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Abstract
Successive generations of processors use smaller transistors in the
quest to make more powerful computing systems. It has been previ-
ously studied that smaller transistors make processors more suscep-
tible to soft errors (transient faults caused by high energy particle
strikes). Such errors can result in unexpected behavior and incorrect
results. With smaller and cheaper transistors becoming pervasive in
mainstream computing, it is necessary to protect these devices against
soft errors; an increasing rate of faults necessitates the protection of
applications running on commodity processors against soft errors. The
existing methods of protecting against such faults generally have high
area or performance overheads and thus are not directly applicable in
the embedded design space. In order to protect against soft errors, the
detection of these errors is a necessary first step so that a recovery can
be triggered.

To solve the problem of detecting soft errors cheaply, we propose a
profiling-based software-only application analysis and transformation
solution. The goal is to develop a low cost solution which can be de-
ployed for off-the-shelf embedded processors. The solution works by
intelligently duplicating instructions that are likely to affect the pro-
gram output, and comparing results between original and duplicated
instructions. The intelligence of our solution is garnered through the
use of control flow, memory dependence, and value profiling to un-
derstand and exploit the common-case behavior of applications. Our
solution is able to achieve 92% fault coverage with a 20% instruction
overhead. This represents a 41% lower performance overhead than the
best prior approaches with approximately the same fault coverage.

Categories and Subject Descriptors B.8.1 [Performance and Reli-
ability]: Reliability, Testing, and Fault Tolerance; D.3.4 [Program-
ming Languages]: Processors—Compilers

General Terms Reliability, Soft Errors, Profiling

Keywords Profile-based Compiler Analysis, Fault Injection

1. Introduction
Any microprocessor-based computing system is expected to work re-
liably during its lifetime. A typical set of tasks performed on a com-
modity level computer system could include video games, web brows-
ing, bank transactions, and more. While running these applications on
their computers, users want their experience to be fault-free. Modern
computer systems are built using billions of tiny transistors, and even
a single transistor failure can render a computer system useless. Most
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hardware vendors have a lifetime reliability target to achieve an ac-
ceptable product quality.

The focus of this work is soft errors, or single-event-upsets (SEUs).
Soft errors, also referred to as transient faults, are primarily caused by
neutron particle strikes from cosmic radiation and alpha particles from
packaging material impurities. As the name suggests, transient faults
are not persistent and do not render the computer system unusable
for its lifetime. However, when a transient fault occurs in a computer
system, it can corrupt the application output or crash the system.

Soft errors due to packaging contamination have been reported
for several decades. In 1978, Intel Corporation reported that chip
packaging modules were contaminated with Uranium from a mine
nearby [19]. Neutrons form the atmosphere were to blame in another
incident in 1996, when E. Normand [24] detailed single event upsets
in RAM chips. A third example of such errors was noted in 2004 by
Cypress Semiconductor who claimed a number of incidents related to
soft errors [36]. One single error resulted in the crash of a data center
while another series of errors caused frequent shutdowns in a massive
automotive factory.

The amount of charge released by high energy particle strikes de-
termines whether a transistor will malfunction or not. If the size and
operating voltage of transistors in a system is small, it is more likely to
be affected by particle strikes. Transistor sizes and operating voltages
are decreasing, making future technology generations more suscepti-
ble to soft errors [29]. Traditionally, reliability research has focused
largely on the high-performance server market. Notable past works in
this area have been the IBM S/360 (now Z-series servers) [2, 31] and
the HP NonStop systems [4]. Both utilize large-scale modular redun-
dancy for effective fault tolerance. As such, they are not feasible out-
side mission-critical domains. Additional research has aimed to pro-
vide fault protection via redundant multithreading [10, 22, 25, 28, 30].
Since processors which can execute multiple threads simultaneously
are increasingly commonplace, the idea of using separate threads for
error checking is a possibility. These techniques often require signif-
icant extra computations. Diva [1] is a less expensive alternative uti-
lizing a small checker core to monitor computations performed by a
larger microprocessor. Lower cost hardware checkers based solutions
such as Argus [20] and others [7, 35] require small hardware changes.
These hardware checkers based solutions still won’t work for off-the-
shelf hardware.

Embedded design spaces have relatively tight cost budgets because
of intense competition. In these markets, area and power are primary
considerations. Consumers are not willing to pay the additional costs
(in terms of hardware price, performance loss, or reduced battery life-
time) for the solutions adopted in the server space. At the same time,
reliability requirements are also not stringent; consumers can tolerate
glitches in video playback, and infrequent crashes of their desktop/lap-
top computers (usually caused by software bugs). The key challenge
facing the consumer electronics market in future technologies is pro-
viding just enough coverage (the percentage of errors that either get
masked or can be detected and recovered from) of soft errors so that
the effective fault rate remains at levels. Providing solutions which can
achieve this coverage “on the cheap” is the goal of this work.



To achieve statistically significant soft error coverage at min-
imal overheads, we propose a software-only approach for detect-
ing soft errors. This work is built upon two areas of prior research:
symptom-based fault detection and software-based instruction dupli-
cation. Symptom-based detection schemes recognize that applications
often exhibit anomalous behavior (symptoms) in the presence of a
transient fault [17, 32]. These symptoms can include memory access
exceptions, divide-by-zero, and even mispredicted branches. At run-
time, an individual symptom doesn’t always signify a soft error, but
a judicious use of these symptoms can be used to trigger a recovery.
Although symptom-based detection is inexpensive, the amount of cov-
erage that can be obtained from a symptom-only approach is typically
limited. To address this limitation, we make use of the second area of
prior research, software-based instruction duplication [26, 27]. With
this approach, instructions are duplicated and results are validated
within a single thread of execution. This solution has the advantage of
being purely software-based, requiring no specialized hardware, and
can achieve coverage of more than 90%. However, the overheads in
terms of performance and power are quite high since a large fraction
of the application is replicated.

One of the key insights that this work exploits is that the major-
ity of transient faults can either be ignored (because they do not ulti-
mately propagate to user-visible corruptions at the application level)
or are easily detected by light-weight symptom-based detection. To
address the remaining faults, compiler analysis is applied to identify
high-value portions of the application code that are both susceptible
to soft errors (i.e., likely to corrupt system state) and statistically un-
likely to be covered by the timely appearance of symptoms. These
portions of the code are then protected with instruction duplication.
Our solution intelligently selects between relying on symptoms and
judiciously applying instruction duplication to optimize the coverage
and performance trade-off. In this way, our solution provides a low-
cost, high-coverage solution for soft errors in embedded microproces-
sors targeted for the consumer electronics market. However, unlike
the high-availability IBM and HP servers that can provide provable
guarantees on coverage, this work provides only opportunistic cover-
age, and is therefore not suitable for mission-critical applications. The
contributions of this work are as follows:

• A software solution which does not need any user annotations in
the application to generate reliability-aware code and works on
applications written in a variety of languages.

• A selective instruction duplication approach that leverages mem-
ory profiling and edge profiling in compiler analysis to identify
and replicate a small subset of vulnerable instructions not covered
by symptom-based fault detection.

• Novel use of value profiling for the generation of software symp-
toms.

• Microarchitectural fault injection experiments to demonstrate the
effectiveness of our proposed solution in terms of fault coverage
and performance overhead.

2. Background and Motivation
2.1 Soft Error Rate (SER)

The effect of soft errors is becoming more pronounced as a result of
transistor scaling. Aggressive scaling on one hand provides cheaper
and more abundant transistors to pack on an individual chip, while on
the other hand making each individual transistor more susceptible to
soft errors. Traditionally, memory cells are more vulnerable to soft er-
rors because they use smaller transistors to achieve higher densities
and have inherent feedback mechanisms that can exacerbate the ef-
fect of small disturbances arising due to high energy particle strikes.
Memory cells are mostly protected against soft errors by using par-
ity checks or Error Correcting Codes (ECC). Due to shrinking device
sizes for implementing logic in processors, the individual transistors in

logic are also becoming vulnerable to soft errors. Additionally, com-
binational logic faults are harder to detect and correct. Shivakumar et
al. [29] reported that the SER for SRAM cells is expected to remain
stable, while the SER for logic is steadily rising. The aforementioned
factors have motivated researchers to propose solutions to protect the
microprocessor logic core against transient faults.

Feng et al. [9] and Shivakumar et al. [29] presented data for the
effect of device scaling on the failures in time (FIT1) metric. They
showed an exponential increase in the SER for future technology
generations. Since for future technologies it will be hard to power on
all the transistors at once, aggressive voltage scaling is expected to be
used. Voltage scaling further exacerbates the problem of soft errors as
smaller disturbances in circuits will be able to flip a bit.

Fortunately, around 75-92% of transient faults get masked (i.e., do
not corrupt actual program state) due to architecture- or application-
level masking. This masking can also occur at the circuit level. Our ex-
periments show this masking rate to be around 78% collectively from
all sources. Accounting for this masking, the raw SER for the present
technology generation translates to about one failure every month in a
population of 100 chips. For a typical commodity system such as lap-
top or mobile systems, this failure rate would be unnoticeable. How-
ever, in future technology nodes like 16nm, the user-visible fault rate
could be as high as one failure a day for every chip. The potential for
this dramatic increase in the effective fault rate will necessitate incor-
porating soft error tolerance mechanisms into even low-cost commod-
ity systems.

2.2 Instruction Duplication

Figure 1: Duplicating instructions in a single thread of execution: Part
(a) shows the original code and Part (b) shows the code after the du-
plicated instructions are inserted. Solid edges represent the data flow
edges and dashed edges represent control flow edges. In (b), under-
lined nodes are duplicated nodes, and C and B nodes represent com-
pare and branch instructions to compare the results from duplicated
and original dataflow chains. The node with dashed outline is a symp-
tom generating instruction.

In this Section, we provide an overview of the terminology used
and point out the key differences with previously proposed instruction-
duplication-based solutions. SWIFT [26] proposed the idea of du-
plicating instructions in a single thread of execution. The authors
of SWIFT explain that a program has executed correctly if all the
stores in the program have executed correctly assuming the program

1 The number of failures observed per one billion hours of operation.



Figure 2: The trade-off between overhead and fault coverage from
two existing fault detection schemes: symptom-based detection and
instruction duplication-based detection. Also indicated is the region
of the solution space targeted by our proposed technique. Our solu-
tion is aiming to provide between 90% and 99% coverage with little
overhead. The dashed horizontal lines show user-visible failure rate
for a single chip in a 16nm technology node with aggressive voltage
scaling. This is a conceptual plot and is not to scale.

only communicates by writing data out through stores. Therefore,
SWIFT recursively duplicated instructions by walking the data flow
chains of the operands of stores and by protecting the control flow.
Shoestring [9] improved upon this idea by considering only global
stores and by protecting the control flow only for the immediate branch
that affects the execution of a global store instruction. For classifying
instructions, the terminology is adopted from Shoestring. The initial
analysis phase of our solution classifies instructions into the categories
described below.

• Symptom-generating: these instructions (e.g., address generation
of loads and stores.) are likely to produce detectable symptoms if
they consume a corrupted input.

• High-value: instructions (e.g., operands of I/O system calls.)
which are likely to corrupt the output of the program if they con-
sume a corrupted input.

• Safe: these instructions (e.g., those directly consumed by symptom-
generating instructions.) are naturally covered by symptom-gener-
ating consumers.

Figure 1 shows the duplication process. Assuming node 2 is an
operand of a high value instruction, the duplication starts at this node
and walks the data flow chain until a safe instruction (node 3) is
encountered. A duplicated instruction is placed just after the original
instruction in program order. Compare and branch instructions are
inserted to compare the results and to divert control flow to a recovery
basic block. If the results match, the high value instruction is executed
normally; Otherwise, recovery is triggered through the recovery basic
block. In addition to encountering a safe instruction, the recursive
duplication is terminated when 1) no more producers exist, and 2)
the producers are already duplicated. Safe instructions are determined
based on the probability of whether or not a particular instruction
would generate a symptom if corrupted by a soft error.

2.3 Proposed Solution Landscape

As previously mentioned, a soft error solution that targets the com-
modity user space needs to be designed with lower overhead and ac-
ceptable coverage as targets. Figure 2 (data used from [9]) is a concep-

tual plot of overhead and coverage trade-off for symptom-based and
duplication based fault detection schemes. Our solution is a hybrid of
these two techniques and tries to achieves as much fault coverage as
possible by leveraging the strengths of each technique. The bottom
highlighted region in this plot indicates the amount of fault coverage
that results from intrinsic sources of soft error masking, available nat-
urally. The natural masking can occur because of many reasons such
as register values being dead (i.e., such registers would be overwritten
before they will be read) or Y-branches [33] (i.e., sometimes changing
the direction of a conditional branch doesn’t affect the correct pro-
gram behavior). Among the remaining unmasked faults, symptom-
based detection relies mostly on hardware exceptions and their cov-
erage quickly saturates. The saturation of fault coverage provided by
symptom based methods is expected because these schemes rely on
rare hardware exceptions such as page faults, divide-by-zero, etc. If
more frequently occurring microarchitectural events such as branch
mispredicts and cache misses are included as symptoms, then recovery
may be triggered more frequently, leading to an unacceptable amount
of overhead [32]. In general, symptom-based methods provide good
coverage at a relatively low overhead.

The coverage versus performance curve is far less steep for in-
struction duplication; The coverage increases almost linearly with the
amount of code duplication. One advantage of instruction-based du-
plication is that the amount of coverage can be tuned according to an
application’s requirements by providing more or less duplication of
code.

Figure 2 is generated in the context of a single 16nm chip with
aggressive voltage scaling. The fault coverage provided by intrinsic
sources of masking translates to more than one failure per day. This
level of fault coverage is clearly unacceptable and might result in user
visible corruptions very frequently. To achieve a more imperceptible
failure rate, the fault coverage must be improved. Symptom-based and
instruction-duplication methods combined can provide an acceptable
level of coverage.

Neither symptom-based nor instruction duplication-based tech-
niques provide a stand-alone solution to achieve the desired coverage
and performance benefits. The proposed solution in this work tries to
strike a balance between performance overhead and fault coverage by
exploiting the strengths of each technique. Figure 2 also shows the
solution landscape targeted by our solution.

2.4 Opportunities for Profile Based Duplication

In the past, profiling information has been successfully used in profile-
guided optimizations (PGOs) to improve the performance of a pro-
gram [11]. GCC [13] and Intel’s compiler (icc) can use profiling in-
formation to generate an efficient program binary. Most optimizations
based on profiling data work by uncovering previously unexplored op-
portunities. For example, if a multiply operation generates the same in-
variant value frequently, then the multiply operation can be optimized
away with a check inserted for the correct value. Similarly, edge profil-
ing and memory profiling can be used in optimizations such as partial
dead-code-elimination, improved object layout, and more.

In this paper we use edge profiling, memory profiling and value
profiling for the first time (to the best of our knowledge) in the context
of code duplication for protection against soft errors. With profiling
information we can exploit the common case behavior of a program
to duplicate only those critical instructions. Different types of profil-
ing information enables us to ignore unnecessary duplication of in-
structions that are unlikely to cause program output corruption in the
presence of a transient fault. For example, in the context of having
the same invariant value generated by an instruction, we insert a com-
parison with the specific invariant value in the code. The failure of
this comparison then indicates the possibility of a transient fault and
triggers the recovery mechanism via a jump to recovery code.

Specific details on different kinds of profile data used are presented
in Section 3.



3. Proposed Solution
The main underlying observation behind our proposed solution is that
100% reliability is not always required. We need to keep the user vis-
ible corruptions at a level users have become accustomed to. Sensi-
tive applications that are required to be executed reliably can be trans-
formed with the compiler techniques developed as a part of the pro-
posed solution. These applications will run marginally slower but will
be able to tolerate more soft errors. Our proposed solution uses the
idea of instruction duplication in a single thread of execution as ex-
plained in Section 2.2, and adds profiling-based intelligent tracing of
dependences manifesting through memory to generate more efficient
duplication code. In essence, our solution uses the dynamic behavior
of applications to generate efficient code for transient fault detection.

3.1 Overview of proposed solution

Figure 3 shows our proposed solution framework in the context of
machine-executable generation using the LLVM compiler frame-
work [15]. The first step in this process is to convert the source code of
the application to LLVM Intermediate Representation (IR, also called
LLVM bit-code). In LLVM terminology, passes perform the transfor-
mations and optimizations that make up the compiler. Passes operating
at the IR level either analyze the IR code or transform it from IR to IR,
performing optimizations. Our duplication code framework is written
as a pass in LLVM. The reliability-aware code generation pass ana-
lyzes and transforms the code by inserting duplicate instructions and
comparisons as previously as described in Section 2.2.

Figure 3: This Figure shows the flow of application compilation.
LLVM bit-code is the internal representation of the LLVM compiler
infrastructure. Our proposed solution operates at the LLVM bit-code
level. Classification and analysis phases identify vulnerable parts of
an application, and then the duplication phase protects the most vul-
nerable instructions by duplicating code.

An intuition behind our idea is that applications predominantly
communicate to the external world using I/O library calls, and if we
can capture the true input data flow chain of the operands of these
calls, we can better protect the program output from getting corrupted.
Under this observation, we can capture most, if not all, of the program
I/O. This type of approach is suitable for our low overhead approach
as we don’t target 100% fault coverage. We include all library call
and function call instructions as high-value instructions. An example
where a program doesn’t communicate using library calls is with the
use of memory mapped I/O. An application might choose to memory
map a file to communicate to the external world. Memory mapped
locations can be used just like an array - direct loads and stores
can be made to these memory locations. Using our technique, we
can consider all stores as high value (at higher overhead) to protect
applications with memory-mapped I/O.

We use LAMP [18], a toolset to trace and record the aliasing of
memory addresses, to obtain memory profiling information. LAMP
allows us to determine the data dependences that manifest through
memory by reading and writing values at the same address. While
duplicating instructions, our duplication algorithm walks the producer
chain, considering the dependences through memory. In the recursive
duplication of the producer chains of the operands of high value
instructions, whenever a load is encountered, we consider the stores

that aliased with the load and duplicate their producer chains too. By
considering aliasing stores, the duplication algorithm of our solution
achieves better and more useful code duplication. In our solution, the
duplication process starts from the operands of library calls (high-
value instructions). If a load is encountered during duplication, the
compiler pass obtains all the stores that wrote to the address from
which the load is reading using the memory profiling information. The
duplication process considers these stores as potential candidates that
can corrupt program output. The producer chains of these stores are
also protected by duplication. The remainder of this section describes
the complete process from the analysis of the instructions to code
duplication including the insertion of comparison instructions.

3.2 Overhead Reduction Without Losing Coverage

As mentioned previously, our solution detects soft errors by adding
extra instructions in a single thread of execution, incurring a penalty
in performance. In this section, we investigate techniques to reduce
the overhead by using various kinds of profiling information. In par-
ticular, we utilize edge profiling for not protecting infrequently exe-
cuted instructions, memory profiling to find load and store aliases and
identify silent stores, and value profiling to get the information about
instructions which produce statistically invariant values. The perfor-
mance overhead incurred because of instruction duplication can be
further reduced by using information about the runtime behavior of
applications through profiling. Information about the runtime behav-
ior of programs enables us to remove duplication for protecting the
code that doesn’t provide significant fault coverage.

3.2.1 Simple Edge Profile based Pruning

The intuition behind this optimization is that frequently executed in-
structions should not be duplicated to protect an infrequently executed
instruction. The probability of a soft error affecting an infrequently ex-
ecuted instruction is relatively low and so to protect such a instruction,
unnecessary duplication of frequently executed instructions should not
be performed. An example of this is shown in Figure 4. At the time
of duplicating the instruction (node 4) in bb3, we check whether its
operand-generating instruction (node 2) is executed frequently in com-
parison to the instruction itself. If this happens to be the case, the du-
plication is terminated for that particular data flow chain. If this opti-
mization is used, then node 2 wouldn’t be duplicated and as a result of
this , we duplicate fewer instructions.

3.2.2 Using Memory Profiling Information

We use memory profiling to obtain information about aliasing between
loads and stores. Also, memory profiling is used to identify silent
stores that exist in an application. Further descriptions of these tech-
niques follow.

Dependences Through Memory: As pointed out in Section 3.1, to
duplicate the true dependences of the producer chains of high value
instructions, we need load/store dependence information. Memory
profiling provides us with this information. If we have the memory
profiling information available at the time of duplication, intelligent
duplication can be performed. e.g., only library and function calls
can be considered as high value instructions and only the operands
of stores that alias with the loads in the producer chain of library call
operands need to be protected.

Silent Store Optimization: A silent store is defined as a store that
writes the same value to a memory location that is already present at
that location. As reported in many previous studies, a significant per-
centage of total stores are silent. Bell et al. [3] report 18% to 64% of
total stores as silent for SPEC95 benchmarks. We have implemented
silent store profiling as an extension of the LAMP toolset. In exper-
iments with SPECINT2000 benchmarks, we observed silent stores
ranging from 0.01% to 72% of total stores. The presence of high frac-
tions of silent stores can be exploited to our advantage.



Figure 4: This Figure shows an example where execution frequency-
based optimization is effective. The solid edges represent data flow
edges and dashed edges represent control flow edges. Control flow
edges are annotated with the execution frequency of the edge ob-
tained using a profile run. Underlined numbers represent duplicated
instructions. While duplicating an instruction in basic block bb3, if its
operands’ parent basic block is executed 100 times more frequently,
then we don’t duplicate its operand.

For the purpose of this work, while doing recursive duplication, if
we encounter a store which is almost always silent then we stop the
recursive duplication. Considering the high percentage of stores that
exist in benchmark applications, we can save in terms of instruction
duplication. The intuition behind this idea is that even if a corrupted
value is written by a store it will be written correctly in subsequent
executions of the same store. The silent store removal optimization is
explained in Figure 5 through an example. The duplication starts from
the library call by walking the Data Flow Graph (DFG) and whenever
a load is encountered, the recursive duplication continues with the
operands of the stores that write to the same address as the load.
Figure 5(a) shows duplication without considering the silent store
optimization, and we end up duplicating more instructions. Figure
5(b) shows duplication when silent store optimization is enabled. If
a store in the recursive duplication of a producer chain turns out to
be silent, we terminate recursive duplication. This reduces the number
of instructions duplicated. We use a threshold of 80% for a store to
be considered silent since at runtime, it is not guaranteed that a store
considered silent will always write the same value, and if a transient
fault affects the store at such an execution instant, our technique will
miss the fault. Such instances are expected to be rare because we
choose a high threshold to classify a store to be silent.

3.3 Software Symptom Generation using Value Profiling

As mentioned in section 2.3, fault coverage that can be harnessed by
using hardware symptoms saturates quickly (i.e., adding more symp-
toms doesn’t improve fault coverage by a great extent). We have devel-
oped a novel value profiling-based method to generate software symp-
toms. If an instruction generates the same value almost 100% of the
time, we can use that value and compare it to the value generated by
the same instruction at runtime. If the value generated at runtime dif-
fers from the one that the instruction generates very frequently, it is
assumed that a fault has occurred and the recovery mechanism is trig-
gered. Since for each value comparison we need to insert one compare
(cmp) and one branch instruction, these instructions should be only in-
serted when they provide benefits in comparison to unintelligent dupli-
cation of the data flow chain. The benefits can only be seen in cases if
the data flow chain is long and the count of instructions which would

Figure 5: This Figure represents the control and data flow graphs for
an example code. Solid arrows represent data flow edges and dashed
edges represent control flow edges. In part (a), instructions 1 and
2 are both duplicated (seen underlined), with comparisons (C) and
branches (B) to recovery code if a comparison fails. L represents a
load instruction. If a silent store is on the path of the recursive producer
chain, then the duplication process is terminated at that store and no
source operands of the store are duplicated, as seen in part (b). The
store instruction ’S’ is assumed to be a silent store for this example.

have been duplicated is greater than 2 (value cmp + branch instruc-
tion). In essence, this technique is expected to improve fault cover-
age by providing software symptoms and reduce overhead by a small
amount.

An example where value profiling would be useful is provided in
Figure 6. Figure 6(a) shows straight up duplication without consider-
ing value profiling. Say instruction 3 of Figure 6(a) generates the value
’0’ more than 99% of the time during the profiled execution of the pro-
gram. While doing duplication by recursively traversing the operands,
if instruction 3 is encountered in Figure 6(b) then an extra compare in-
struction is inserted to compare the value generated by it to ’0’. If these
two values do not match at runtime, then the recovery mechanism is
triggered. Although rare, it is possible that at runtime, the application
encounters different inputs and so instruction 3 produces output other
than 0. Since this is rare case, the recovery should be initiated only
once from the same place; if the comparison fails at a location twice
from the same place, such requests for recovery are ignored.

4. Experimental Setup
This work presents a solution to target soft errors induced by transient
faults. The main cause of soft errors in microprocessors is high energy
particle strikes. The experiments with high energy particle strikes
conducted by Dixit et al. [8] are not feasible in academic studies
such as the one presented in this paper. An acceptable alternative to
these experiments is the use of statistical fault injections (SFI) into
a microarchitectural model of a processor. SFI has been previously
used in validating the solutions proposed to solve the problem of soft



Figure 6: The effect of the value profiling on the instruction duplica-
tion process. Part (a) shows duplication without considering value pro-
filing while part (b) shows duplication if value profiling is taken into
account. Instruction 3 is assumed to generate the value ’0’ more than
99% of the time, and an extra comparison(C3,0) is added accordingly,
jumping to additional recovery code if this comparison fails. Under-
lined instructions are duplicates, branches are indicated with ’B’, and
comparisons with ’C’.

errors. For the purpose of this work, we use a single bit-flip fault model
implemented in the microarchitectural model of an ARM processor.

For profiling the SPECINT2000 benchmarks we have used training
data provided in the benchmark suite corresponding to each bench-
mark. While running the benchmark on the simulator, we utilized test
data provided in the benchmark suite. We only use training data for
profiling. However, profiling information from multiple runs of a pro-
gram with representative inputs can be combined easily in our profil-
ing infrastructure.

4.1 Compiler Passes

We have used the LLVM [15] compiler infrastructure to implement
the reliability-aware code generation pass. This pass uses internal in-
formation from other analysis passes such as memory profiling and
value profiling to produce bitcode with duplicated instructions. The
LLVM code generation framework is then used to generate ARM bi-
naries from the bitcode with duplicated instructions. Some optimiza-
tion passes such as machine common subexpression elimination can
remove the duplicated instructions. We have disabled them during the
phase when LLVM prepares the IR for code generation.

Since LLVM supports a number of front-ends (including C/C++),
the developed pass is capable of generating reliability aware code for
applications written in many languages. The pass takes LLVM IR as
input and also produces IR with duplicated instructions. The other
benefit of operating at the IR level is that all the code generation targets
supported by LLVM (Alpha, ARM, etc.) can be used with the solution
presented in this paper. We have performed all experiments targeting
an ARM architecture. If the LLVM bitcode is target independent, our
code duplication framework can be used as-is to generate machine
executable for a multitude of targets.

4.2 Fault Injection Framework

The fault model used in this work is a single bit-flip model. This
model has been widely used in experimental evaluation of the pre-
viously proposed solutions to tackle the problem of soft errors. These
faults are inserted by flipping a random bit at a random cycle during
the course of application run. For the initial experiments, we injected
faults randomly into the register file. In our experiments, faults in other
microarchitectural structures are not explicitly injected, but faults in
other structures predominantly manifest through register file as cor-
rupted states. Thus, the register file is an attractive target for fault in-
jection experiments. Wang et al. [34] showed that the bulk of transient
fault-induced failures are dominated by corruptions introduced from
injections into the register file. Overall, our technique is capable of
detecting faults injected into other microarchitectural units that affect
the program. Thus, injecting faults only into register file is a limitation
of our evaluation infrastructure and is not a limitation of our proposed
technique. For the purpose of this work, we have used the GEM5 [5]
simulator. The simulator was run in ARM syscall emulation mode and
modeled the ARMv7-a profile of ARM architecture. We have used a
model of the in-order ARM architecture. Since our injection site is
the register file, we expect that an out-of-order model wouldn’t affect
our conclusions significantly. In fact, we believe that an out-of-order
model will improve our results because duplication of instructions in a
single thread of execution results in extra instruction level parallelism
which an out-of-order model could exploit efficiently. Fault injection
experiments with an out-of-order implementation are planned as a part
of our future work. The details of the processor configuration used for
the experiments are in Table 1.

Table 1: GEM5 Simulator parameters (models an ARMv7-a profile of
ARM architecture).

Processor core @ 2GHz
Simulates an In-order core
Physical register file size 16 entries
Simulation Mode Syscall Emulation

Memory
L1-I/L1-D cache 32KB, 2-way
L2 cache (unified) 2MB, 16-way
DTLB/ITLB 64 entries(each)

The experimental results shown in this paper are produced with
fault injection trials. At the start of each trial a random physical reg-
ister and a random bit are selected for injection. The selected bit is
then flipped at a random time during the application run and the pro-
gram executes with this modified register data. We have only used
user mode registers to inject faults. Injecting faults in privileged mode
registers would yield a higher masking rate because no benchmarks
use these registers and so, injected faults would have no effect. To
stress test our technique, we chose to ignore injecting faults in privi-
leged mode registers and as a result, a lower masking rate is observed
in comparison to the masking rate reported in previous research [34]
efforts with soft errors.

To calculate the statistical significance of a given number of fault
injection trials, we use the works of Leveugle et al. [16]. We need 96
fault injection trials for each benchmark to have a 10% margin of error



and confidence level of 95%. Ideally, we would like to perform our
experiments with a 5% margin of error and a confidence level of 95%
but this amounts to 384 trials per benchmark. Considering we have 10
benchmarks and we need perform fault injection experiments for full
duplication, the baseline, and our proposed technique, running 384
trials per benchmark would lead to a very long simulation time. The
approximate time would be 23040 (3*10*384*2) hours of simulation
assuming 2 hours of average runtime for each benchmark. Therefore,
we chose 100 fault injection trials for each benchmark to yield results
with reasonable accuracy in a timely manner. After the fault injection,
the program runs until completion and the log files are collected. At
the end of every simulation the log files are analyzed to determine
the outcome of the run as described below. The result of each trial is
classified into one of four categories:

1. Masked: The injected fault did not corrupt the program output.
Application-level or architecture level masking occurred in this
case.

2. Covered by symptoms: The injected fault produces a symptom
such as a page fault or divide-by-zero fault so that a recovery can
be triggered. The next section describes the recovery support in
further detail.

3. SWDetect: The injected fault was detected by the extra compari-
son inserted at the time of duplication.

4. Silent corruptions or infinite loop: Faults that produce user visi-
ble corruptions, cause early program termination, or do not termi-
nate in definite time are classified into this category.

The result classifications of the injection experiments in this work are
based on the fact that only user-visible corruptions really matter. From
an architecture perspective, this idea of failure may seem inaccurate,
but it is consistent with recent symptom-based work and is the most
appropriate in the context of evaluating our current work. The main
motivation behind our solution is that the cost of ensuring reliability
can be reduced by focusing on hiding only the faults that are noticeable
by the end user at run-time. Therefore, the metric of importance is not
the number of faults that propagate into the microarchitectural state,
but rather the percentage of faults that actually do result in user-visible
failures.

4.3 Recovery Support

Our solution relies on the ability to roll back processor state to a
clean checkpoint. Wang and Patel [32] indicate that checkpointing and
recovery are possible if the fault can be detected within a window of
1000 instructions for speculated pipelines. The results presented in
Section 5 assume that in modern/future processors, a mechanism for
recovering to a checkpointed state of 1000 instructions in the past will
already be required for aggressive performance speculation.

4.4 Benchmarks

We have used 10 applications from the SPECINT2000 benchmark
suite (gzip, vpr, gcc, mcf, crafty, perlbmk, parser, gap, vortex, bzip2) as
representative workloads in experiments, and they are compiled with
standard -O3 optimizations. In this work, multithreaded programs are
not considered. However, we do not foresee any problems of using our
technique with race-free multithreaded programs. Code duplication in
a multithreaded environment may uncover hidden concurrency bugs
because the extra duplicated instructions inserted may change the rel-
ative ordering of instructions in the simultaneous execution of threads.
In the context of embedded systems if the change in execution time
affects program output, these programs might not run correctly after
partial duplication. Experiments with multithreaded programs are left
as an interesting direction to explore further.

5. Experimental Results
In this section, the effectiveness of various techniques presented in this
work is analyzed using the experimental setup described earlier. First,
the data for silent stores is presented. We then analyze the maximum
amount of fault coverage we can obtain from full duplication. Finally,
the effect of using memory profiling for tracing dependences through
memory is analyzed in comparison to previous works.

5.1 Silent Stores

Figure 7: The %Dynamic silent stores bar shows dynamic silent stores
as a percentage of total dynamic stores in a benchmark. The high per-
centage of silent stores in some benchmarks suggest that their pres-
ence can be exploited for intelligent code duplication. The % Over-
head reduction bar shows the reduction in performance overhead if
silent store optimization is used while duplicating instructions. Notice
that the benchmarks showing a large percentage of silent stores also
show a significant reduction in overhead.

The % Dynamic silent stores column in Figure 7 shows the num-
ber of dynamic silent stores as a percentage of total stores for various
applications. 176.gcc, 181.mcf, 253.perlbmk and 255.vortex show a
high percentage of dynamic silent stores and these also show a sig-
nificant reduction in overhead as shown in the % Overhead Reduction
column in Figure 7. For the results presented in Figure 7, duplication
is terminated (see Section 3.2.2) only when a static store is silent more
than 80% of the time (i.e., if a static store in a benchmark writes the
same value already present at a memory location less than 80% of its
dynamic execution time, the store is not considered for this optimiza-
tion). 175.vpr and 253.perlbmk show less reduction in overhead be-
cause many static stores in these benchmarks do not cross the thresh-
old of 80%.

5.2 Performance Overheads and Fault Coverage

In this subsection, a comparison of our solution is made with previous
works using the criteria of performance overhead and fault coverage.
If a fault results in masking, SWDetect or symptoms, system can
correctly execute the program. Hence, fault coverage is defined as
the percentage of injected faults that result in masking, SWDetect or
symptoms.

In this first experiment, we examine the maximum amount of cov-
erage we can obtain by doing the maximum amount of duplication.
Since loads are never duplicated to save on memory traffic, the over-
head wouldn’t be 100% for full duplication and there will always be
some faults which can escape detection by the duplicated code. The
full duplication column in Figure 8 shows the performance overhead
if the duplication is not terminated at safe instructions and all the
branches are also protected by duplication. The full-dup column in
Figure 9 is the corresponding fault coverage breakdown among the



Figure 8: Overhead comparison among full duplication, profile oblivi-
ous duplication, and profile aware duplication. In full duplication, du-
plication is not terminated at safe instructions and all branches are also
protected. Although profile oblivious duplication uses safe instruc-
tions, profiling information is not utilized. This represents a system
equivalent to Shoestring. Profile-aware duplication uses safe instruc-
tions as well as profiling information.

Figure 9: Coverage breakdown for full duplication (full-dup), profile
oblivious duplication (pro-oblivi) and profile aware duplication (pro-
aware).

different categories of result classification. Essentially, “Full dupli-
cation” data represents the performance overhead and fault coverage
with the maximum amount of duplication possible with our scheme.
On average, the performance overhead is 50.51% and the coverage of
transient faults by combining symptom-based and duplication-based
methods is 94%. The performance overheads in this Section are com-
pared to -O3 optimized baseline. Though the overhead is high, it gives
improved coverage of faults. In the 164.gzip benchmark, all unmasked
faults are detected by the duplicated code.

The profile-oblivious duplication column in Figure 8 and pro-
oblivi column in Figure 9 show the performance overhead and fault
coverage numbers if the duplication is terminated at safe instructions
and only the immediate branch whose execution affects the execution
of high value instruction is protected by duplication. This is equiva-
lent to the Shoestring solution. It reduces overhead but fault coverage
deceases from 94% to 92.2%. For the rest of results, we have con-

sidered profile oblivious duplication as our baseline values for result
comparisons.

A general trend observed in the results is that with lesser dupli-
cation, masking goes up. For example, profile oblivious duplication
(pro-oblivi) has lower overhead than full duplication (full-dup) on av-
erage (Figure 8), hence lesser duplication, but has more masking than
full-dup (Figure 9). This stems from the fact that with less duplica-
tion, there a decreased chance of fault detection and therefore a greater
chance of fault masking or overall failure since undetected faults result
in masking or failure. Since the amount of duplication in an applica-
tion changes its code structure, randomly injected faults in the same
application with different levels of duplication show different behav-
ior.

The profile-aware duplication column in Figure 8 shows the over-
head if we duplicate the producer chains of library and function calls
only (i.e., only library and function calls are considered as high value
instructions) and make use of profile information. The pro-aware col-
umn in Figure 9 shows the corresponding coverage breakdown num-
bers. In this set of experiments, the effectiveness of using LAMP to
trace the dependences through memory and other profiling techniques
while duplicating instructions is demonstrated. The overhead is re-
duced by 41% but the coverage of transient faults provided by the
combination of symptom-based and software duplication stays about
the same. These results demonstrate the effectiveness of using the
profiling information for efficient duplication. Our technique results
in better code duplication, providing the same level of fault coverage
seen with our baseline but at 41% lower overhead.

5.3 Contributions of Each Technique

So far we have discussed the combined effect of edge, memory, and
value profiling on the obtained results. In this section, the contribution
of each technique is presented. We have combined the contributions of
edge profiling and silent store optimization together and the results in
this section are presented for a subset of benchmarks because running
100 fault injection trials for each configuration leads to a large number
of simulations. These benchmarks are not handpicked because they
show desirable behavior.

Figure 10: The profile-oblivious column is the baseline overhead.
The reduction in overhead if we use the silent store optimization and
edge profiling information is shown in the ‘Sl-st and edge profile
aware’ column. The value profile aware column shows the reduction
in overhead if we use value profile in comparison to our baseline.

The ‘Sl-st and edge profile aware’ column in Figure 10 show
the reduction in overhead if the silent store and edge profile based
optimizations are used. The profile oblivious duplication bar is the
baseline overhead. In comparison to our baseline, these two techniques
combined result in a 12.78% reduction in overhead. The sl-edge-
aware column in Figure 11 shows the coverage breakdown among



Figure 11: The pro-oblivi column shows the coverage breakdown
for our baseline . The coverage breakdown if we use silent store
optimization and edge profile information is shown in the sl-edge-
aware column. The val-aware column shows the coverage breakdown
for value profile aware code duplication.

different components. On average, because of software duplication,
the combined fault coverage stays the same. As shown in the val-
aware column in Figure 10, the use of value profiling provides a 5.9%
reduction in the performance overhead of duplication on average.
Value profiling provides a slight increase in the number of faults
covered by duplication while reducing the overhead.

Overall, the experimental results demonstrate that the techniques
proposed in this work are effective as they provide a significant reduc-
tion in performance overhead while still maintaining the desired fault
coverage levels.

6. Related Work
This section describes the work that is related to our proposed solution.
Software instruction duplication is an approach which is extended in
our work in an effort to increase fault-coverage while reducing perfor-
mance overhead and eliminating the need for additional hardware sup-
port. In this case, redundant execution can also be achieved in software
without creating independent threads as shown by Reis et al. [26]. The
previous works in software-based instruction duplication are [9, 26],
the most closely-related works to our solution. Our work differs from
these works in the following ways:

• Our work makes novel use of value profiling to generate extra
software-based symptoms.

• SWIFT [26] considered all the stores as starting point for dupli-
cation. Shoestring [9] improved upon that by considering global
stores and all functions calls as starting point for instruction du-
plication. Our solution starts duplicating instructions only from li-
brary and function calls and then uses memory profiling to find
the true load/store dependencies. In this process, only the impor-
tant stores get considered as high value and a lesser duplication
overhead is achieved.

• Silent store profiling information is incorporated in this work for
the first time.

• Unlike some of the previous works, our solution is not tied to a spe-
cific ISA. We take a fresh approach, and instruction duplication is
implemented instead at the IR (Intermediate Representation) level.
This enables greater applicability, as IR-level implementation al-
lows for a wider target base, being useable on a multitude of dif-
ferent processor architectures.

Other works such as CRAFT and PROFIT [27] improve upon the
SWIFT solution by leveraging additional hardware structures and
architectural vulnerability factor (AVF) analysis [23], respectively.
Compiler-based instruction duplication delivers nearly complete fault
coverage, with the added benefit of requiring little to no hardware cost.
However, in order to achieve this, solutions like SWIFT can more
than double the number of dynamic instructions for a program, in-
curring significant performance and power penalties which are costly
to implement in embedded devices. Latif et al. [14] present a software
based solution which exploits data representation for fault detection.
It doesn’t handle arbitrary C/C++ programs.

With respect to other hardware and software based solutions, our
solution’s ability to achieve high levels of fault coverage with very low
performance overhead, and all without any specialized hardware, sets
it apart.

Some recent solutions have also suggested the idea of distributed
checking in the core for various components. Argus [20], for example,
relies on a series of hardware checker units to perform online invariant
checking to ensure correct application execution. Our solution differs
from all of these techniques because it does not require any special
hardware modifications.

Our proposed solution also makes use of symptom-based detec-
tion, which relies on anomalous microarchitectural behavior to de-
tect soft errors. A light-weight approach for detecting soft errors, Re-
Store [32], analyzes symptoms including memory exceptions, branch
mispredicts, and cache misses. In our proposed solution, extra symp-
tom generating instructions are introduced based on value-profiling
data. The strength of symptom-based detection lies in its low cost and
ease of application. mSWAT [12] presented a solution which detects
anomalous software behavior to provide a reliable system. It requires
special simple hardware detectors to detect faults.

One final approach to soft error tolerance targets another aspect of
the microarchitecture, the register file. Register file protection schemes
are based on the premise that faults occurring in the register file are
statistically more likely to corrupt the output of the program. As ECC
is applied to main memory to protect against soft errors, the same
technique can also be applied to the register file. Solutions like the one
presented by Montesinos et al. [21] build upon this insight and only
maintain ECC for those registers most likely to contain live values.
ECC protection would only be helpful if the soft error corrupts a
register after it has been written; If faulty data gets written to registers,
ECC is simply useless. In contrast, our solution can detect errors
which occur elsewhere in the architecture but propagate to the register
file. Similarly, Blome et al. [6] propose a register value cache that
holds duplicates of live register values to aid in the protection process.

7. Conclusions and Future Work
The relentless desire to scale transistor size will increase the rate at
which soft errors occur during the time when the processor is in use.
As a result, it is necessary to provide protection against soft errors
not only for mission-critical applications but also for important ap-
plications running on commodity processors. The high overhead of
techniques to protect against soft errors for mission-critical comput-
ing systems is not acceptable for applications running on commod-
ity processors. We make novel use of value profiling for generating
software symptoms. In this work, we presented a solution that uses
profile-based compiler analysis to selectively duplicate instructions.
Our profile based selective duplication results in a reduction of over-
head of 41% in comparison to a previously proposed solution while
maintaining the same level of fault coverage.

Future work includes focusing on identifying more opportunities to
reduce performance overhead without affecting transient fault cover-
age. We also plan to extend the simulator infrastructure to inject faults
in other microarchitecture structures such as the decoder, branch pre-
dictor, TLB, etc. to observe the effect on fault coverage of our cur-
rently proposed solution. We also wish to validate the technique pre-



sented in this work on multithreaded programs, and on an out-of-order
infrastructure.
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