 of [4].

How can such a map α be obtained? Suppose that α is a monotone map
that maps 1Bc

to 1Ba
. If α is a left element of a Galois connection pair, then it

commutes with disjunction (because left adjoints commute with colimits). Thus,
such an α generates a valid contract abstraction (3).

5.2 Contract Galois connections from Boolean algebra maps

Let f : B → B′ be a Boolean algebra map. f induces a map f∗ : C(B) → C(B′)
between their contract algebras given by f∗(a, g) = (f(a), f(g)). Observe that
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f(a)∨ f(g) = f(a∨ g) = f(1B) = 1B′ . As f commutes with the Boolean algebra
operations, f∗ commutes with the contract operations. Thus, f∗ is well-defined.

Let γ : Ba → Bc and α : Bc → Ba be Boolean algebra maps. These maps

generate contract maps C(Ba) C(Bc)
γ∗

and C(Bc) C(Ba),
α∗

as

described before.
We are interested in exploring the conditions needed for these maps to form

a Galois connection. Specifically, for Ca = (aa, ga) ∈ C(Ba) and Cc = (ac, gc) ∈
C(Bc), we want α∗(Cc) ≤ Ca if and only if Cc ≤ γ∗(Ca).

This means that (αac, αgc) ≤ (aa, ga) if and only if (ac, gc) ≤ (γaa, γga). If
we set ac = 1Bc

and aa = 1Ba
, we get αgc ≤ ga if and only if gc ≤ γga, and if

we set gc = 1Bc
and ga = 1Ba

, we obtain aa ≤ αac if and only if γaa ≤ ac.
This means that α and γ must be simultaneously the left and right adjoints of

each other. By setting gc = γga and ac = γaa in the equations above, we obtain
that α ◦ γ is the identity map. Similarly, by setting ga = αgc and aa = αac, we
get that γ◦α is the identity map. This means that Ba and Bc are isomorphic. We
conclude that contract Galois connections generated from Boolean algebra maps
impose very rigid constraints on the Boolean algebras over which the contracts
are defined.

6 Conclusions

Assume-guarantee contracts provide effective tools in system engineering design.
In this paper, we described the algebra of contracts that can provide a framework
for manipulating contracts in a structured way.

We explored in-depth this algebraic structure per se, while establishing a
mathematically sound methodology for contract-based system design. The rich
algebraic structure of assume-guarantee contracts provides sound support for a
number of operations in system design: combining viewpoints, composing sub-
specifications, and patching a design. At the same time, it raises a number of open
methodological issues: does a designer have freedom in ordering the different
design steps? Alternatively, does the theory impose or recommend an ordering?
Abstractions are a well established way to provide semi-decision procedures at
a lower computational cost. In this paper, we answered the following question:
is there a systematic way to lift abstractions of properties to abstractions of
contracts?

While writing assume-guarantee contracts is intuitive in applications, the
computation of the algebraic operations is often not. Pacti6 was recently in-
troduced [15] to support the design tasks that are backed by the algebra of
contracts. Pacti is able to automatically compute several of the operations we
discussed.

An important question remains open: is there a sound way to lift testing from
properties—where this is well-developed—to assume-guarantee contracts? Our
algebra of assume-guarantee contracts does not provide answers to this question
as yet.

6 https://www.pacti.org

https://www.pacti.org
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A Proofs

Proof of Proposition 6. Let Ci be the contract stated in the proposition. Observe
that Ci ∧ C′ = C ∧ C′. Thus, by the monotonicity of conjunction, C′′ ≤ Ci implies
that C′′ ∧ C′ ≤ C.

Now write C′′ as C′′ = (A′′, G′′) and assume that C′′ ∧ C′ ≤ C. Then

G′′
∩G′ ≤ G and

A′′
∪A′ ≥ A.

From this we conclude that

G′′ ≤ G∪ ¬G′ and (4)

A′′ ≥ A∩ ¬A′. (5)

From (4) and the fact that A′′ ≥ ¬G′′ (which follows from the definition of AG
contracts), we obtain A′′ ≥ G′

∩ ¬G. This result and (5) yield

A′′ ≥ (A∩ ¬A′)∪ (G′
∩ ¬G).

This expression and (4) mean that C′′ ≤ Ci, completing the proof.

Proof of Proposition 8. We already know that 1 and 0 are, respectively, the iden-
tity elements of conjunction and disjunction. e is the identity for composition
and merging. The idempotence of these operations follows immediately from
their definitions. It remains to show that these operations are associative.

Let C = (a, g), C′ = (a′, g′), and C′′ = (a′′, g′′) be contracts.

– Conjunction.

C ∧ (C′ ∧ C′′) = (a, g) ∧ (a′ ∨ a′′, g′ ∧ g′′)

= (a ∨ (a′ ∨ a′′), g ∧ (g′ ∧ g′′))

= ((a ∨ a′) ∨ a′′, (g ∧ g′) ∧ g′′)

= (a ∨ a′, g ∧ g′) ∧ C′′ = (C ∧ C′) ∧ C′′

– Disjunction.

C ∨ (C′ ∨ C′′) =
(

C−1 ∧ ((C′)−1 ∧ (C′′)−1)
)−1

=
(

(C−1 ∧ (C′)−1) ∧ (C′′)−1
)−1

= (C ∨ C′) ∨ C′′

– Composition.

C ‖ (C′ ‖ C′′)

= (a, g) ‖ (¬g′ ∨ ¬g′′ ∨ (a′ ∧ a′′), g′ ∧ g′′)

= (¬g ∨ ¬g′ ∨ ¬g′′ ∨ (a ∧ a′ ∧ a′′), g ∧ (g′ ∧ g′′))

= (¬g ∨ ¬g′ ∨ ¬g′′ ∨ ((a ∧ a′) ∧ a′′), (g ∧ g′) ∧ g′′)

= (¬g ∨ ¬g′ ∨ (a ∧ a′), g ∧ g′) ‖ C′′ = (C ‖ C′) ‖ C′′
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– Merging.

C • (C′ • C′′) =
(

C−1 ‖ ((C′)−1 ‖ (C′′)−1)
)−1

=
(

(C−1 ‖ (C′)−1) ‖ (C′′)−1
)−1

= (C • C′) • C′′

Proof of Proposition 9. Due to the duality relations between conjunction and
disjunction and between composition and merging, the reciprocal map pro-
vides monoid isomorphisms between (C(B),∧, 1) and (C(B),∨, 0) and between
(C(B), ‖, e) and (C(B), •, e).

We now show that the map θg : CM
‖ (B) → C

M
∧ (B) defined as

θg : (a, g) 7→ (¬(a ∧ g), g)

is a monoid isomorphism.
Observe that θ2g(a, g) = θg(¬(a∧g), g) = (¬(¬(a∧g)∧g), g) = (a, g), so θg is

an involution. We proceed to show it is a monoid homomorphism. Let C = (a, g)
and C′ = (a′, g′).

– θg(e) = θg(1, 1) = (0, 1) = 1
– We verify whether θg commutes with the multiplications:

θg(C ‖ C′) = θg(¬(g ∧ g′) ∨ (a ∧ a′), g ∧ g′)

= (¬(a ∧ g ∧ a′ ∧ g′), g ∧ g′)

= (¬(a ∧ g) ∨ ¬(a′ ∧ g′), g ∧ g′)

= (¬(a ∧ g), g) ∧ (¬(a′ ∧ g′), g′) = θg(C) ∧ θg(C
′).

As θg is an involution, we have to check that it is a monoid map from C
M
∧ (B)

to C
M
‖ (B).

θg(C ∧ C′)

= θg(a ∨ a′, g ∧ g′) = (¬(g ∧ g′ ∧ (a ∨ a′)), g ∧ g′)

= (¬(g ∧ g′) ∨ (¬a ∧ ¬a′), g ∧ g′)

= (¬(g ∧ g′) ∨ (¬(a ∧ g) ∧ ¬(a′ ∧ g′)) , g ∧ g′)

= (¬(a ∧ g), g) ‖ (¬(a′ ∧ g′), g′) = θg(C) ‖ θg(C
′)

The isomorphism θa is defined using the diagram (2), i.e.,

θa(a, g) =
(

θg(a, g)
−1
)−1

= (θg(g, a))
−1

= (¬(a ∧ g), a)−1 = (a,¬(a ∧ g)).

Proof of Theorem 1. Because ι is monic, f generates a unique monoid map f#:

M∧(B)×M∧(B) M∧(B
′)×M∧(B

′)

C
M
‖ (B) C

M
‖ (B′)

π

f

f#

ι
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Because π is epic, f# generates a unique monoid map f ♭

M∧(B)×M∧(B) M∧(B
′)×M∧(B

′)

C
M
‖ (B) C

M
‖ (B′)

π

f♭

f

f#

ι

Thus, we have the diagram

M∧(B)×M∧(B) M∧(B
′)×M∧(B

′)

C
M
‖ (B) C

M
‖ (B′)

π

f♭

π

f

f#

ι ι (6)

f ♭ can be factored as the product of two maps

M∧(B)×M∧(B) → M∧(B
′).

We also observe that f ♭(a, g) = f ♭((a, 1)∧(1, g)) = f ♭(a, 1)∧f ♭(1, g). This means
there are monoid maps la, lg, ra, rg : M∧(B) → M∧(B

′) such that

f ♭(a, g) = (la(a)lg(g), ra(a)rg(g)) .

To obtain further restrictions on these maps, we use (6): f ♭(a, g) = ι◦f◦π(a, g) =
ι ◦ π ◦ f ♭ ◦ ι ◦ π(a, g) = (la(ag)lg(g)ra(ag)rg(g), ra(ag)rg(g)).

Proof of Proposition 10. Let C = (a, g), C′ = (a′, g′), and C′′ = (a′′, g′′) be
contracts.

– Conjunction.

C ∧ (C′ ∨ C′′) = (a, g) ∧ (a′ ∧ a′′, g′ ∨ g′′)

= ((a ∨ a′) ∧ (a ∨ a′′), (g ∧ g′) ∨ (g ∧ g′′))

= (C ∧ C′) ∨ (C ∧ C′′)

C ∧ (C′ ‖ C′′)

= (a, g) ∧ ((g′ ∧ g′′) → (a′ ∧ a′′), g′ ∧ g′′)

= (a ∨ (a′ ∧ a′′) ∨ ¬g′ ∨ ¬g′′, g ∧ g′ ∧ g′′)

= (a ∨ ¬g ∨ (a′ ∧ a′′) ∨ ¬g′ ∨ ¬g′′, g ∧ g′ ∧ g′′)

= ((g ∧ g′ ∧ g′′) → ((a ∨ a′) ∧ (a ∨ a′′)), g ∧ g′ ∧ g′′)

= (a ∨ a′, g ∧ g′) ‖ (a ∨ a′′, g ∧ g′′)

= (C ∧ C′) ‖ (C ∧ C′′)

e ∧ (1 • 0) = e ∧ 1 = e 6= 0

= e • 0 = (e ∧ 1) • (e ∧ 0)
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– Disjunction.

C ∨ (C′ ∧ C′′) =
(

C−1 ∧ ((C′)−1 ∨ (C′′)−1)
)−1

=
(

(C−1 ∧ (C′)−1) ∨ (C−1 ∧ (C′′)−1)
)−1

= (C ∨ C′) ∧ (C ∨ C′′)

C ∨ (C′ • C′′) =
(

C−1 ∧ ((C′)−1 ‖ (C′′)−1)
)−1

=
(

(C−1 ∧ (C′)−1) ‖ (C−1 ∧ (C′′)−1)
)−1

= (C ∨ C′) • (C ∨ C′′)

e ∨ (1 ‖ 0) = e ∨ 0 = e 6= 1

= 1 ‖ e = (e ∨ 1) ‖ (e ∨ 0)

– Composition.

C ‖(C′ ∧ C′′) = (a, g) ‖ (a′ ∨ a′′, g′ ∧ g′′)

=

(

¬(g ∧ g′) ∨ ¬(g ∧ g′′) ∨ (a ∧ a′) ∨ (a ∧ a′′),

(g ∧ g′) ∧ (g ∧ g′′)

)

=((g ∧ g′) → (a ∧ a′), (g ∧ g′))∧

((g ∧ g′′) → (a ∧ a′′), (g ∧ g′′))

=(C ‖ C′) ∧ (C ‖ C′′)

C ‖(C′ ∨ C′′) = (a, g) ‖ (a′ ∧ a′′, g′ ∨ g′′)

=

(

¬(g ∧ g′) ∧ ¬(g ∧ g′′) ∨ ((a ∧ a′) ∧ (a ∧ a′′)),

(g ∧ g′) ∨ (g ∧ g′′)

)

=

(

(¬(g ∧ g′) ∨ (a ∧ a′)) ∧ (¬(g ∧ g′′) ∨ (a ∧ a′′)) ,

(g ∧ g′) ∨ (g ∧ g′′)

)

=((g ∧ g′) → (a ∧ a′), (g ∧ g′))

∨ ((g ∧ g′′) → (a ∧ a′′), (g ∧ g′′))

=(C ‖ C′) ∨ (C ‖ C′′)

1 ‖(0 • e) = 1 ‖ 0 = 0 6= 1 = 0 • 1

=(1 ‖ 0) • (1 ‖ e)

The distributivity of composition over conjunction was shown in [21].
– Merging.

C • (C′ ∧ C′′) =
(

C−1 ‖ ((C′)−1 ∨ (C′′)−1)
)−1

=
(

(C−1 ‖ (C′)−1) ∨ (C−1 ‖ (C′′)−1)
)−1

= (C • C′) ∧ (C • C′′)

C • (C′ ∨ C′′) =
(

C−1 ‖ ((C′)−1 ∧ (C′′)−1)
)−1

=
(

(C−1 ‖ (C′)−1) ∧ (C−1 ‖ (C′′)−1)
)−1
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= (C • C′) ∨ (C • C′′)

0 • (1 ‖ e) = 0 • 1 = 1 6= 0 = 1 ‖ 0

= (0 • 1) ‖ (0 • e)

Proof of Proposition 11. Due to the distributivity of ⋆ over conjunction and dis-
junction (Proposition 10), we have (C1 ∧ C2) ⋆ (C3 ∧ C4) = (C1 ⋆ C3) ∧ (C1 ⋆
C4) ∧ (C2 ⋆ C3) ∧ (C2 ⋆ C4) ≤ (C1 ⋆ C3) ∧ (C2 ⋆ C4) and (C1 ∨C2) ⋆ (C3 ∨C4) =
(C1 ⋆ C3) ∨ (C1 ⋆ C4) ∨ (C2 ⋆ C3) ∨ (C2 ⋆ C4) ≥ (C1 ⋆ C3) ∨ (C2 ⋆ C4).

Proof of Proposition 12. Tables 2 and 3 tell, respectively, how operations behave
with respect to the distinguished elements and how operations distribute.

Suppose conjunction is the multiplication operation. Since C ∧ e 6= e, neither
merging nor composition can be the addition operations. On the other hand,
C ∧ 0 = 0, and conjunction distributes over disjunction. Thus, (C(B),∧,∨, 1, 0)
is a semiring.

Now we assume disjunction is the multiplication operation. Since C ∨ e 6= e,
neither merging nor composition can be the addition operations. However, C ∨
1 = 1, and disjunction distributes over conjunction. Thus, (C(B),∨,∧, 0, 1) is a
semiring.

Suppose composition is the multiplication operation. Since composition does
not distribute over merging, merging cannot be addition. Since C ‖ 1 6= 1,
conjunction cannot be addition. However, C ‖ 0 = 0 and composition distributes
over disjunction. Thus, (C(B), ‖,∨, e, 0) is a semiring.

Now suppose that merging is the multiplication. Since merging does not
distribute over composition, composition cannot be addition. Also, since C•0 6= 0,
conjunction cannot be addition. However, C •1 = 1 and merging distributes over
conjunction. Thus, (C(B), •,∧, e, 1) is a semiring.

Proof of Proposition 13. The two semiring isomorphisms are given by the recip-
rocal map. Suppose there is a semiring map β : CS

‖ (B) → C
S
∧(B). Then

β(a, 1B) = β((a, 1B) ∨ e) = β(a, g) ∨ 1 = 1,

which means that β is not invertible.

Proof of Proposition 14. Let b, b′ ∈ B.

– ∆g(0B) = (1B, 0B) = 0 and ∆g(1B) = (0B, 1B) = 1
– ∆g(b ∧ b′) = (¬(b ∧ b′), b ∧ b′) = (¬b ∨ ¬b′, b ∧ b′) = ∆g(b) ∧∆g(b

′)
– ∆g(b ∨ b′) = (¬(b ∨ b′), b ∨ b′) = (¬b ∧ ¬b′, b ∨ b′) = ∆g(b) ∨∆g(b

′)

This shows that ∆g is a semiring homomorphism. Now we study ιg:

– ιg(0B) = (1B, 0B) = 0 and ιg(1B) = (1B, 1B) = e
– ιg(b ∧ b′) = (1B, b ∧ b′) = (1B, b) ‖ (1B, b

′) = ιg(b) ‖ ιg(b
′)

– ιg(b ∨ b′) = (1, b ∨ b′) = (1B, b) ∨ (1B, b
′) = ιg(b) ∨ ιg(b

′)

We conclude that ιg is a semiring homomorphism as well.
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Proof of Proposition 15. Let b, b′ ∈ B, C = (a, g), and C′ = (a′, g′). We have the
following properties:

– Order.

b · C = b · (a, g) = (b ∧ a, b → g) ≥ (a, g) = C

C · b = (a, g) · b = (b → a, b ∧ g) ≤ (a, g) = C

Now suppose C = (a, g) ≤ C′ = (a′, g′). We have a′ ≤ a and g ≤ g′. Since
the operations b ∧ (·) and b → (·) are monotonic, we have b · C ≤ b · C′ and
C · b ≤ C′ · b.

– Reciprocal.

(b · C)−1 = (b ∧ a, b → g)−1 = (b → g, b ∧ a)

= (g, a) · b = C−1 · b

– Associativity.

(b ∧ b′) · C = ((b ∧ b′) ∧ a, (b ∧ b′) → g)

= (b ∧ (b′ ∧ a), b → (b′ → g))

= b · (b′ · (a, g)) = b · (b′ · C)

C · (b ∧ b′) =
(

(b ∧ b′) · C−1
)−1

=
(

(b′ ∧ b) · C−1
)−1

=
(

b′ ·
(

b · C−1
))−1

=
(

b · C−1
)−1

· b′ = (C · b) · b′

– Distributivity over the Boolean algebra B.

(b ∨ b′) · C = ((b ∨ b′) ∧ a, (b ∨ b′) → g)

= ((b ∧ a) ∨ (b′ ∧ a), (b → g) ∧ (b′ → g))

= (b · C) ∧ (b′ · C)

C · (b ∨ b′) =
(

(b ∨ b′) · C−1
)−1

=
(

b · C−1 ∧ b′ · C−1
)−1

= C · b ∨ C · b′

– Distributivity over the contract operations.

• Conjunction.

b · (C ∧ C′) = (b ∧ (a ∨ a′), b → (g ∧ g′))

= ((b ∧ a) ∨ (b ∧ a′), (b → g) ∧ (b → g′))

= b · C ∧ b · C′

(C ∧ C′) · b = (b → (a ∨ a′), b ∧ (g ∧ g′))

= ((b → a) ∨ a′, (b ∧ g) ∧ g′)

= (C · b) ∧ C′
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• Disjunction.

b · (C ∨ C′) =
((

C−1 ∧ (C′)−1
)

· b
)−1

=
(

C−1 · b ∧ (C′)−1
)−1

= b · C ∨ C′

(C ∨ C′) · b =
(

b ·
(

C−1 ∧ (C′)−1
))−1

=
(

b · C−1 ∧ b · (C′)−1
)−1

= C · b ∨ C′ · b

• Composition.

b · (C ‖ C′)

= (b ∧ ((g ∧ g′) → (a ∧ a′)) , b → (g ∧ g′))

=

(

(b → (g ∧ g′)) → (b ∧ a ∧ a′),

b → (g ∧ g′)

)

=

(

((b → g) ∧ (b → g′)) → ((b ∧ a) ∧ (b ∧ a′)),

(b → g) ∧ (b → g′)

)

= b · C ‖ b · C′

(C ‖ C′) · b

= (b → ((g ∧ g′) → (a ∧ a′)) , b ∧ g ∧ g′)

= ((b ∧ g ∧ g′) → (a ∧ a′) , b ∧ g ∧ g′)

= ((b ∧ g ∧ g′) → ((b → a) ∧ a′) , b ∧ g ∧ g′)

= (C · b) ‖ C′

• Merging.

b · (C • C′) =
(

(C−1 ‖ (C′)−1) · b
)−1

=
(

C−1 · b ‖ (C′)−1
)−1

= b · C • C′

(C • C′) · b =
(

b · (C−1 ‖ (C′)−1)
)−1

=
(

b · C−1 ‖ b · (C′)−1
)−1

= C · b • C′ · b

– Distributivity over the adjoint operations.
• Quotient.

b · (C/C′) = b · (C • (C′)−1) = b · C • (C′)−1

= (b · C)/(C′)

b · (C/C′) = b · (C • (C′)−1) = C • b · (C′)−1

= C • (C′ · b)−1 = C/(C′ · b)

(C/C′) · b = (C • (C′)−1) · b = C · b • (C′)−1 · b

= C · b • (b · C′)−1 = (C · b)/(b · C′)
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• Separation.

b · (C ÷ C′) = b · (C ‖ (C′)−1) = b · C ‖ b · (C′)−1

= b · C ‖ (C′ · b)−1 = (b · C)÷ (C′ · b)

(C ÷ C′) · b = (C ‖ (C′)−1) · b = C · b ‖ (C′)−1

= (C · b)÷ C′

(C ÷ C′) · b = (C ‖ (C′)−1) · b

= C ‖ (C′)−1 · b = C ÷ (b · C′)

• Implication.

b · (C′ → C) = b · ((a ∧ ¬a′) ∨ (g′ ∧ ¬g), g ∨ ¬g′)

= (b ∧ (a ∧ ¬a′) ∨ (b ∧ g′ ∧ ¬g), (b → g) ∨ ¬g′)

=

(

((b ∧ a) ∧ ¬a′) ∨ (g′ ∧ ¬(b → g)),

(b → g) ∨ ¬g′

)

= C′ → b · C

b · (C′ → C) = b · ((a ∧ ¬a′) ∨ (g′ ∧ ¬g), g ∨ ¬g′)

=

(

(a ∧ ¬(b → a′)) ∨ (b ∧ g′ ∧ ¬g),

(b ∧ g′) → g

)

= C′ · b → C

(C′ → C) · b = ((a ∧ ¬a′) ∨ (g′ ∧ ¬g), g ∨ ¬g′) · b

=

(

(b → (a ∧ ¬a′)) ∨ (b → (g′ ∧ ¬g)),

(b ∧ g) ∨ ¬(b → g′)

)

=

(

(b → a) ∧ ¬(b ∧ a′) ∨ (b → g′) ∧ ¬(b ∧ g),

(b ∧ g) ∨ ¬(b → g′)

)

= b · C′ → C · b

• Coimplication.

b · (C′
9 C) =

(

((C′)−1 → C−1) · b
)−1

=
(

b · (C′)−1 → C−1 · b
)−1

= C′ · b 9 b · C

(C′
9 C) · b =

(

b · ((C′)−1 → C−1)
)−1

=
(

(C′)−1 → b · C−1
)−1

= C′
9 C · b

=
(

(C′)−1 · b → C−1
)−1

= b · C′
9 C
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