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Abstract: Models of computation (MoC) are reviewed and organised with respect to the time
abstraction they use. Continuous time, discrete time, synchronous and untimed MoCs are
distinguished. System level models serve a variety of objectives with partially contradicting
requirements. Consequently, it is argued that different MoCs are necessary for the various tasks and
phases in the design of an embedded system. Moreover, different MoCs have to be integrated to
provide a coherent system modelling and analysis environment. The relation between some popular
languages and the reviewed MoCs is discussed to find that a given MoC is offered by many
languages and a single language can support multiple MoCs. It is contended that it is of importance
for the quality of tools and overall design productivity, which abstraction levels and which
primitive operators are provided in a language. However, it is observed that there are various
flexible ways to do this, e.g. by way of heterogeneous frameworks, coordination languages and
embedding of different MoCs in the same language.
1 Introduction

A system on a chip (SoC) can integrate microcontrollers,
digital signal processors (DSPs), memories, custom hard-
ware and reconfigurable hardware, in the form of field
programmable gate arrays (FPGAs) together with a
communication structure and analogue-to-digital (A=D)
and digital-to-analogue (D=A) converters on a single chip
(Fig. 1). In total there may be dozens or hundreds of such
components on a single SoC. These architectures offer an
enormous potential. However, they are also tremendously
complex and heterogeneous. This does not only apply for
the hardware, but also for the software. Moreover, the
overall system complexity grows much faster than system
size due to the component interaction. In fact, intra-system
communication is becoming the dominant factor for design,
validation and performance analysis. Consequently, issues
of communication, synchronisation and parallelism must
play a prominent role in all system design languages.

1.1 Hardware and software

In order to manage the complexity and heterogeneity of SoC
applications Edwards et al. [1] believe that the design
approach should be based on the use of one or more formal
methods to describe the behaviour of the system at a high
level of abstraction, before a decision on its decomposition
into hardware and software is taken. The final implemen-
tation of the system should be made by using automatic
synthesis from this high level of abstraction to
ensure implementations that are ‘correct by construction’.
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Validation through simulation or verification should be
done at the higher levels of abstraction.

This is in contrast to current design practice, which
typically leads to an early definition of the interfaces
between hardware and software. After these interfaces
have been specified and fixed by system designers, the
hardware and software is developed in separate sub-
projects by different teams. Each of them only validates
their design against the specified interfaces, but there is
little opportunity to re-evaluate these interfaces or the
overall hardware–software partitioning. This is unfortu-
nate because only when more details of the different parts
are explicitly modelled, analysed and understood, will
certain requirements, constraints and needs become
apparent.

Example: In a mixed hardware=software design project
a task scheduler shall be implemented in software. During
the system specification it has been determined that the
hardware timer sets a flag every 50 ms; which is the basic
time unit for the scheduler. Even though the used timer has
a much higher resolution, during system design and
hardware=software interface specification it is decided that
the only information passed from the hardware timer to
the software scheduler is the flag, which is set by the timer
and reset by the scheduler. There is no apparent reason why
the interface should be more complicated than this, as
previous product generations have successfully used this
mechanism. Also, simplicity is a major design goal since
experience has shown that over-dimensioned designs have
caused increased hardware cost, delayed development and
resulted in performance bottlenecks.

It becomes apparent only much later that the new product
requires a more sophisticated scheduler. Due to challenging
real-time requirements, it sometimes happens that the
scheduler is invoked up to 5 ms after the interrupt from the
hardware timer. It turns out that it would still be possible for
the scheduler to properly schedule all tasks without timing
violations, because this situation never happens several
times in a row and one specific task can be delayed in that
case. For this to work properly the scheduler has to know
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how many ms have elapsed since the last timer tick. Even
though the timer has this information readily available, the
hardware=software interface has no means to convey it.

More often than not it is very difficult or impossible to
change the interface specification. Several design teams
work with the given specification, and too much hardware
and software had to be changed and revalidated. Thus, if
possible, a more local solution to this kind of problem is
sought. For instance, in our case the software engineers
might be tempted to infer the elapsed time by counting
executed instructions. This kind of ad-hoc solution causes
a set of problems, such as undocumented dependency on
a particular processor type and clock frequency with a
nightmare of potential validation problems.

To avoid ending up in ad-hoc problem fixes and local
optimisations, Edwards et al. [1] argue for a system
specification that is detailed enough to identify this kind
of problem early on, but which does not commit to specific
implementations and detailed interface definitions. Essen-
tially, they want to delay this commitment to a later phase,
when the problem and the design are better understood, to
make more informed and better decisions. As a consequence
the mapping and implementation of the specification must
be more automatic, faster and less error-prone.

Thus, they advocate a design process that is based on
representations with precise mathematical meaning, so that
both the validation and the mapping from the initial
description to the various intermediate steps can be carried
out with tools of guaranteed performance. A formal model
of a design should consist of the following components:

(i) a functional specification given as a set of explicit or
implicit relations, which involve inputs, outputs and
possibly internal (state) information;
(ii) a set of properties that the design has to satisfy;
(iii) a set of performance indexes that evaluate the design in
different aspects (speed, size, reliability, etc.); and
(iv) a set of constraints on performance indexes.

1.2 Computation and communication

A similar view on system design has been formulated by
Keutzer et al. [2], who also point out that the orthogonalisa-
tion of concerns, in particular the separation between
(i) computation and communication and (ii) function and
architecture is of crucial importance. ‘Orthogonalisation of
concerns’ aims at breaking a complex problem into smaller,
simpler pieces. The communication mechanisms between
tasks and design blocks should be specified, designed and
implemented independently of the design of the compu-
tation of the system. When the computations of tasks are
designed and optimised, abstract but well defined com-
munication services should be used but not designed.
The communication services have to be well defined with
respect to functionality and performance. For instance, for
a message passing mechanism the synchronisation and
buffering policy have to be defined as well as the latency and
bandwidth constraints. ‘Well specified’ is no contradiction

Fig. 1 Possible system-on-a-chip architecture
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to ‘high abstraction’ and it does not mean there is only one
detailed implementation. For instance the delay can be
given as a minimum–maximum latency range which is well
specified, but still leaves sufficient freedom for various
implementation options.

Example: n our case of the scheduler and timer, it is better to
specify, design, implement and validate the communication
mechanism between hardware and software independent of
the design and implementation of the scheduler. The
communication defines how data are transfered from the
timer to the scheduler, but not which data. Provided there is a
well specified but abstract communication mechanism, the
system designers can elaborate the system functionality and
postpone the details of the hardware= software interface to a
later stage, because the implementation of this interface is
straightforward and mostly automatic. It is provided and
guaranteed by those that design, implement and specify the
communication mechanism.

This example shows that we should replace one type of
problem partitioning by another. The old way of partitioning
into hardware and software is outdated because it is
implementation-oriented and subject to continuous change
when implementation options increase. It has to be replaced
by a partitioning into computation and communication,
which is more problem-oriented, conceptually cleaner and
more stable in the face of rapidly developing implemen-
tation technology.

1.3 Function and architecture

A similar line of argument can be given for the separation
into functionality and architecture. Architectural templates
or platforms will be developed and validated independently
of the development of the functionality for a particular
product. The platform offers services which are both well
defined and abstract. Platform implementers can spend great
effort in optimising and validating the implementation of
these services. Application developers can postpone
implementation decisions to a later stage if they only
know that the platform fulfills all specified functional and
performance requirements. Since platform services can be
implemented in a mixture of hardware and software, we see
a shift from the traditional hardware=software partitioning
to a service provider=service user partitioning, which is
more problem-oriented and conceptually cleaner because it
is less arbitrary.

1.4 Time

Embedded systems have to fulfill many non-functional
requirements. They are usually reactive systems [3] and
have to respond continuously to their environment suffi-
ciently fast to meet all timing requirements. Many
embedded systems are battery-driven and thus need to be
power-efficient. Other embedded systems are safety-critical
and must exhibit a minimum level reliability and predict-
ability. How do design languages support these non-
functional properties?

With the exception of time, non-functional features have
hardly become part of the syntax and semantics of design
languages. Time has made it into languages like VHDL and
Verilog because, with the introduction of concurrent
processes, the relative timing of activities influences the
overall system behaviour. Thus, timing becomes an integral
part of the functionality. In fact, with concurrency being a
major, if not dominant, source of system complexity, the
way time is represented and handled in a design language
has a considerable impact on the complexity of the design
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and validation process. We expect its significance to grow in
the coming years. Thus, it is an important theme in this
paper and an ordering factor when we discuss models of
computation in Section 2.

1.5 Validation

The design process for embedded systems must ensure that
the final system implementation complies with the require-
ments imposed on the system. At present the share of the
validation costs compared to the total design costs is
continuously increasing. Current estimates suggest that a
typical design project employs 1–4 validation engineers for
each design engineer. Over the decades there have been
many heated discussions about language properties that
most effectively support validation. (The term ‘validation’
is used here for both system simulation and formal
verification.) Proponents of C-derived languages such as
SystemC [4], Ocapi [5] and others have claimed that the
increase of simulation speed, as compared to VHDL and
Verilog simulations, facilitates validation. Others [6–8]
have argued that simulation, though a very general
technique, never suffices and has to be complemented by
formal verification. A formal semantics is considered a
precondition for a language to be amenable to formal
verification. We return to this important issue in Section
4.6.1.

1.6 Abstraction

System design starts with the development of a specification
model. In this phase the designer formulates a first model
according to the requirements given in a requirement
specification, which usually is written in a natural language,
e.g. in English. If the specification model is expressed in a
formal language, it can be analysed, processed and
transformed by tools, which is a significant advantage.
(By ‘formal language’ we mean a language with a formally
defined syntax and a well defined semantics. For simplicity
we include languages such as C and VHDL even though
these languages do not have mathematically defined
semantics.) However, a formal design language requires
that many details are filled in and decided, which may not be
available at this early stage of the project. In order to gain all
the obvious benefits the trend has been to introduce formal
design languages earlier in the project. The important point,
however, is to use a language that offers the ‘right
abstractions’, such that everything that a designer wants to
capture can be neatly expressed, while unnecessary details
and unavailable information can be ignored.

Example: When a designer has to specify that the brake
subsystem of the left front wheel in a car sends status
information to the central controller, an abstract communi-
cation mechanism for sending data should be used. For
example, a send(data, destination) primitive only
requires to provide the concerned data and the destination of
the communication action. This is appropriate since the
engineer can focus on what data are sent and where the data
are sent to. A tool could verify that the right data are sent to
the right place. Alternatively, the designer could use low-
level primitives, such as declaring a shared memory
location, protecting the shared memory with semaphores,
checking the status of the shared memory, writing to it,
reading from it and finally acknowledging that the data have
indeed been received. This would have several disadvan-
tages. First, these details are not necessary to express the
overall system functionality and the specification engineer
wastes precious time. Secondly, a verification tool has a
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much harder task to verify that the correct data are sent,
because instead of dealing with one statement it has to
process and verify perhaps 20, 50 or 100 statements. Finally,
the shared memory mechanism may not be the most efficient
mechanism to implement the transaction. Later in the
project it may turn out that a message-passing mechanism is
more cost- or power-efficient. In that case, the specification
engineer’s effort was not only wasted, it may also become
an obstacle to a more efficient implementation.

Suppose, the send primitive is a non-blocking trans-
action and does not provide any information to the sender,
when the data have been received. Assume further that it is
important that the next action by the sender is not initiated
before the data are delivered. If there is no blocking-send
primitive that synchronises sender and receiver, the
specification engineer has to express the desired behaviour
in other, perhaps complex, ways resulting in similar
disadvantages as described above.

Thus, not only is it important to provide a high abstraction
level, it is also crucial to offer the ‘right’ primitives that are a
natural fit to the problem. Moreover, these primitives must
also find efficient implementations. As it is very arduous to
establish a new abstraction level that meets all these
requirements, the march towards higher abstraction levels
has been very slow.

The higher the abstraction level of a model, the fewer
implementation details are inherent in the model and the
larger is the design space. The design space is defined as the
number of possible implementations that fulfill a given
specification model as illustrated in Fig. 2.

1.7 Refinement

A system specification model serves two distinct purposes
[9], as we elaborate further in Section 3. The specification
purpose aims at capturing system functionality in an
unambiguous, analysable way that allows designers and
managers, provider and supplier to discuss and assess
the future product. The implementation purpose aims at
providing a base and contract for the implementation and
validation teams. It must be sufficiently abstract to be
developed efficiently and to avoid overconstraining
the implementation. It must also have sufficient details to
convince everybody that the product can be realised as
suggested and respect all requirements.

While a high level of abstraction is imperative for the
specification purpose, abstract models are not as suitable for
the implementation purpose, as relevant implementation
details are missing. Since the specification and the
implementation purposes impose incompatible constraints
on a model, there is no single model that fits both the
specification and the implementation purposes. Thus, the

Fig. 2 High abstraction level leaves a wider design space
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design process has to use several models at different levels
as shown in Fig. 3. Starting with a specification model that
only includes few implementation details and allows for the
application of formal verification techniques, the design
process will provide a stepwise refinement technique, which
results in an efficient implementation on a complex and
heterogeneous architecture. This is not an easy task, since a
huge abstraction gap has to be bridged.

Thus, a system design methodology has to offer the
following:

. the possibility to model the system at a high level of
abstraction allowing for an efficient validation; and
. a refinement methodology that allows the bridging of the
abstraction gap in order to yield an efficient implementation.

These objectives can be summarised as the challenge for a
successful system design methodology. From Fig. 3 we can
clearly see that models are used at several levels of
abstraction. Since the specification and implementation
purposes require different models, it is not very likely that
the same kind of model can be used for both purposes. Thus,
the design process has not only to provide a refinement of a
particular model of computation, but also mapping rules
between different models of computation.

In the following Section we discuss models of compu-
tation (MoC). We view MoC as a convenient concept that
abstracts slightly from the languages and allows us to focus
on the essential issues of concurrency, time, communication
and synchronisation. The purpose of a specification model is
discussed in more detail, which determines the requirements
for the specification language. This discussion allows us to
appreciate the strengths and weaknesses of different MoCs
with respect to the requirements of the design process.
Languages are discussed. However, we do not give a
complete list of design languages, but we only focus on
features concerning time and communication.

2 Models of computation

We use the term ‘model of computation’ (MoC) to focus on
issues of concurrency and time. Consequently, even though
it has been defined in different ways by different authors
(see for instance [10–14]), we use it to define the time
representation and the semantics of communication and
synchronisation between processes in a process network.
Thus, a MoC defines how computation takes place in a
structure of concurrent processes, hence giving a semantics
to such a structure [15, 16]. This semantics can be used to
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Fig. 3 Design process is a stepwise refinement from a high-level
specification model into a final implementation
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formulate an abstract machine that is able to execute a
model. Languages are not computational models, but have
underlying computational models. For instance the
languages VHDL, Verilog and SystemC share the same
discrete time, event-driven computational model. On the
other hand, languages can be used to support more than one
computational model. In ForSyDe [17], the functional
language Haskell [18] is used to express several models of
computation. Libraries have been created for synchronous,
data flow and discrete event models of computation.
Similarly, standard ML has been used to implement
timed, synchronous and untimed computational models
[19]. SystemC has also been extended to support SDF
(synchronous dataflow) and CSP (communicating sequen-
tial processes) models of computation in addition to its
native discrete event MoC [20].

To choose the right model of computation is of utmost
importance, since each MoC has certain properties. As an
example, consider a process network modelled as a discrete
event system in SystemC. In the general case, automatic
tools will not be able to compute a static schedule for a
single processor implementation, even if the process
network would easily allow it. For this reason Patel and
Shukla [20] have extended SystemC to support an SDF
MoC. The same process network expressed as an SDF can
then easily be statically scheduled by a tool.

Skillicorn and Talia discuss models of computation for
parallel architectures in [21]. Their community faces similar
problems in the design of embedded systems. In fact all
typical parallel computer structures (SIMD, MIMD) can be
implemented on a SoC architecture. (Flynn has classified
typical parallel data structures in [22], where SIMD is an
abbreviation for single instruction, multiple data and MIMD
for multiple instruction, multiple data.) Recognising that
programming of a large number of communicating
processors is an extremely complex task, they try to define
properties for a suitable model of parallel computation.
They emphasise that a model should hide most of the details
(decomposition, mapping, communication, synchronisa-
tion) from programmers if they are to be able to manage
intellectually the creation of software. The exact structure of
the program should be inserted by the translation process
rather than by the programmer. Thus, models should be as
abstract as possible, which means that the parallelism does
not even have to be made explicit in the program text. They
point out that ad-hoc compilation techniques cannot be
expected to work on problems of this complexity, but
advocate building software that is correct by construction
rather then verifying program properties after construction.
Programs should be architecture-independent to allow
reuse. The model should support cost measures to guide
the design process and should have guaranteed performance
over a useful variety of architectures.

Depending on what information is explicit in a model
they distinguish six levels, i.e.

(1) nothing explicit
(2) parallelism explicit
(3) parallelism and decomposition explicit
(4) parallelism, decomposition and mapping explicit
(5) parallelism, decomposition, mapping and communi-
cation explicit
(6) parallelism, decomposition, mapping, communication
and synchronisation explicit

Next, we present a number of important models of
computations and give their key properties. Following
[10, 16], we organise them according to their timing
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abstraction. We distinguish between discrete time models,
synchronous models where a cycle denotes an abstract
notion of time, and untimed models. This is consistent with
the tagged-signal model proposed by Lee and Sangiovanni-
Vincentelli [11]. There each event has a time tag and
different time tag structures result in different MoCs. For
example, if the time tags correspond to real numbers we
have a continuous time model; integer time tags result in
discrete time models; time tags drawn from a partially
ordered set result in an untimed MoC.

MoCs can be organised along other criteria, e.g. along the
kinds of elements manipulated in a MoC which led Paul and
Thomas [12] to a grouping of MoCs for hardware artefacts,
MoCs for software artefacts and MoCs for design artefacts.
However, an organisation along properties that are not
inherent properties of MoCs is of limited use because it
changes when MoCs are used in different ways.

A drawback of an organisation along the time abstraction
is that all strictly sequential models, such as finite state
machines and sequential algorithms, all fall into the same
class of MoCs, where the representation of time is
irrelevant. However, this is of minor concern to us, since
we focus on parallel MoCs.

2.1 Continuous-time models

When time is represented by a continuous set, usually the
real numbers, we talk of a continuous-time MoC. Prominent
examples of continuous-time MoC instances are Simulink
[23], VHDL–AMS and Modelica [24]. The behaviour is
typically expressed as equations over real numbers.
Simulators for continuous-time MoCs are based on
differential equation solvers that compute the behaviour of
a model, including arbitrary internal feedback loops.

Due to the need to solve differential equations, simulations
of continuous-time models are very slow. Hence, only small
parts of a system are usually modelled with continuous time
such as analogue and mixed-signal components.

To be able to model and analyse a complete system that
contains analogue components, mixed-signal languages and
simulators such as VHDL–AMS have been developed.
They allow modelling of the pure digital parts in a discrete-
time MoC and the analogue parts in a continuous-time MoC.
This allows for complete system simulations with accep-
table simulation performance. It is also a typical example
where heterogeneous models based on multiple MoCs have
a clear benefit.

2.2 Discrete-time models

Models where all events are associated with a time instant
and the time is represented by a discrete set, such as the
integer or natural numbers, are called discrete-time models.
(Sometimes this group of MoCs is denoted as ‘discrete-
event MoC’. Strictly speaking ‘discrete event’ and
‘discrete time’ are independent, orthogonal concepts.
In discrete-event models, the values of events are drawn
from a discrete set. All four combinations occur in practice:
continuous-time=continuous-event models, continuous-
time=discrete-event models, discrete-time=continuous-
event models and discrete-time=discrete-event models.
See for instance [25] for a good coverage of discrete event
models.)

Discrete-time models are often used for the simulation of
hardware. Both VHDL [26] and Verilog [27] use a
discrete-time model for the their simulation semantics.
(Both languages have a different model of computation for
synthesis, which is similar to a perfect synchronous model
due to the use of synchronous registers with the difference
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that computation does not have a zero delay). A simulator
for discrete-time MoCs is usually implemented with a
global event queue that automatically sorts occurring
events. Discrete-time models may have causality problems
due to zero-delay in feedback loops, which are discussed in
Section 2.4.

2.3 Synchronous models

In synchronous MoCs, time is also represented by a discrete
set, such as integers, but the elementary time unit is not a
physical unit but more abstract due to two abstraction
mechanisms:

(i) The timing of activities and events is not precisely
defined but only constrained by the beginning and end of the
elementary time slot.
(ii) The timing of intermediate events that are not visible at
the end of an elementary time slot is irrelevant and can be
ignored.

In each time unit all processes evaluate once and all events
occurring during this process are considered to occur
simultaneously.

The synchronous assumption can be formulated accord-
ing to [3]. The synchronous approach considers ‘ideal
reactive systems that produce their outputs synchronously
with their inputs, their reaction taking no observable time’.
This implies that the computation of an output event is
instantaneous. The synchronous assumption leads to a clean
separation between computation and communication.
A global clock triggers computations that are conceptually
simultaneous and instantaneous. This assumption frees the
designer from the modelling of complex communication
mechanisms and provides a solid base for formal methods.

A synchronous design technique has been used in
hardware design for clocked synchronous circuits. A circuit
behaviour can be described deterministically independent
of the detailed timing of gates by separating combi-
national blocks from each other with clocked registers.
An implementation will have the same behaviour as the
abstract circuit under the assumption that the combinational
blocks are ‘fast enough’ and that the abstract circuit does not
include zero-delay feedback loops.

The synchronous assumption implies a simple and formal
communication model. Concurrent processes can easily be
composed together. However, feedback loops with zero-
delay may cause causality problems which are discussed
next.

2.4 Feedback loops in timed and
synchronous models

Timed models allow zero-delay computation; in synchro-
nous models this is even a basic assumption. As a
consequence, feedback loops may introduce inconsistent
behaviour. In fact, feedback loops as illustrated in Fig. 4 may
have no consistent solution; there may be one consistent
and unambiguous solution or there may be many solutions.

Figure 4a shows a system with a zero-delay feedback
loop that does not have a stable solution. If the output of the
Boolean AND function is True then the output of the
NAND function is False. But this means that the output of
the AND function has to be False, which is in
contradiction to the starting point of the analysis. Starting
with the value False on the output of AND does not lead
to a stable solution either. Clearly there is no solution to this
problem.

Figure 4b shows a system with a feedback loop with
multiple solutions. Here the system is stable, if both AND
IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005



Fig. 4 Feedback loop in a synchronous system

a No solutions
b Multiple solutions
c Single solution
functions have False or if both AND functions have True
as their output value. Thus, the system has two possible
solutions.

Figure 4c shows a system with a feedback loop with only
one solution. Here the only solution is that both outputs are
True.

It is crucial for the design of safety-critical systems that
feedback loops with no solution as in Fig. 4a are detected
and eliminated, since they result in an oscillator. Also
feedback loops with multiple solutions imply a risk for
safety-critical systems, since they lead to nondeterminism.
Nondeterminism may be acceptable, if it is detected and the
designer is aware of its implications, but may have serious
consequences, if it stays undetected.

Since feedback loops in timed and synchronous models
are of such importance there are several approaches which
address this problem [15].
Microstep: In order to introduce an order between events that
are produced and consumed in an event cycle, the concept of
microsteps has been introduced into languages like VHDL.
In order to solve the zero-delay feedback problem, VHDL
distinguishes between two dimensions of time. The first one
is given by a time unit, e.g. a picosecond, while the second is
given by a number of delta-delays. A delta-delay is an
infinitesimally small amount of time. Each operation takes
zero time units, but one delta-delay. Delta-delays are used to
order operations within the same time unit. While this
approach partly solves the zero-delay feedback problem, it
introduces another problem, since delta-delays will never
cause the advance of time measured in time units.

Thus during an event cycle there may be an infinite
amount of delta-delays. This would be the result, if Fig. 4a
would be implemented in VHDL, since each operation
causes time to advance with one delta-delay. An advantage
of the delta-delay is that simulation will reveal that the
composite function oscillates. However, a VHDL simu-
lation would not detect that Fig. 4b has two solutions, since
the simulation semantics of VHDL would assign an initial
value for the output of the AND gates (False) and thus
would only give one stable solution, concealing the non-
determinism from the designer. (VHDL defines the data
type boolean by means of type boolean is (false,
true). At program start variables and signals take the
leftmost value of their data type definitions; in case of the
boolean data type the value False is used.) Another
serious drawback of the microstep concept is that it leads to
a more complicated semantics, which aggravates the task of
formal reasoning.
Forbid zero-delays: The easiest way to cope with the
zero-delay feedback problem is to forbid them. In cases of
Fig. 4a and Fig. 4b this would mean the insertion of an extra
delay function, e.g. after the upper AND function. Since a
delay function has an initial value, the systems will stabilise.
IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005
Assuming an initial value of True, Fig. 4a will stabilise in
the current event cycle with the values False for the output
of the NAND function and False for the value of the AND
function. Figure 4b would stabilise with the output value
True for both AND functions. A possible problem with this
approach is that a stable system, such as Fig. 4c, is rejected,
since it contains a zero-delay feedback-loop. This approach
is adopted in the synchronous language Lustre [28].
Unique fixed-point: The idea of this approach is that a
system is seen as a set of equations for which one solution in
the form of a fixed-point exists. There is a special value ?
(‘bottom’) that allows it to give systems with no solution or
many solutions a fixed-point solution. The advantage of this
method is that the system can be regarded as a functional
program, where formal analysis will show if the system has
a unique solution. Also systems that have a stable feedback
loop as in Fig. 4c are accepted, while the systems of Fig. 4a
and Fig. 4b are rejected (the result will be the value ? as
solution for the feedback loops). Naturally, the fixed-point
approach demands a more sophisticated semantics, but the
theory is well understood [29]. Esterel has adopted this
approach and the constructive semantics of Esterel is
described in [30].
Relation-based: This approach allows the specification of
systems as relations. Thus, a system specification may have
zero solutions, one solution or multiple solutions. Though
an implementation of a system usually demands a unique
solution, other solutions may be interesting for high-level
specifications. The relation-based approach has been
employed in the synchronous language Signal [31].

2.5 Untimed models

2.5.1 Data flow process networks: Data flow
process networks [32] are a special variant of Kahn process
networks [33, 34] In a Kahn process, network processes
communicate with each other via unbounded FIFO
channels. Writing to these channels is non-blocking,
i.e. they always succeed and do not stall the process,
while reading from these channels is blocking, i.e. a process
that reads from an empty channel will stall and can only
continue when the channel contains sufficient data items
(tokens). Processes in a Kahn process network are
monotonic, which means that they only need partial
information of the input stream to produce partial
information of the output stream. Monotonicity allows
parallelism, since a process does not need the whole input
signal to start the computation of output events. Processes
are not allowed to test an input channel for existence of
tokens without consuming them. In a Kahn process network
there is a total order of events inside a signal. However,
there is no order relation between events in different signals.
Thus, Kahn process networks are only partially ordered
which classifies them as an untimed model.
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A data flow program is a directed graph consisting of nodes
(actors) that represent communication and arcs that
represent ordered sequences (streams) of events (tokens)
as illustrated in Fig. 5. Empty circles represent nodes,
arrows represent streams and the filled circle represents a
token. Data flow networks can be hierarchical since a node
can represent a data flow graph.

The execution of a data flow process is a sequence of
firings or evaluations. For each firing tokens are consumed
and tokens are produced. The number of tokens consumed
and produced may vary for each firing and is defined in the
firing rules of a data flow actor. Data flow process networks
have been shown to be very valuable in digital signal
processing applications. When implementing a data flow
process network on a single processor, a sequence of firings,
also called a schedule, has to be found. For general data flow
models it cannot be decided whether such a schedule exists
because it depends on the input data.

Synchronous data flow (SDF) [35, 36] puts further
restrictions on the data flow model, since it requires that a
process consumes and produces a fixed number of tokens for
each firing. With this restriction it can be tested efficiently, if
a finite static schedule exists. If one exists it can be
effectively computed. Figure 6 shows an SDF process
network. The numbers on the arcs show how many tokens
are produced and consumed during each firing. A possible
schedule for the given SDF network is {A,A,C,C,B,D}.

There exists a variety of different data flow models. For an
excellent overview see [32].

2.5.2 Rendezvous-based models: A rendez-
vous-based model consists of concurrent sequential pro-
cesses. Processes communicate with each other only at
synchronisation points. In order to exchange information,
processes must have reached this synchronisation point,
otherwise they have to wait for each other. In the tagged
signal model each sequential process has its own set of tags.
Only at synchronisation points do processes share the same
tag. Thus, there is a partial order of events in this model. The
process algebra community uses rendezvous-based models.
The CSP (communicating sequential processes) model of
Hoare [37] and the CCS (calculus of communicating
systems) model of Milner [38, 39] are prominent examples.
The language Ada [40] has a communication mechanism
based on rendezvous.

Fig. 5 Data flow process network

Fig. 6 Synchronous data flow process network
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2.6 Heterogeneous models of computation

A lot of effort has been spent to mix different models
of computation. This approach has the advantage that
a suitable model of computation can be used for each part of
the system. On the other hand, as the system model is based
on several computational models, the semantics of the
interaction of fundamentally different models has to be
defined, which is no simple task. This even amplifies the
validation problem, because the system model is not based
on a single semantics. There is little hope that formal
verification techniques can help, and thus simulation
remains the only means of validation. In addition, once a
heterogeneous system model is specified, it is very difficult
to optimise systems across different models of computation.
In summary, while heterogeneous MoCs provide very
general, flexible and useful simulation and modelling
environment, cross-domain validation and optimisation
will remain elusive for many years for any heterogeneous
modelling approach. In the following an overview of related
work on mixed models of computation is given.

In pcharts [41], hierarchical finite-state machines are
embedded within a variety of concurrent models of
computations. The idea is to decouple the concurrency
model from the hierarchical FSM semantics. An advantage
is that modular components, e.g. basic FSMs, can be
designed separately and composed into a system with the
model of computation that best fits to the application
domain. It is also possible to express a state in an FSM by a
process network of a specific model of computation. �charts
has been used to describe hierarchical FSMs that are
composed using data flow, discrete event and synchronous
models of computations.

The composite dataflow [42] integrates data and control
flow. Vectors and the conversion from scalar values to
vectors and vice versa are integral parts of the model.
This allows capture of the timing effects of these conversions
without resorting to a synchronous or timed MoC. Timing of
processes is represented only to the level to determine if
sufficient data are available to start a computation. In this way
the effects of control and timing on dataflow processing are
considered at the highest possible abstraction level because
they only appear as data dependency problems. The model
has been implemented to combine Matlab and SDL into an
integrated system specification environment [43].

Internal representations sucha as the system property
intervals (SPI) model [44] and FunState [45], have been
developed to integrate a heterogeneous system model into
one abstract internal representation. The idea of the SPI
model is to allow for ‘global system analysis and system
optimisation across language boundaries, in order to allow
reliable and optimised implementations of heterogeneously
specified embedded real-time systems’. All synthesis
relevant information, such as resource utilisation, com-
munication and timing behaviour, is extracted from the
input languages and transformed into the semantics of the
SPI model. An SPI model is a set of parameterised
communicating processes, where the parameters are used
for the adaptation of different models of computation. SPI
allows modelling of non-determinism through the use of
behavioural intervals. There exists a software environment
for SPI that is called the SPI workbench and which is
developed for the analysis and synthesis of heterogeneous
systems.

The FunState representation refines the SPI model by
adding the capability of explicitly modelling state infor-
mation and thus allows the separation of data flow from
control flow. The goal of FunState is not to provide a
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unifying specification, but it focuses only on specific design
methods, in particular scheduling and validation. The
internal FunState model reduces design complexity by
representing only the properties of the system model
relevant to these design methods.

The best known heterogeneous modelling framework is
Ptolemy. It allows integration of a wide range of different
MoCs by defining the interaction rules of different MoC
domains. We come back to Ptolemy in Sections 4.3 and 4.5.

3 Purpose of models

From the previous Sections it is evident that different
models fundamentally have different strengths and weak-
ness. There is no single model that can satisfy all purposes
and thus models of computation have to be chosen with
care. If we again consider the design flow, we can
distinguish two purposes of a system model [9]:
Specification purpose: The model is used to develop the
system functionality and to study if it is indeed a solution to
the imposed problem and all requirements can be fulfilled
by the model. The specification model abstracts from
implementation details and allows for a large design space,
where many parts of the hardware and software architecture
are not yet determined.
Implementation purpose: The model will be efficiently
mapped onto the given architecture. Here, implementation
details play a very important role and also the underlying
architecture has to be reflected by the model. On the other
hand, the specification should not unnecessarily restrict the
implementation by prescribing details that cannot be
efficiently implemented. This is a very fine balance because
too abstract a specification model will make synthesis tools
inefficient and infeasible. A too detailed model will over-
constrain the design process and lead either to abandoning
the specification model or to an inefficient and overly costly
implementation; most likely both. Even worse, this balance
is not only hard to strike, it also changes with advances of
implementation technology, design technology and is
different in different application areas.

Let us revisit the discussed MoCs in the light of this
observation and with respect to the design flow. For the sake
of simplicity we only identify six main design tasks as
illustrated in Fig. 7. Early on in the requirements definition

Fig. 7 Suitability of MoCs in different design phases

‘C’ stands for continuous-time MoC, ‘D’ for discrete-time MoC, ‘S’ for
synchronous MoC and ‘U’ for untimed MoC
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phase a MoC needs to be able to efficiently capture the main
functional features without bothering about details.
In addition, feasibility analysis requires detailed studies on
critical issues that may concern performance, cost, power or
any other functional or non-functional property.
The functional specification determines the entire system
functionality (at a high abstraction level) and constitutes
the reference model for the implementation. Independent
of the functional specification is the architecture specifi-
cation. The task graph breaks the functionality in concurrent
activities (tasks), which are mapped onto architecture
resources. Once resource binding and scheduling has been
performed, the detailed implementation for the resources is
created.

The essential difference of the three main computation
models that we introduced in the previous Section is the
representation of time. This feature alone weighs heavily
with respect to their suitability for design tasks and
development phases.

3.1 Continuous-time models

Continuous-time MoCs are mostly used to accurately model
and analyse existing or prospective devices. They are
usually not used to specify and constrain behaviour but may
serve as reference models for the implementation. Thus,
they are frequently used in feasibility studies, to analyse
critical issues, and in architectural models to represent
analogue or mixed-signal components in the architecture.
Analogue synthesis is still in its infancy and hence
continuous-time models are rarely used as input to synthesis
tools.

3.2 Discrete-timed models

The discrete-timed model has the drawback that precise
delay information cannot be synthesised. The ability to
provide a precise delay model for a piece of computation
may be useful for simulation and may be appropriate for an
existing component, but it hopelessly over-specifies the
computation for synthesis. Assume a multiplication is
defined to take 5 ns. Should the synthesis tool try to get as
close to this figure as possible? What deviation is
acceptable? Or should it be interpreted as ‘max 5 ns’?
Different tools will give different answers to these questions
and synthesis for different results, and none of them
will match the simulation of the discrete-time model.
The situation becomes even worse when a delta-delay-based
model is used. As we discussed in Section 2.4, the delta-
delay model elegantly solves the problem of non-determin-
ism for simulation, but it requires a mechanism for globally
ordering the events. Essentially, a synthesis system had to
synthesise similar mechanism together with the target
design, which is an unacceptable overhead.

These problems notwithstanding, synthesis systems for
both hardware and software have been developed for
languages based on timed models. VHDL and Verilog
based tools are the most popular and successful examples.
They have avoided these problems by ignoring the discrete-
time model and interpreting the specification according to a
clocked synchronous model. Specific coding rules and
assumptions allow the tool to identify a clock signal and
infer latches or registers separating the combinatorial
blocks. The drawbacks of this approach are that one has
to follow special coding guidelines for synthesis, that
specification and implementation may behave differently
and, in general, that the semantics of the language is
complicated by distinguishing between simulation and
synthesis semantics. The success of this approach illustrates
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that mixing different MoCs in the same language is
practical. It also demonstrates the suitability of the clocked
synchronous model for synthesis, but underscores that the
discrete-time model is not synthesisable.

3.3 Synchronous models

Synchronous models represent a sensible compromise
between untimed and fully timed models. Most of the
timing details can be ignored, but we can still use an abstract
time unit, the evaluation or clock cycle, to reason about the
timing behaviour. Therefore, it has often a natural place as
an intermediate model in the design process. Lower-level
synthesis may start from a synchronous model. Logic and
RTL synthesis for hardware design and the compilation of
synchronous languages for embedded software are promi-
nent examples. The result of certain synthesis steps may also
be represented as a synchronous description, such as
scheduling and behavioural synthesis.

It is debatable whether a synchronous model is an
appropriate starting point for higher-level synthesis and
design activities. It fairly strictly defines that activities
occurring in the same evaluation cycle, but in independent
processes, are simultaneous. This imposes a rather strong
coupling between unrelated processes and may restrict early
design and synthesis activities too much.

On the other hand, in many systems timing properties are
an integral part of the system functionality and are therefore
an important part of a system specification model. Complex
control structures typically require a fine control over the
relative timing of events and activities. As single-chip
systems become more complex, this feature becomes more
common. Already today there is hardly any SoC design that
does not exhibit fairly complex control algorithms.

Synchronous models constitute a very good compromise
for dealing with time at an abstract level. While they avoid
the nasty details of low-level timing problems, they allow
representation and analysis of timing relations. In essence
the clock or evaluation cycle defines abstract time budgets
for each block. The time budgets turn into timing constraints
for the implementation of these blocks. The abstract time
budgets constrain the timing behaviour without over-
constraining it. Potentially there is a high degree of
flexibility in this approach if the evaluation cycles of a
synchronous MoC are not considered as fixed-duration
clock cycles, but rather as abstract time budgets, which do
not have to be of identical duration in different parts of the
design. Their duration could also change from cycle to
cycle if required. Retiming techniques exploit this flexibility
[46, 47].

This feature of offering an intermediate and flexible
abstraction level of time makes synchronous MoCs suitable
for a wide range of tasks as indicated in Fig. 7.

3.4 Untimed models

Untimed models and their variants have nice mathematical
features which facilitate certain synthesis tasks. The tedious
scheduling problem for software implementations is well
understood and efficiently solvable for synchronous data
flow graphs. The same can be said for determining the right
buffer sizes between processes, which is a necessary and
critical task for hardware, software and mixed implemen-
tations. How well the individual processes can be compiled
to hardware or software depends on the language used to
describe them. The data flow process model does not restrict
the choice of these languages and is therefore not
responsible for their support. For what it is responsible,
i.e. the communication between processes and their relative
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timing, it provides excellent support due to a carefully
devised mathematical model.

3.5 Discussion

Figure 7 summarises this discussion and indicates in which
design phases the different MoCs are most suitable. Note,
that several MoCs placed on a design phase bubble means
that in general a single MoC does not suffice for that phase,
but several or all of them may be required.

No single MoC serves all purposes equally well. The
emphasis is on ‘equally well’ because all of them are
sufficiently expressive and versatile to be used in a variety
of contexts. However, their different focus makes them
more or less suitable for specific tasks. For instance a fully
timed, discrete-event model can be used to model and
simulate almost anything. But it is extremely inefficient to
use it to simulate and analyse complex systems when
detailed timing behaviour is irrelevant. This inefficiency
concerns both tools and human designers. Simulation of a
timed MoC model takes orders of magnitude longer than
simulation of an untimed MoC model. Formal verification is
orders of magnitude more efficient for perfectly synchro-
nous MoC models than for timed MoC models. Human
designers are significantly more productive in modelling
and analysing a signal processing algorithm in an untimed
MoC model than in a synchronous or timed MoC model.
They are also much more productive in modelling a
complex, distributed system when they have appropriate
and high-level communication primitives available, than
when they have to express all communication with
unprotected shared variables and semaphores. Hardware
engineers working on the RT level (synchronous MoC)
design many more gates per day than their counterparts not
using a synchronous design style. Analogue designers are
even less productive because they deal with the full range of
details at the physical and electrical level. Unfortunately,
good abstractions at a higher level have not been found yet
for analogue design, with the consequence that analogue
design is less automated and less efficient than digital
design.

MoCs impose different restrictions which, if selected
carefully, can lead to significant improvements in design
productivity and quality. A strict finite-state machine model
can never have unbounded memory requirements. This
property is inherent in any FSM model and does not have to
be proved for every specific design. The amount of memory
required can be calculated by static analysis and no
simulation is required. This is in contrast to models with
dynamic memory allocation, where it is in general
impossible to prove an upper bound for the memory
requirement, and long simulations have to be used to obtain
a high level of confidence that the memory requirements are
indeed feasible. FSM models are restrictive but if a problem
suits these restrictions, the gain in design productivity and
product quality can be tremendous.

A similar example is synchronous dataflow. If a system
can be naturally expressed as an SDF graph, it can be much
more efficiently analysed, scheduled and designed than the
same system modelled as a general dataflow graph.

As a general guideline we can state that the productivity
of tools and designers is highest if the least expressive MoC
is used that still can naturally be applied to the problem.

Thus, all the different computational models have their
place in the design flow. Moreover, several different MoCs
have to be used in the same design model because different
subsystems have different requirements and characteristics.
This leads naturally to heterogeneous MoCs which can
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either be delayed within one language or with several
languages under a coordination framework as will be
discussed below.

4 Relation of design languages and MoCs

Let us revisit the models of computation again to see how
they appear in different, popular design languages

4.1 General-purpose design languages

We call design languages such as VHDL, Verilog or
SystemC ‘general-purpose design languages’ because they
constitute the backbone of most ASIC, FPGA, SoC and
HW-SW codesign flows. They can do this because they are
based on a very general discrete-time MoC that allows us to
model and simulate most of the parts of a typical SoC. They
also have a wider range of powerful other features that allow
for advanced data structuring and modelling, for building
advanced functional hierarchies with functions, procedures
and processes, and for managing large and complex design
projects. However, since a discrete-time MoC has severe
restrictions as discussed above, these languages have been
extended into several main directions.

VHDL is a case in point. Facing the need to model and
simulate entire systems including digital and analogue parts,
VHDL has been extended to VHDL–AMS [48]. The idea is
to combine two distinct MoCs and two different simulation
engines under a unifying syntax. Thus, VHDL–AMS in
fact implements a heterogeneous MoC consisting of a
continuous-time and a discrete-time MoC.

Originally VHDL was devised as a general purpose
simulation and modelling language for digital hardware. But
it became soon apparent that it is highly desirable to use the
same language as input to synthesis tools. For reasons
discussed above, a discrete-time model is not suitable as an
input to a hardware synthesis tool. The solution was to
define how a synchronous MoC is expressed in VHDL
syntax. Thus, the so called ‘synthesisable subset’ of VHDL
essentially defines a clocked synchronous MoC, which is
well suited as an input to synthesis. For similar reasons
formal verification tools are also operating on the synchro-
nous MoC expressed in VHDL and not on the discrete-time
MoC of the VHDL simulation semantics.

SystemC is taking a similar evolutionary route. Based on
a general discrete-time MoC, a synthesisable subset has
been established [49, 50] that essentially defines a clocked
synchronous MoC. There are also recent attempts to extend
SystemC to analogue modelling [51]. But SystemC takes
the idea to support several MoCs further by explicitly
defining a transaction level of abstraction [4]. From a time
perspective the transaction level of abstraction is an untimed
MoC because, if strictly used without other timing
constructs interfering, it imposes only a partial order on
the timing of events solely determined by the sequence of
interaction between processes. However, since it is not
strictly enforced and can freely be mixed with other MoCs,
synthesis, analysis and verification tools can hardly make
use of it. For instance, even if all processes in a process
network would consume and produce a constant number of
data items during each evaluation and the process network
would in fact constitute a synchronous data flow (SDF)
process network, a tool would most likely not be able to
derive a static schedule because it could not prove that the
network is an SDF graph.

Therefore, Patel and Shukla have proposed an alternative
way to equip SystemC with other MoCs [20]. They provide
different simulation kernels for other MoCs, such as SDF
and communication sequential processes, in addition to the
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discrete-event simulation kernel. This has the consequence
that the designer explicitly flags where which MoC is used,
and a tool can safely make assumptions based on specific
properties of a MoC.

In summary, the trend for these general purpose design
languages is to define subsets and modelling rules to realise
different MoCs for various purposes. We call this technique
‘embedding an MoC’ and we expect this to become one of
the main roads to advance design technology. It has proved
very successful in the past even though it has often been
applied ad hoc.

4.2 Synchronous languages

The synchronous languages [3, 52, 53] have been success-
fully used in the area of reactive and safety-critical
embedded control systems. These languages are based on
the perfectly synchronous computational model (Section
2.3). This model gives a solid mathematical foundation for
formal reasoning and the application of formal program
manipulation techniques. The synchronous languages have
the following key properties:

. they support concurrency;

. they have a simple and elegant formal semantics that
allows parallel composition to be expressed in a clean way;
. they support the concept of synchrony, which divides
time into discrete instants.

The following part focuses largely on the presentation of the
imperative synchronous language Esterel. Then follows a
short discussion about other synchronous language.
Esterel: Esterel [54–56] is an imperative language that is
very suitable for the description of control. A program
consists of a collection of nested, concurrently running
threads that are described in an imperative syntax. Threads
communicate with each other by means of signals. In
addition to common control structures such as if-then-
else, Esterel has a large number of pre-emption statements
that allow the termination of statements. There is a formal
framework developed for Esterel, which includes causality
analysis ensuring that causality constraints are never
contradictory in any reachable state.

Consider the program M1 in Fig. 8 [57]. It outputs an
event O as soon after both input events A and B have been
received. In addition, whenever input event R is received,
the module is reset.

Lines (2) and (3) define the input and output events of the
module. The loop in lines (4) to (6) loops forever because it
has no exit condition. In line (5) the module waits for events
A and B in parallel. The operator ‘j j’ is a parallel operator,
while ‘;’ is a sequence operator. The brackets ‘[’ and ‘]’
structure the text. Thus, in line (4) the module waits for both
events in parallel and synchronises as soon both events have
been received. Then, event O is emitted. The sequence
operator does not take any time; thus O is in fact emitted at

Fig. 8 Simple Esterel module with three inputs and one output
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the same time instant as the last of the two events A and in a
B is received. After O has been emitted the next iteration of
the loop is started and the module waits for the next inputs.

When event R is received, the module is immediately
aborted and restarted. R works as a reset signal interrupting
the loop or any other activity in the module.

Esterel has been designed for synchronous=reactive
systems, where a program typically waits for inputs,
computes something and emits outputs. Modules commu-
nicate with each other via events. An event emitted by one
module, such as O by module M1, is instantaneously seen by
all other modules. This is called ‘instantaneous broadcast’.
Thus a module does not need to know the name or address of
a receiving module to communicate with it.

Esterel follows the perfect synchrony assumption that
neither computation nor communication takes any obser-
vable time. All activities of a module or system are
synchronised with incoming events. A module like M1 waits
for inputs and reacts to them instantaneously.

As a consequence, zero-delay feedback loops become
possible. Consider the Esterel module in Fig. 9. In line (3)
the module checks with present O1 if the event O1 is
occurring. If so it emits O2. In parallel (line (5)) it checks for
the presence of O2 to emit O1. The program is nondeter-
ministic because it describes two possible, consistent
behaviours. Both events O1 and O2 can be present or both
can be absent. Hence, M2 is not a legal Esterel program.

These dependency cycles can be broken by prohibiting
zero-delay loops. For instance, Fig. 10 shows how M2 can be
corrected. The operator pre refers to the previous value of a
signal. Thus, in line (3) it is checked if the event O1 has
occurred in the previous evaluation cycle. M3would work as
follows: if O1 has occurred in the previous cycle, O2 would
be emitted in the current cycle. As a consequence, O1 would
also be emitted in the current cycle due to lines (6–7) which
check the presence of O2 in the current cycle. M3 has no
zero-delay feedback loop and is a legal Esterel program.

However, there exist also legal Esterel programs with
zero-delay feedback loops. Consider module M4 in Fig. 11.
Even though we have a cyclic dependency of O1 and O2 and
vice versa, the two halves of the cycle can never occur
simultaneously. O2 only depends on O1 when event I is
present, while O1 only depends on O2when I is not present.
Thus, M4 has a well defined behaviour and is a correct and
legal Esterel program. The constructive semantics of Esterel

Fig. 9 Illegal Esterel module due to zero-delay feedback

Fig. 10 Dependency cycle of M2 has been broken making M3
correct
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[30] defines the set of legal programs and provides also a
constructive way to efficiently distinguish legal from illegal
programs.
Other synchronous languages: Esterel has been developed
for control dominated synchronous=reactive systems. Other
synchronous languages for control dominated systems are
Statecharts [58] and Argos [59]. Both have a graphical
syntax for describing state machines.

Synchronous languages for dataflow dominated systems
are Lustre and Signal.

Lustre [28] is a declarative data flow language where
systems are composed of sets of equations. Each variable is
a function of time and denotes a flow. Operators operate not
on single values, but on whole flows. We will discuss in
more detail the ideas of dataflow languages in the context of
untimed MoCs in Section 4.3, where we introduce the
language Lucid.

Similarly, Signal is also a declarative dataflow language,
but it is based on relations rather than functions. A Signal
[31] program is a set of constraints or relations on the
involved signals. The Signal compiler performs formal
calculations on synchronisation, logic and data dependen-
cies to check program correctness and produce executable
code.

Both Lustre and Signal support multiple clocks and clock
domains.

The synchronous languages have been successfully used
in industry and there exist industrial tools for Esterel (from
Esterel Technology), Lustre (Scade) and Signal (Sildex).
Recently Esterel Technology has acquired the Scade
environment in order to be able to combine a control-
oriented (Esterel) with a dataflow-oriented (Lustre) syn-
chronous approach.

Synchronous language programs are usually translated to
finite-state automata in order to implement them as a
sequential reactive program on a single processor. However,
Esterel [60] and Lustre [61] have been also translated into
hardware implementations.

The clean mathematical formalism has led to the
development of several verification tools for the synchro-
nous languages. Halbwachs and Raymond [62] give an
overview over the techniques and tools developed for the
validation of reactive systems described in Lustre. How-
ever, these techniques can be adapted to any synchronous
language.

4.3 Dataflow languages

Dataflow languages can be traced back to the 1970 s when
Dennis [63], Kahn [33], Ashcroft [64] and others pioneered
this field. Although Kahn has not explicitly targeted
dataflow machines with his programming language [33], it
laid the foundation for dataflow process networks and its
many derivations such as synchronous dataflow [36],
cyclostatic dataflow [65], Boolean-controlled dataflow

Fig. 11 Legal Esterel module with a zero-delay feedback loop
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[66] and many others. Also, Kahn process networks
coincide strongly with the untimed MoC of Section 2.5.1.

We introduce Lucid to illustrate some of the principles of
dataflow languages. Then we mention briefly a few other
languages and graphical notations.
Lucid: Dataflow languages have operators, often called
‘nodes’, that operate on streams of input values to generate
streams of output values. Assuming, that X denotes the
stream of values hx0; x1; x2; . . .i and Y denotes hy0; y1; y2; . . .i;
then X þ Y would denote the pointwise addition of the two
streams and result in the stream hx0 þ y0; x1 þ y1;
x2 þ y2; . . .i as illustrated in Fig. 12.

In Lucid [64] every data object, be it a variable or
constant, is a stream, i.e. a potentially infinite sequence of
values. Hence, X þ Y from above would be a valid Lucid
expression operating over the stream variables X and Y. The
constant ‘3’ would denote an infinite sequence where each
element is the number 3. Thus, the expression X þ 3 denotes
the sequence hx0 þ 3; x1 þ 3; x2 þ 3; . . .i:

In addition to pointwise operators, Lucid has also special
non-pointwise operators. For instance, first X results in a
constant stream with the first element of X. next X drops
the first element, e.g. next X ¼ hx1; x2; x3; . . .i:

Consider the following Lucid program [64]:

(1) N ¼ first input
(2) first I ¼ 0
(3) first J ¼ 1
(4) next J ¼ Jþ ð2	 IÞ þ 3
(5) next I ¼ Iþ 1
(6) output ¼ I as soon as J>N

All variables are streams and the equations above define the
streams. Line (1) defines the constant stream N that is
determined by the first input value. Lines (2) and (5) define
stream I, which represents the natural numbers starting from
0. Lines (3) and (4), the core of this program, define stream J
that depends on I and recursively on itself. It begins J ¼
h1; 4; 9; 16; . . .i; i.e. it represents the squares of the natural
numbers. Finally, line (6) defines the output, which is a
constant stream taken from one value of I. It is the least I for
which ðI þ 1Þ2>N: Thus, the program computes b

ffiffiffiffi

N
p

c:
An alternative interpretation of this Lucid program is that

of a loop with I being the iterator and line (6) constitutes the
exit condition.

Lucid has later developed into a multidimensional
dataflow language [67, 68] and into Granular Lucid
(GLU) [69], a coordination language for coarse-grain
parallelism, where sequential parts are described in C.
In several aspects it is typical for dataflow languages. Many
dataflow languages are based on a functional and declarative
semantics. They have originally mostly been used for
regular, computation intensive applications, such as matrix
manipulations, graphics manipulations and many other
scientific applications. Many of them have also been used
for programming parallel computers because the functional
paradigm facilities parallelisation and the problems in
scientific computing are so demanding that researchers
have always sought to exploit parallel architectures.
Other dataflow languages: With the rise of signal
processing in the telecommunication domain several

Fig. 12 Dataflow node adding pointwise the values of the input
streams
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companies have commercialised tools based on the
principles of dataflow computation. Most of these tools
are based on graphic block languages, such as SPW from
Cadence=CoWare and LabView from National Instruments.

As an example of a graphical block language based on an
untimed, dataflow MoC, consider Fig. 13, which is an SDF
graph in Ptolemy II [70]. A, B and C are processes. They
attach via ports to channels and the arrows in the ports
determine the direction of the dataflow in the channels. The
numbers close to the ports denote the number of data tokens
consumed and produced during each invocation of a process.
E1 shows a valid SDF graph, for which a static schedule can
be found, while E2 is not a valid SDF graph, since for any
execution sequence either the processes would block or one
of the channel buffers will grow beyond any bound.

It is important to note, that these graphical block
languages can be considered as coordination languages
because they do not define how the processes are modelled.
In principle the processes can be described in any language
as long as they obey the rules of the governing MoC when
interacting with the environment.

4.4 Rendezvous-based communication

Many languages, partially influenced by Hoare’s commu-
nicating sequential processes (CSP) [37] and Milner’s
calculus of communication systems (CCS) [38], have defined
a communication mechanism with tight synchronisation
between the partners, which is often called a rendezvous. In a
rendezvous, both sender and receiver block until the other
partner is ready and the act of communication has completed.
This means that every communication leads to a synchroni-
sation point leading to a tighter coupling between the
processes than would be necessary due to data dependencies.
Furthermore, it means that channel buffers are not required.
In the dataflow models discussed above, only the receiver
blocks if no input data is available, but the sender just sends
the data without concern for the readiness of the receiver.
This means that a data item has to be buffered in the channel
during the time after it has been sent and before it has been
consumed. To determine the necessary buffer size and to
avoid buffer overflow is one of the main design challenges in
implementing dataflow models. This is not a problem for
rendezvous-based communication because all channels need
to buffer at most one datum.
Handel-C: Handel-C [71] is a C variant targeting complex
FPGA design. It differs from ANSI C in a number of ways,
most importantly by offering fine control over parallelism
and timing. Arguing that for FPGA design a discrete-time

Fig. 13 Ptolemy SDF example [70]
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model is superfluous and ineffective, it offers only two
higher-level MoCs. Each module, as defined by a main()
function, is governed by one clock according to the clock
synchronous MoC. Within a module, par and seq
statements allow for tight control over parallelism. Several
main() functions can be declared and each is governed by
a different clock. Essentially they constitute a process
network of a rendezvous-based untimed MoC. It is untimed
because the Handel-C model does not determine the relation
between the different clock signals, which is left to the
synthesis and implementation. Communication between
main() processes is strongly coupled because both sender
and receiver block until the communication is completed.

Consider the example in Fig. 14. Processes A and B are
defined in two separate files with two different main()
functions. The set clock lines define the clocks for the
two processes. In this case the process B clock is derived
from process A clock, running at half the speed. This is not
necessary and both processes could use entirely independent
clocks. Note also, that information about relative frequen-
cies of clocks is not used for determining the behaviour of
the system; hence it is a truly untimed MoC.

The chan keyword defines the communication channel,
which can only be one-directional. The direction is
determined by its first usage. The token ‘!’ denotes the
writing to a channel, while ‘?’ denotes reading from a
channel. Both processes are blocked until the communi-
cation is completed. Thus the two loops are progressing in a
lock step manner even though process A runs on a clock
twice as fast as process B.

4.5 Heterogeneous frameworks

Due to the complexity and heterogeneity of embedded
systems and SoCs framework and languages that support
multiple MoCs have become popular.

Fig. 14 Process B sends 4-bit data to process A in Handel-C
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Many ad-hoc solutions have been proposed, coupling two
particular languages together. But there exist also a few
systematic approaches to this problem.
Ptolemy II: We again take Ptolemy II as an example [15].
Consider the hierarchical system in Fig. 15. Process, or
‘actor’ in the Ptolemy II language, A0 consists of two other
actors. A0 is an SDF model while one of the constituent
actors is modelled in a different MoC, a discrete-event (DE)
MoC. A DE MoC in Ptolemy II corresponds to what we
have called a discrete-time MoC. In Ptolemy a process
network governed by a particular MoC is called a domain.
Each domain is realised by two entities: a director and
a receiver. The director determines the execution order of
the processes in a domain, while the receiver handles the
communication between ports in the domain. When actors
A1 and A2 communicate, the communication is controlled
by the A0 receivers, thus it follows the SDF semantics.
The SDF director also controls when A2 is invoked.
However, A2 once invoked is controlled by the DE
semantics. Thus, communication between P2 and P3 ports
is handled by the A2 receivers and the invocation of
actors A3 and A4 occurs according to the semantics of the
DE MoC.

In this way, heterogeneous systems can be modelled
hierarchically and any MoC can be hierarchically contained
by any other MoC. The MoCs integrated in Ptolemy II
include communicating sequential processes (CSP),
continuous-time (CT), discrete-event (DE), distributed
discrete-event (DDE), discrete-time (DT), finite-state
machine (FSM), process networks (PN), synchronous data
flow (SDF), synchronous=reactive (SR) and a few others
[72]. Due to the separation of computation of a process from
the communication with its environment, actors can be
reused in different MoCs, which is called ‘domain
polymorphism’.
Other frameworks: Another example of a heterogeneous
framework, embedded in the SystemC language, is
described in [20]. The SystemC simulation semantics is
extended by adding other simulation kernels that realise
other MoCs. Thus, in addition to the discrete-time MoC
of standard SystemC, the framework contains also an SDF,
a CSP and an FSM MoC.

While the problem of simulating heterogeneous models is
well addressed with Ptolemy II and Patel’s SystemC
libraries, cross-MoC domain analysis and verification is
still an open problem. This is particularly urgent because
many severe system failures occur due to a mismatch of
basic assumptions between subsystems. The Ptolemy team
has started to address this problem by developing a type
system for communication protocols that allow for static
verification of certain protocol properties [73].

A formal framework to study heterogeneous MoCs
beyond simulation has been developed [16] and partially
implemented in Haskell and ML [19]. As discussed above in
Section 2.6, SPI [44] and FunState [45] are also aiming to

Fig. 15 Hierarchical, heterogeneous system in Ptolemy II [15]
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integrate heterogeneous models for cross-domain analysis
and optimisation.

In summary, many theoretical and practical problems
with the integration of heterogeneous MoCs are still open.
If history is a guide, progress will be steady but slow, and we
can expect that tools, which address cross-domain perform-
ance analysis, verification and optimisation, will only
gradually be integrated into standard industrial design flows.

4.6 Why are some languages more
successful than others?

Research in programming and design languages very rarely
has the immediate effect, that a particular language is
adopted by a large industrial community. In addition to the
technical merits of a language there are so many other
factors influencing its success and acceptance. The fate of a
language is often tied to certain companies, applications and
user communities; their success and failure is often more
important than the inherent properties of a language. Having
said this, we would still like to review several important
technical factors that are not a necessary and direct
consequence of the semantics of a language and the MoCs
it supports.

4.6.1 Support for analysis and synthesis:
Year after year the International Technology Roadmap for
Semiconductors has listed functional validation among the
main challenges in design. In its 2003 edition it reads
‘Verification has become the dominant cost in the design
process. On current projects, verification engineers out-
number designers, with this ratio reaching two or three to
one for the most complex designs. Design conception and
implementation are becoming mere preludes to the main
activity of verification.’ [74, page 25].

Given that validation is dominating the design, how can a
language help? There are two main lines of arguments on
this issue. Proponents of the first suggest that validation
technology is hardly dependent on the design language.
Validation methodologies, simulation engines, testbench
authoring tools and even formal verification techniques can
be applied to any design language to roughly the same
effect. And indeed today there is a flourishing market for
validation technology around and supporting traditional
design languages such as VHDL and Verilog. There are a
number of formal verification tools operating on VHDL and
Verilog [75, 76] even though researchers have claimed for
years that these languages are not suitable for formal
verification. For a recent survey of the industrial usage of
formal verification tools see [77, 78].

Others contend that the formalism and semantics of a
language can make a huge difference in how effective
analysis and verification algorithms can work. For instance
when side effects are not allowed in a language, this
information can be exploited by tools to establish
the equivalence of two different design representations.
(A function, procedure or block has a side effect when it
performs an action not explicitly visible in its output. For
example, when a function ‘plus’ not only adds two numbers
and returns the result but also writes to a file and updates
global variables, it is said to have side effects not apparent
from the return value. Side effects are an obstacle to formal
verification because the analysis has to deduce all possible
side effects, which is a daunting task if variable aliasing and
pointers are also present.) Otherwise the tool has to prove in
every single case that there is no side effect, which may well
be impossible even in the many cases where there is indeed
no side effect. Also, both effective synthesis and verification
IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005
techniques for VHDL and Verilog have only become
possible after a proper subset has been defined and an
appropriate interpretation of the syntactic structure for ease
of synthesis and verification has been adopted, which is
inconsistent with the simulation semantics; essentially a
different MoC has been defined and embedded in VHDL
and Verilog. This process has taken several years and it can
be argued that the choice of VHDL and Verilog has delayed
the introduction of efficient synthesis and verification tools
by several years, thus widening the design productivity gap.

Even if we accept that languages are not selected only on
their narrow technical merits, we can observe that exposing
important properties to both designers and tools and
choosing the ‘right’ level of detail and abstraction does
have an impact on the efficiency of tools and design
methodologies. The evolution of MoCs and related concepts
are essentially a consequence of the search for the ‘right’
abstraction levels and primitive operations to be exposed to
designers and tools.

Two examples may illustrate the point. Several times we
have mentioned SDF as a restricted untimed MoC. However,
the restrictions are well chosen because they guarantee very
nice formal properties that allow us to efficiently tackle the
static scheduling and buffer optimisation problem. For many
applications the price of a restricted MoC is worth paying.
Other examples are type systems. Type systems enforce
properties on design components (variables, functions,
processes, etc.) that can be statically checked. This
tremendously facilitates static analysis which almost by
definition is much more efficient than dynamic analysis by
simulation. In fact, the SDF MoC can be viewed as a type
system for processes. The type of a process is determined by
the number of data items it consumes and produces during
each invocation. Dynamic variations of a process type are
not allowed by the SDF MoC.

Experience shows that, by defining language subsets and
extensions, by enforcing modelling rules and by combining
and integrating different languages, the ‘right’ level of detail
and abstraction with the ‘right’ set of properties can be
approximated rather well, even on the basis of established
languages such as VHDL, Verilog or C. In fact, the recent
popularity of the concept of computational models draws on
the hope to be able to formulate essential properties
independent of a language syntax and semantics and to
project and embed different computational models in
existing design languages. If this agenda is successful we
will be able to formulate MoCs for particular purposes, such
as synthesis, formal verification or system level perform-
ance analysis, and either integrate them in one language
such as SystemC or in a multi-language framework, such as
Ptolemy. The net result in terms of technical merits will be
very significant.

4.6.2 Infrastructure: education, tools, libra-
ries: Given the substantial investment in education and
training on current languages, libraries, conventions, tools
and methodologies in companies, government organis-
ations, universities and schools, radical changes are
impossible. One can argue that new languages can be
learned within a few weeks and, consequently, new
languages can be introduced quickly. However, even though
the languages, their syntax and semantics, constitute only a
tiny fraction of the overall education effort, they are, as
shown in Fig. 16, at the bottom of the reversed investment
pyramid, on which everything else rests.

Thus, any change and improvement can only be
incremental and must not disrupt the heavy legacy of
previous investments. Any more drastic change will take
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longer and has to be prepared by establishing an education
infrastructure, tools and libraries before it can compete in
the market place. It has to support the upper part of the
legacy pyramid at some appropriate point rather than try to
replace the entire pyramid.

5 Conclusions

The importance of the semantics and properties of design
languages can hardly be underestimated because they
ultimately constrain what analysis, optimisation and syn-
thesis tools can do, how well and efficient they can do it, and
how productive designers are. Thus, they have a huge overall
impact on the cost and performance of the designed system.

However, the demands and requirements on a design
language are so versatile and contradictory that no single
language or even a small set of languages, can satisfy all of
them. Moreover, due to huge investment in tools, libraries
and legacy code, new language technology can be
introduced only gradually and slowly.

On the upside we have observed that novel language
technology with their accompanying tools and method-
ologies can be deployed in many flexible ways. The MoC
concept has shown that interesting model features and
properties can be separated from the syntax and semantics
of a language. This allows that a new MoC can be defined
independent of a language and embedded in various existing
design languages. Thus, new tools can operate on the new
MoC, while existing tools operating on the design language
will not see any change.

Another way to insert new language and design
technology into established design flows is offered by
heterogeneous frameworks that integrate different semantic
domains. Heterogeneous frameworks allow integration of
new languages and models easily because they only govern
how the domains interact, but do not constrain the domain
internal semantics and behaviour.

As a consequence, we expect that new language
technology and accompanying design tools will be gradu-
ally integrated into the main stream design flows by
embedding appropriate MoCs into popular languages such
as SystemC, SystemVerilog, Java, etc. and by further
enhancing heterogeneous frameworks with useful and
specialised domains.
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43 Bjuréus, P., and Jantsch, A.: ‘Modeling of mixed control and dataflow
systems in MASCOT’, IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., 2001, 9, (5), pp. 690–704

44 Ziegenbein, D., Richter, K., Ernst, R., Thiele, L., and Teich, J.: ‘SPI—a
system model for heterogeneously specified embedded systems’,
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2002, 10, (4),
pp. 379–389

45 Strehl, K., Thiele, L., Gries, M., Ziegenbein, D., Ernst, R., and Teich, J.:
‘FunState - an internal design representation for codesign’, IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., 2001, 9, (4), pp. 524–544

46 Rose, F., Leiserson, C., and Saxe, J.: ‘Optimizing synthesis circuitry by
retiming’. Proc. Caltech Conf. on VLSI, 1983, pp. 41–67

47 Wehn, N., Biesenack, J., Langmaier, T., Muench, M., Pilsl, M., Rumler,
S., and Duzy, P.: ‘Scheduling of behavioural VHDL by retiming
techniques’. Proc. EuroDAC 94, 1994 pp. 546–551

48 Ashenden, P.J., Peterson, G.D., and Teegarden, D.A.: ‘Designers guide
to VHDL-AMS’ (Morgan Kaufman, 2002)

49 Synopsys Inc.: CoCentric(R) SystemC compiler behavioral modeling
guide, 2002

50 Synopsys Inc.: CoCentric(R) SystemC compiler RTL user and
modeling guide, 2002

51 Vachoux, A., Grimm, C., Einwich, K.: ‘SystemC-AMS requirements,
design objectives and rationale’. Proc. Design Automation and Test
Europe Conf., 2003

52 Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P.,
and Simone, R.D.: ‘The synchronous languages 12 years later’, Proc.
IEEE, 2003, 91, (1), pp. 64–83

53 Halbwachs, N.: ‘Synchronous programming of reactive systems’
(Kluwer Academic Publishers, 1993)

54 Berry, G.: ‘The foundations of Esterel’, in Plotkin, G., Stirling, C., and
Tofte, M. (Eds.): ‘Proof, language and interaction: essays in honour of
Robin Milner’ (MIT Press, 1998)

55 Berry, G., and Gonthier, G.: ‘The Esterel synchronous programming
language: design, semantics, implementation’, Science Comput.
Program., 1992, 19, (2), pp. 87–152

56 Boussinot, F., and De Simone, R.: ‘The ESTEREL language’, Proc.
IEEE, 1991, 79, (9), pp. 1293–1304

57 Berry, G.: ‘The Esterel v5 language primer’. Ecole des Mines and
INRIA, 06565 Sophia–Antipolis, France, version v5_91 edition, July
2000

58 Harel, D.: ‘Statecharts: a visual formalism for complex systems’, Sci.
Comput. Program., 1987, 8, (3), pp. 231–274

59 Maraninchi, F.: ‘The Argos language: graphical representation of
automata and description of reactive systems’. IEEE Workshop on
Visual Languages, October 1991

60 Berry, G.: ‘A hardware implementation of pure Esterel’. Proc. Int.
Workshop on Formal Methods in VLSI Design, January 1991
IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005
61 Rocheteau, F., and Halbwachs, N.: ‘Implementing reactive programs on
circuits: a hardware implementation of lustre’. REX Workshop Proc.,
June 1992

62 Halbwachs, N., and Raymond, P.: ‘Validation of synchronous reactive
systems: from formal verification to automatic testing’. Proc.
ASIAN’99, Asian Computing Science Conf., Lect. Notes Comput.
Sci., Vol. 1742, 12, Phuket, Thailand, December 1999, pp. 1–12.

63 Dennis, J.B.: ‘First version of a data flow procedure language’, Lect.
Notes Comput. Sci., 1974, 19, pp. 362–376

64 Ashcroft, E., and Wadge, W.: ‘Lucid, a nonprocedural language with
iteration’, Commun. ACM, 1977, 20, (7), pp. 519–526

65 Bilsen, G., Engels, M., Lauwereins, R., and Peperstraete, J.A.:
‘Cyclo-static data flow’. Proc. IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing, 1995 pp. 3255–3258

66 Buck, J.T.: ‘Scheduling dynamic dataflow graphs with bounded
memory using the token flow model’. PhD thesis, Department of
Electrical Engineering and Computer Science, University of California
at Berkeley, USA, 1993

67 Faustini, A.A., Jagganathan, R., Ashcroft, E.A., and Wadge, W.W.:
‘Multidimensional programming’ (Oxford University Press, 1995)

68 Wadge, W., and Ashcroft, E.: ‘Lucid, the dataflow programming
language’ (Academic Press, 1985)

69 Jagannathan, R.: ‘Coarse-grain dataflow programming of conventional
parallel computers’, in Bic, L., Gaudiot, J.-L., and Gao, G. (Eds.):
‘Advanced in dataflow computing and multithreading’ (IEEE Computer
Society Press, 1995), pp. 113–129

70 Hylands, C., Lee, E.A., Liu, J., Liu, X., Neuendorffer, S., Xiong, Y., and
Zheng, H. (Eds): ‘Ptolemy II - heterogeneous concurrent modeling and
design in Java’, volume 2, Department of Electrical Engineering and
Computer Sciences University of California at Berkeley, USA, 2003.
Memorandum UCB/ERL M03/29, version 3.0

71 Celoxica Limited.: Handel-C language reference manual, dk2.0 edition,
2003. RM-1003-4.0

72 Lee, E.A.: Overview of the ptolemy project. Technical Report
UCB/ERL M03/25, University of California, Berkeley, CA, USA,
July 2003

73 Lee, E.A., and Xiong, Y.: ‘A behavioral type system and its application
in Ptolemy II’, Form. Asp. Comput., 2004, 16, pp. 210–237

74 ITRS Technology Working Group.: International Technology Roadmap
for Semiconductors - design, 2003, edition, 2003

75 Habibi, A., and Tahar, S.: ‘A survey: system-on-a-chip design and
verification’. Technical report, Electrical and Computer Engineering
Department, Concordia University, Montreal, Canada 2003

76 Roy, S.K., Ramesh, S., Chakraborty, S., Nakata, T., and Rajan, S.P.:
‘Functional verification of system on chips practices, issues and
challenges’. Proc. 15th Int. Conf. on VLSI Design, 2002
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