
European Journal of Control (2012)3:217–238
© 2012 EUCA
DOI:10.3166/EJC.18.217–238

Taming Dr. Frankenstein: Contract-Based Design
for Cyber-Physical Systems∗g

Alberto Sangiovanni-Vincentelli1,3,∗∗, Werner Damm2,4, Roberto Passerone3

1 University of California, Berkeley, CA, USA;
2 Kuratorium OFFIS e.V., Oldenburg, Germany;
3 DISI, University of Trento, Trento, Italy;
4 Carl von Ossietzky University of Oldenburg, Oldenburg, Germany

Cyber-physical systems combine a cyber side (comput-
ing and networking) with a physical side (mechani-
cal, electrical, and chemical processes). In many cases,
the cyber component controls the physical side using
sensors and actuators that observe the physical sys-
tem and actuate the controls. Such systems present the
biggest challenges as well as the biggest opportunities
in several large industries, including electronics, energy,
automotive, defense and aerospace, telecommunications,
instrumentation, industrial automation.

Engineers today do successfully design cyber-physical
systems in a variety of industries. Unfortunately, the devel-
opment of systems is costly, and development schedules
are difficult to stick to. The complexity of cyber-physical
systems, and particularly the increased performance that
is offered from interconnecting what in the past have been
separate systems, increases the design and verification
challenges. As the complexity of these systems increases,
our inability to rigorously model the interactions between
the physical and the cyber sides creates serious vulnerabil-
ities. Systems become unsafe, with disastrous inexplicable
failures that could not have been predicted. Distributed
control of multi-scale complex systems is largely an
unsolved problem.

A common view that is emerging in research programs
in Europe and the US is “enabling contract-based design
(CBD),” which formulates a broad and aggressive scope to

∗∗Correspondence to: A. Sangiovanni-Vincentelli, E-mail: alberto@
eecs.berkeley.edu

address urgent needs in the systems industry. We present
a design methodology and a few examples in controller
design whereby contract-based design can be merged with
platform-based design to formulate the design process as a
meet-in-the-middle approach, where design requirements
are implemented in a subsequent refinement process using
as much as possible elements from a library of available
components. Contracts are formalizations of the condi-
tions for correctness of element integration (horizontal
contracts), for lower level of abstraction to be consistent
with the higher ones, and for abstractions of available
components to be faithful representations of the actual
parts (vertical contracts).

Keywords: Contract, cyber-physical, design methodolo-
gies, platform-based, correctness.

1. Introduction

System industry that includes automotive, avionics and
consumer electronics companies are facing significant dif-
ficulties due to the exponentially rising complexity of their

∗Paper associated with the semi-plenary lecture of A. Sangiovanni-
Vincetelli at the 50th IEEE CDC and ECC 2011, Orlando, FL, USA,
December 2011.

Received 14 November 2011
Recommended by E.F. Camacho



218 A. Sangiovanni-Vincentelli et al.

products coupled with increasingly tight demands on func-
tionality, correctness, and time-to-market. The cost due to
being late to market or due to imperfections in the products
is staggering as witnessed by the recent recalls and deliv-
ery delays that system industries had to bear. There are
examples of the devastating effects that design problems
may cause.

The specific root causes of these problems are com-
plex and relate to a number of issues ranging from design
processes and relationships with different departments
of the same company and with suppliers1 to incomplete
requirement specification and testing.2

In addition, there is a widespread consensus in the
industry that there is much to gain by optimizing the imple-
mentation phase that today is only considering a very small
subset of the design space. Some attempts at a more effi-
cient design space exploration have been afoot but there
is a need to formalize the problem better and to involve in
major ways the different players of the supply chain. Infor-
mation about the capabilities of the subsystems in terms of
timing, power consumption, size, weight and other phys-
ical aspects transmitted to the system assemblers during
design time would go a long way in providing a better
opportunity to design space exploration.

In this landscape, a wrong turn in a system design
project could cause an important economic, social and
organizational upheaval that may imperil the life of an
entire company. No wonder that there is much interest
in risk management approaches to assess risks associated
to design errors, delays, recalls and liabilities. Finding
appropriate countermeasures to lower risks and to develop
contingency plans is then a mainstay of the way large
projects are managed today. The overarching issue is the
need of a substantive evolution of the design methodology
in use today in system companies. The issue to address
is the understanding of the principles of system design,
the necessary change to design methodologies, and the
dynamics of the supply chain. Developing this understand-
ing is necessary to define a sound approach to the needs of
the system companies as they try to serve their customers
better, to develop their products faster and with higher
quality.

The focus of this paper is on cyber-physical systems
(CPS) [13], [28], [43]. Cyber-physical systems are integra-
tions of computation with physical processes. Embedded
computers and networks monitor and control the physi-
cal processes, usually with feedback loops where physical
processes affect computations and vice versa.

1 Toyota sticky accelerator problem came in part from components
provided by two contractors whose interaction was not verified appro-
priately, Airbus delay problems were in part due to contractors who
had different versions of the CAD software.

2 Boeing stated that a structural problem was discovered late in the design
process.

The emerging applications of cyber-physical systems
are destined to run in distributed form on a platform that
meshes high performance compute clusters (the infras-
tructure core) with broad classes of mobiles in turn
surrounded by even larger swarms of sensors (from the
very large to the microscopic). The broad majority of
these new applications can be classified as “distributed
sense and control systems” that go substantially beyond
the “compute” or “communicate” functions, traditionally
associated with information technology. These applica-
tions have the potential to radically influence how we deal
with a broad range of crucial problems facing our society
today: for example, national security and safety, including
surveillance, energy management and distribution, envi-
ronment control, efficient and reliable transportation and
mobility, and effective and affordable health care. A recur-
ring property of these applications is that they engage all
the platform components simultaneously—from data and
computing services on the cloud of large-scale servers,
data gathering from the sensory swarm, and data access
on the mobiles. Another property is that the resulting sys-
tems span many scales—in space (from the very large to
the very small), in time (from the very fast to the very
slow), in function (consisting of complex hierarchies of
heterogeneous functionalities), and in technology (inte-
grating a broad range of diverse technologies). Each of the
components of this distributed platform (compute and data
clusters, mobiles/portables, and sensory systems) forms a
multi-scale system on its own, and offers some unique
design challenges.

Engineers today do successfully design cyber-physical
systems in a variety of industries. Unfortunately, the devel-
opment of systems is costly, and development schedules
are difficult to stick to. The complexity of cyber-physical
systems, and particularly the increased performance that
is offered from interconnecting what in the past have been
separate systems, increases the design and verification
challenges. As the complexity of these systems increases,
our inability to rigorously model the interactions between
the physical and the cyber sides creates serious vulnerabil-
ities. Systems become unsafe, with disastrous inexplicable
failures that could not have been predicted.

The challenges in the realization and operation of these
multi-scale systems are manifold, and cover a broad range
of largely unsolved design and run-time problems. These
include: modeling and abstraction, verification, validation
and test, reliability and resiliency, multi-scale technol-
ogy integration and mapping, power and energy, security,
diagnostics, and run-time management. Failure to address
these challenges in a cohesive and comprehensive way
will most certainly delay if not prohibit the widespread
adoption of these new technologies.

We believe the most promising means to address
the challenges in systems engineering of cyber-physical



Contract-Based Design for Cyber-Physical Systems 219

systems is to employ structured and formal design method-
ologies that seamlessly and coherently combine the var-
ious dimensions of the multi-scale design space (be it
behavior, space or time), that provide the appropriate
abstractions to manage the inherent complexity, and that
can provide correct-by-construction implementations.

The following technology issues must be addressed
when developing new approaches to system design:

• The overall design flows for heterogeneous systems—
meant here both in a technical and also an orga-
nizational sense—and the associated use of models
across traditional boundaries are not well developed and
understood.

• The verification of “complex systems,” particularly at
the system integration phase, where any interactions
are complicated and extremely costly to address, is
a common need in defense, automotive, and other
industries.

• Dealing with variability, uncertainty, and life-cycle
issues, such as extensibility of a product family, are
not well-addressed using available systems engineering
methodology and tools.

• System requirement capture and analysis is in large part
a heuristic process, where the informal text and natu-
ral language-based techniques in use today are facing
significant challenges. Formal requirement engineering
is in its infancy: mathematical models, formal analysis
techniques and links to system implementation must be
developed.

• Design-space exploration is rarely performed ade-
quately, yielding suboptimal designs where the archi-
tecture selection phase does not consider extensibility,
re-usability, and fault tolerance to the extent that is
needed to reduce cost, failure rates, and time-to-market.

The design technology challenge is to address the
entire process and not to consider only point solutions
of methodology, tools, and models that ease part of the
design. Addressing this challenge calls for new modeling
approaches that can mix different physical systems, con-
trol logic, and implementation architectures. In doing so,
existing approaches, models, and tools must be subsumed
and not eliminated to ensure that designers can evolve
smoothly their design methods and do not reject the pro-
posed design innovations. In particular, a design platform
has to be developed to host the new techniques and to
integrate a set of today’s poorly interconnected tools.

A common view that is emerging in research programs
in Europe and the US is “enabling contract-based design,”
which formulates a broad and aggressive scope to address
urgent needs in the systems industry. Contracts in the lay-
man use of the term are established when an OEM must
agree with its suppliers on the subsystem or component
to be delivered. Contracts involve a legal part binding the

different parties and a technical annex that serves as a ref-
erence regarding the entity to be delivered by the supplier.
Contracts can also be used through their technical annex in
concurrent engineering, when different teams develop dif-
ferent subsystems or different aspects of a system within
a same company. In our view of the term, contracts can
be actually used everywhere and at all stages of system
design, from early requirements capture, to embedded
computing infrastructure and detailed design involving
circuits and other hardware. In particular, contracts explic-
itly handle pairs of properties, respectively representing
the assumptions on the environment and the promises of
the system under these assumptions. More formally, a con-
tract is a pair C = (A, G) of {Assumptions, Promises},
where both A and G are properties satisfied by the set of
all inputs and all outputs of a design.

Assume/Guarantee reasoning has been known for quite
some time, but it has been used mostly as verification mean
for the design of software. Our purpose is much more
ambitious: contract based design with explicit assump-
tions is a design philosophy that should be followed all
along the design, with all kinds of models, whenever nec-
essary. Here, the models we mean are rich—not only
profiles, types, or taxonomy of data, but also models
describing the functions, performances of various kinds
(time and energy), and safety.

To make contract-based design a technique of choice
for system engineers, we must develop:

• Mathematical foundations for contract representation
and requirement engineering that enable the design of
frameworks and tools;

• A system engineering framework and associated
methodologies and tool sets that focus on system
requirement modeling, contract specification, and veri-
fication for cyber-physical systems at multiple abstrac-
tion layers.

• A systems engineering framework focusing on cross-
boundary design flows that include addressing the
organizational impacts of contract design and the evo-
lution over time of systems, including configuration
management.

In this paper, it is our goal to describe contract-based
design in the context of system level design.

In the following sections, we will review methods to
cope with the challenges posed in the introduction. It is
indeed our take that the concept of contract is a unify-
ing view on how to formalize requirements and rules that
appear at all steps of the design process. Then, we will pro-
vide a short formalization of the notion of contract. Armed
with this notion, we show how to combine contracts with
platform-based design to encompass all other methods.
We present a simple control problem to demonstrate the
use of the proposed methodology and we close the paper



220 A. Sangiovanni-Vincentelli et al.

presenting potential developments that could make the use
of contracts pervasive in industry.

2. Addressing the System Design
Challenges: Methodologies

System companies have not yet perceived design method-
ology or tools to be on their critical path; hence they have
not been willing to invest in expensive tools. Clearly, as
they are hitting a wall in the development of the next
generation systems, this situation is rapidly changing.
Major productivity gains are needed and better verification
and validation is a necessity as the safety and reliability
requirements become more stringent and complexity is hit-
ting an all-time high. Our experience is that many of the
design chain problems are typical of very diverse verti-
cals, the difference between them being in the importance
given to time-to-market and to the customer appeal of the
products versus safety and hard-time constraints. This con-
sideration motivates the view that a unified methodology
and framework could be used in many (if not all) industrial
vertical domains.

Our view, shared by the research community, is that a
new design science must then be developed to address the
challenges listed above where the physical is married to
the abstract, where the world of analog signals is coupled
with the one of digital processing, and where ubiquitous
sensing and actuation make our entire environment safer
and more responsive to our needs. System design should
be based on the new design science to address the indus-
try and society needs in a fundamental way. However,
the present directions are not completely clear as the new
paradigm has not yet fully emerged in the design com-
munity with the strength necessary to change the design
technology landscape, albeit researchers have chartered
the field with increasing clarity. We do believe that system
design needs to be concerned about the entire industrial
supply chain that spans from customer-facing companies
to subsystem and component suppliers, since the health
of an industrial sector depends on the smooth interaction
among the players of the chain as if they were part of
the same company. In this section we review some of the
proposed system-design methods in place to cope with
these challenges, from the point of view of the system,
the supply chain, and the development process including
requirement capture and optimization.

2.1. Coping with Complexity of Systems

Multiple lines of attack have been developed by research
institutions and industry to cope with the exponential
growth in systems complexity, starting from the iterative
and incremental development several decades ago [27].

Among them, of particular interest to the development of
embedded controllers are: Layered design, Component-
based design, the V-model process, Model-based devel-
opment, Virtual integration and Platform-Based Design.
We review them next.

2.1.1. Layered Design

Layered design copes with complexity by focusing on
those aspects of the system pertinent to support the design
activities at the corresponding level of abstraction. This
approach is particularly powerful if the details of a lower
layer of abstraction are encapsulated when the design is
carried out at the higher layer. Layered approaches are well
understood and standard in many application domains.
As an example, consider the AUTOSAR standard.3. This
standard defines several abstraction layers. Moving from
“bottom” to “top”, the micro-controller abstraction layer
encapsulates completely the specifics of underlying micro-
controllers, the second layer abstracts from the concrete
configuration of the Electronic Control Unit (ECU), the
employed communication services and the underlying
operating system, whereas the (highest) application layer
is not aware of any aspect of possible target architectures,
and relies on purely virtual communication concepts in
specifying communication between application compo-
nents. Similar abstraction levels are defined by the ARINC
standard in the avionic domains.

The benefits of using layered design are manifold. Using
the AUTOSAR layer structure as example, the complete
separation of the logical architecture of an application (as
represented by a set of components interconnected using
the so-called virtual function bus) and target hardware is
a key aspect of AUTOSAR, in that it supports complete
decoupling of the number of automotive functions from
the number of hardware components. In particular, it is
flexible enough to mix components from different applica-
tions on one and the same ECU. This illustrates the double
role of abstraction layers, in allowing designers to focus
completely in this case on the logic of the application and
abstracting from the underlying hardware, while at the
same time imposing a minimal (or even no) constraint on
the design space of possible hardware architectures. In
particular, these abstractions allow the application design
to be re-used across multiple platforms, varying in number
of bus-systems and/or number and class of ECUs. These
design layers can, in addition, be used to match the bound-
aries of either organizational units within a company, or
to define interfaces between different organizations in the
supply chain.

3 See http://www.autosar.org/



Contract-Based Design for Cyber-Physical Systems 221

The challenge, then, rests in providing the proper
abstractions of lower-level design entities. which must
meet the double criteria of, on one hand, being sufficiently
detailed to support virtual integration testing even with
respect to non-functional viewpoints on the next higher
level, while at the same time not overly restricting the
space of possible lower-level implementations. As a con-
crete example, consider the AUTOSAR application layer
and an application requiring guaranteed service under a
given failure hypothesis. Such failure hypothesis would
typically relate both to failures observable on the applica-
tion layer itself (such as a component sending an incorrect
value, a component flushing its neighbors with unwanted
messages), as well as to failures depending on the underly-
ing (unknown!) target hardware. This points to an inherent
dilemma: on one side, the desire of completely abstract-
ing from the underlying hardware, while at the same time
wishing to perform analysis of properties which inherently
depend on it.

Using what we call vertical assumptions as abstractions
of the underlying target hardware can solve this dilemma.
Returning to the above example, such vertical assumptions
could explicate the failure hypothesis of either execution
platforms or communication platforms, and thus deco-
rate either (individual Runnables4) components or entities
of the virtual function bus. In more general terms, any
logical communication must be seen as a (fictitious) com-
ponent itself, which, at deployment time, will be mapped
to communication services of the operating system.

2.1.2. Component-Based Design

Whereas layered designs decompose complexity of sys-
tems “vertically”, component-based approaches reduce
complexity “horizontally” whereby designs are obtained
by assembling strongly encapsulated design entities called
“components” equipped with concise and rigorous inter-
face specifications. Re-use can be maximized by finding
the weakest assumptions on the environment sufficient to
establish the guarantees on a given component implemen-
tation. While these interface specifications are key and
relevant for any system, the “quality attribute” of perceiv-
ing a subsystem as a component is typically related to two
orthogonal criteria, that of “small interfaces”, and that of
minimally constraining the deployment context, so as to
maximize the potential for re-use. “Small interfaces”, i.e.,
interfaces which are both small in terms of number of inter-
face variables or ports, as well as “logically small”, in that
protocols governing the invocation of component services

4 Runnables are defined in the virtual bus function specifications of
AUTOSAR. Runnable entities are the smallest code-fragments that
are provided by the component and are (at least indirectly) a subject
for scheduling by the operating system.

Fig. 1. The V model.

have compact specifications not requiring deep levels of
synchronization, constitute evidence of the success of
encapsulation. The second quality attribute is naturally
expressible in terms of interface specifications, where re-
use can be maximized by finding the weakest assumptions
on the environment sufficient to establish the guarantees
on a given component implementation.

One challenge, then, for component-based design of
embedded systems, is to provide interface specifications
that are rich enough to cover all phases of the design
cycle. This calls for including non-functional character-
istics as part of the component interface specifications,
which is best achieved by using multiple viewpoints. Cur-
rent component interface models, in contrast, are typically
restricted to purely functional characterization of compo-
nents, and thus cannot capitalize on the benefits of virtual
integration testing, as outlined above.

The second challenge is related to product line design,
which allows for the joint design of a family of variants of
a product. The aim is to balance the contradicting goals of
striving for generality versus achieving efficient compo-
nent implementations. Methods for systematically deriv-
ing “quotient” specifications to compensate for “minor”
differences between required and offered component guar-
antees by composing a component with a wrapper compo-
nent (compensating for such differences as characterized
by quotient specifications) exists for restricted classes of
component models [36].

2.1.3. The V-Model of the Design Process

A widely accepted approach to deal with complexity of
systems in the defense and transportation domain is to
structure product development processes along variations
of the V diagram shown in Fig. 1, originally developed for
defense applications by the German DoD.5

Its characteristic V-shape splits the product develop-
ment process into a design and an integration phase.

5 See e.g., http://www.v-model-xt.de



222 A. Sangiovanni-Vincentelli et al.

Specifically, following product level requirement anal-
ysis, subsequent steps would first evolve a functional
architecture supporting product level requirements. Sub-
functions are then re-grouped taking into account re-use
and product line requirements into a logical architec-
ture, whose modules can be developed independently,
e.g., by different subsystem suppliers. The realization of
such modules often involves mechatronic design. The top-
level of the technology-oriented architecture would then
show the mechatronic architecture of the module, defining
interfaces between the different domains of mechanical,
hydraulic, electrical, and electronic system design, such
as exemplified below for the mechatronic architecture of
a simplified aircraft braking system. Subsequent phases
would then unfold the detailed design for each of these
domains, such as the design of the electronic subsystem
involving among others the design of electronic control
units. These design phases are paralleled by integration
phases along the right-hand part of the V, such as integrat-
ing basic- and application software on the ECU hardware
to actually construct the electronic control unit, integrat-
ing the complete electronic subsystems, integrating the
mechatronic subsystem to build the module, and integrat-
ing multiple modules to build the complete product. Not
shown, but forming an integral part of V-based devel-
opment processes are testing activities, where at each
integration level test-suites developed during the design
phases are used to verify compliance of the integrated
entity to their specification.

This presentation is overly simplistic in many ways.
The design of electronic components in complex systems
such as aircrafts inherently involves multi-site, multi-
domain and cross-organizational design teams, reflecting,
e.g., a partitioning of the aircraft into different sub-
systems (such as primary and secondary flight systems,
cabin, fuel, and wing), different domains such as the
interface of the electronic subsystem to hydraulic and/or
mechanical subsystems, control-law design, telecommu-
nications, software design, hardware design, diagnostics,
and development-depth separated design activities carried
out at the OEM and supplier companies. This partitioning
of the design space (along perspectives and abstraction
layers) naturally lends itself to a parallelization of design
activities, a must in order to achieve timely delivery of the
overall product, leading often into the order of hundreds
of concurrent design processes.

Secondly, each of these sub-processes will have its own
design basis, as determined by the role of an organization
in the supplier chain. As previously pointed out in the
section of layered design, abstraction levels define, then,
what is seen as basic design-unit at a given level in the
supplier hierarchy, such as on the module-level (such as
an aircraft- engine), the ECU level (such as in traditional
automotive development processes, where tier 1 suppliers

Fig. 2. The technical architecture of an airplane braking system.

were providing a complete ECU implementing a single
new vehicle function), or the microprocessor layer. This
approach is further elaborated in the section on platform-
based design below.

Third, and tightly linked to the previous item, is the
observation, that re-use strategies such as component-
based design and product line design lead to separate
design activities, which then short-cut or significantly
reduce the effort both in design and integration steps in
the individual sub-processes for an individual product.

Finally, Fig. 2 indicates the need of supporting pro-
cesses for key viewpoints, such as for safety, where
domain standards prescribe activities to be carried out dur-
ing product development, which are often anchored with
separate roles in the organization, e.g., Airbus Recom-
mended Practices 4754 prescribes the activities in a safety
assessment process as well as its interface to the aircraft
development process, ultimately yielding a safety case to
be approved by certification authorities.

2.1.4. Model-Based Development

Model-based development (MBD) is today generally
accepted as a key enabler to cope with complex system
design due to its capabilities to support early require-
ment validation and virtual system integration. MBD-
inspired design languages and tools such as SysML6 [33]
and/or AADL [35] for system level modeling, Catia and
Modelica [18] for physical system modeling, Matlab-
Simulink [23] for control-law design, and UML7 [7], [31]
Scade [6] and TargetLink for detailed software design,
depend on design layer and application class. The state-
of-the-art in MBD includes automatic code-generation,
simulation coupled with requirement monitoring, co-
simulation of heterogeneous models such as UML and

6 http://www.omg.org/spec/SysML/
7 http://www.omg.org/spec/UML/



Contract-Based Design for Cyber-Physical Systems 223

Matlab-Simulink, model-based analysis including verifi-
cation of compliance of requirements and specification
models, model-based test-generation, rapid prototyping,
and virtual integration testing as further elaborated below.

In MBD today non-functional aspects such as perfor-
mance, timing, power or safety analysis are typically
addressed in dedicated specialized tools using tool-
specific models, with the entailed risk of incoherency
between the corresponding models, which generally inter-
act. To counteract these risks, meta-models encompassing
multiple views of design entities, enabling co-modeling
and co-analysis of typically heterogeneous viewpoint spe-
cific models have been developed. Examples include the
MARTE UML [32] profile for real-time system analysis,
the SPEEDS HRC metamodel [37] and the Metropolis
semantic meta-model [2], [3], [11], [41]. In Metropo-
lis multiple views are accommodated via the concept of
“quantities” that annotate the functional view of a design
and can be composed along with subsystems. Quanti-
ties are equipped with an “algebra” that allows quantities
associated to compositions of subsystems to be computed
from the quantities of each of the subsystems. Multi-
ple quantities such as timing and power can be handled
simultaneously. Along the same lines, the need to enable
integration of point-tools for multiple viewpoints with
industry standard development tools has been the driv-
ing force in providing the SPEEDS meta-model building
on and extending SysML, which has been demonstrated to
support co-simulation and co-analysis of system models
for transportation applications allowing co-assessment of
functional, real-time and safety requirements, and forms
an integral part of the meta-model-based inter-operability
concepts of the CESAR (see www.cesarproject.eu) ref-
erence technology platform. The SPEEDS meta-model
building on and extending SysML has been demonstrated
to support co-simulation and co-analysis of system mod-
els for transportation applications allowing co-assessment
of functional, real-time and safety requirements. It forms
an integral part of the meta-model-based inter-operability
concepts of the CESAR reference technology platform.

Meta-modeling is also at the center of the model driven
(software) development (MDD) methodology. MDD is
based on the concept of the model-driven architecture
(MDA), which consists of a Platform-Independent Model
(PIM) of the application plus one or more Platform-
Specific Models (PSMs) and sets of interface defini-
tions. MDA tools then support the mapping of the PIM
to the PSMs as new technologies become available or
implementation decisions change [30]. This is similar to
Platform-Based Design, however the definition of plat-
form is not fully described in MDD nor are the semantics
to be used for embedded software design. The Vanderbilt
University group [24] has evolved an embedded soft-
ware design methodology and a set of tools based on

MDD. In their approach, models explicitly represent the
embedded software and the environment it operates in and
capture the requirements and the design of the application,
simultaneously, using domain-specific languages (DSL).
The generic modeling environment (GME) [24] provides
a framework for model transformations enabling easy
exchange of models between tools and offers sophisticated
ways to support syntactic (but not semantic) heterogene-
ity. The KerMeta metamodeling workbench [17] is similar
in scope.

2.1.5. Virtual Integration

Rather than “physically” integrating a system from sub-
systems at a particular level of the right-hand side of
the V, model-based design allows systems to be virtu-
ally integrated based on the models of their subsystem
and the architecture specification of the system. Such vir-
tual integration thus allows detecting potential integration
problems up front, in the early phases of the V.

Virtual system integration is often a source of hetero-
geneous system models, such as when realizing an air-
craft function through the combination of mechanical,
hydraulic, and electronic systems—virtual system inte-
gration then rests on well defined principles allowing the
integration of such heterogeneous models. Heterogeneous
composition of models with different semantics was orig-
inally addressed in Ptolemy [16] and Metropolis [2], [11],
[3] albeit with different approaches. These approaches
have then been further elaborated in the SPEEDS meta-
model of heterogeneous rich components [10]. Virtual
integration involves models of the functions, the computer
architecture with its extra-functional characteristics (tim-
ing and other resources), and the physical system for con-
trol. Some existing frameworks offer significant support
for virtual integration: Ptolemy II, Metropolis, and RT-
Builder. Developments around Catia and Modelica as well
as the new offer SimScape by Simulink provide support for
virtual integration of the physical part at an advanced level.

While virtual integration is already well anchored
in many system companies development processes, the
challenge rests in lifting this from the current level of
simulation-based analysis of functional system require-
ments to rich virtual integration testing catering as well
for non-functional requirements. An approach to do so is
contract-based virtual integration testing, where both sub-
systems and the complete system are equipped with multi-
viewpoint contracts. Since subsystems now characterize
their legal environments, we can flag situations, where a
subsystem is used out of specification, i.e., in a design con-
text, for which no guarantees on the subsystems reaction
can be given. Our experience from a rich set of indus-
trial applications shows that such virtual integration tests
drastically reduce the number of late integration errors.



224 A. Sangiovanni-Vincentelli et al.

Instances of virtual integration tests revealing failed
integration early in the V include:

• The lack of a component to provide complete fault isola-
tion (a property presumed by a neighboring subsystem);

• The lack of a subsystem to stay within the failure
hypothesis assumed by a neighboring subsystem;

• The lack of a subsystem to provide a response within
an expected time-window (a property presumed by a
neighboring subsystem);

• The unavailability of a shared resource such as a bus-
system in a specified time-window;

• Non-allowed memory accesses;
• Glitch rates exceeding specified bounds (a property

presumed by a neighboring subsystem);
• Signal strengths not meeting specified thresholds (a

property presumed by a neighboring subsystem).

First, the above approach to virtual integration testing
is purely based on the subsystems contract specifica-
tions. In other words, if virtual integration testing is
successful, any implementation of a subsystem compli-
ant to this contract specification will not invalidate the
outcome of virtual integration testing. Note that using
this method the IP of subsystem suppliers is protected—
the only evidence required is the confirmation that their
implementation meets the subsystem contract specifica-
tion. Second, assuming that the virtual integration test
was passed successfully, we can verify whether the system
itself meets its contract purely based on the knowledge of
the subsystems contract and the systems architecture (and
evidence that the subsystem implementation is compliant
with this contract).

This entails that, at any level of the supplier hierarchy,
the higher-level organization can—prior to contracting
suppliers—analyze whether the subsystems contracts pass
the virtual integration test and are sufficient to establish
the system requirements. By then basing the contracts to
suppliers on the subsystem contracts, and requiring sub-
system suppliers to give evidence (such as through testing
or through formal analysis methods) that their implemen-
tation complies to their contract, the final integration of
subsystems to the complete system will be free of all
classes of integration errors covered by contracts in the
virtual integration test.

2.2. Coping with the Complexity of the Supply
Chain

To ensure coherent product development across com-
plex supply chains, standardization of design entities,
and harmonization/standardization of processes are key
trends. There are multiple challenges in defining technical

annexes to contracts between OEM and suppliers. Spec-
ifications used for procurement should be precise, unam-
biguous, and complete. However, a recurrent reason for
failures causing deep iterations across supply chain bound-
aries rests in incomplete characterizations of the environ-
ment of the system to be developed by the supplier, such as
missing information about failure modes and failure rates,
missing information on possible sources for interferences
through shared resources, and missing boundary condi-
tions. This highlights the need to explicate assumptions on
the design context in OEM-supplier contracts. In the light
of an increased sharing of hardware resources by applica-
tions developed by multiple suppliers, this contract-based
approach seems indispensable for resolving liability issues
and allowing applications with different criticality levels
to co-exist (such as ASIL levels [42], [1] in automotive).

2.2.1. Standardization of Design Entities

By agreeing on (domain specific) standard representations
of design entities, different industrial domains have cre-
ated their own lingua franca, thus enabling a domain wide
shared use of design entities based on their standardized
representation. Examples of these standards in the auto-
motive sector include the recently approved requirement
interchange format standard RIF,8 the AUTOSAR9 de-
facto standard, the OSEK10 operating system standard,
standardized bus-systems such as CAN11 and Flexray,12

standards for “car2X” communication, and standardized
representations of test supported by ASAM.13 Exam-
ples in the aerospace domain include ARINC standards14

such as the avionics applications standard interface, IMA,
RTCA15 communication standards. In the automation
domain, standards for interconnection of automation
devices such as Profibus16 are complemented by standard-
ized design languages for application development such
as Structured Text.

As standardization moves from hardware to operating
system to applications, and thus crosses multiple design
layers, the challenge increases to incorporate all facets
of design entities required to optimize the overall product,
while at the same time enabling distributed development in
complex supply chains. As an example, to address the dif-
ferent viewpoints required to optimize the overall product,

8 http://www.w3.org/2005/rules/wiki/RIF_Working_Group
9 http://www.autosar.org/
10 http://www.osek-vdx.org/
11 http://www.iso.org/iso/search.htm?qt=Controller+Area+Network&

searchSubmit=Search&sort=rel&type=simple&published=true
12 http://www.flexray.com/
13 http://www.asam.net/
14 http://www.aeec-amc-fsemc.com/standards/index.html
15 http://www.rtca.org/
16 http://www.profibus.com/



Contract-Based Design for Cyber-Physical Systems 225

AUTOSAR extended in transitioning from release 3.1
to 4 its capability to capture timing characteristics of
design entities, a key prerequisite for assessing alternate
deployments with respect to their impact on timing. More
generally, the need for overall system optimization calls
for the standardization of all non-functional viewpoints of
design entities, an objective yet to be achieved in its full
generality.

2.2.2. Standardization/Harmonization of Processes

Harmonizing or even standardizing key processes (such
as development processes and safety processes) provides
for a further level of optimization in interactions across the
supply chain. As an example, Airbus Directives and Proce-
dures (ADBs) provide requirements for design processes
of equipment manufactures. Often, harmonized processes
across the supply chain build on agreed maturity gates
with incremental acceptance testing to monitor progress
of supplier development towards final acceptance, often
building on incremental prototypes. Shared use of Prod-
uct Lifcycle Management (PLM) [38] databases across
the supply chain offers further potentials for cross-supply
chain optimization of development processes. Also, in
domains developing safety related systems, domain spe-
cific standards clearly define the responsibilities and duties
of companies across the supply chain to demonstrate func-
tional safety, such as in the ISO 2626217 for the automotive
domain, IEC 6150818 for automation, its derivatives Cen-
elec EN 50128 and 5012619 for rail, and Do 178 B20 for
civil avionics.

Yet, the challenge in defining standards rests in balanc-
ing the need for stability with the need of not blocking
process innovations. As an example, means for composi-
tional construction of safety cases are seen as mandatory
to reduce certification costs in the aerospace and rail
domains. Similarly, the potential of using formal verifica-
tion techniques to cope with increasing system complexity
is considered in the move from DO 178 B to DO 178 C
standards.

2.3. Getting Initial Requirements Right

Depending on application domains, up to 50% of all errors
result from imprecise, incomplete, or inconsistent and
thus unfeasible requirements. Out of the many approaches
taken in industry for getting requirements right, we focus

17 http://www.iso.org/iso/catalogue_detail.htm?csnumber=43464
18 http://www.iec.ch/functionalsafety/
19 http://www.cenelec.eu/Cenelec/CENELEC+in+action/Web+Store/

Standards/default.htm
20 http://www.do178site.com/

here on those for initial systems requirements, relying on
ISO 26262 compliant approaches.

To cope with the inherently unstructured problem of
(in)completeness of requirements, industry has set up
domain- and application-class specific methodologies. As
particular examples, we mention learning process, such
as employed by Airbus to incorporate the knowledge base
of external hazards from flight incidents, the Code of
Practice proposed by the Prevent Project using guiding
questions to assess the completeness of requirements in the
concept phase of the development of advanced driver assis-
tance systems. Use-case analysis methods as advocated for
UML based development process follow the same objec-
tive. A common theme of these approaches is the intent to
systematically identify those aspects of the environment
of the system under development whose observability is
necessary and sufficient to achieve the system require-
ments. Pushing this further again leads to using contracts:
based on a determined system boundary, responsibili-
ties of achieving requirements are split into those to be
established by the system-under-development (the “guar-
antees” of the contract) and those characterizing admis-
sible environments of the system-under-development (the
“assumptions” of the contract).

However, the most efficient way of assessing complete-
ness of a set of requirements is by executing it. This
consists in what David Harel called “playing out” for the
particular case of live sequence charts [20], [21], [22], i.e.,
the use of formalized contract specifications to generate
trajectories of interface observations compliant with the
considered set of contracts. Such simulation capabilities
turn out to be instrumental in revealing incompleteness:
typically, they will exhibit unexpected traces, e.g., due to
an insufficient restriction of the environment, or only par-
tially specified system reactions. Executing requirements
is only possible if semi-formal or formal specification
languages are used, where the particular shape of such
formalizations is viewpoint and domain dependent. Exam-
ples include the use of failure propagation models for
safety contracts, the use of probabilistic timed automata to
specify arrival processes, the use of live sequence charts
for capturing scenarios in the interaction of actors and
systems, or formalized requirement languages such as the
PSL standard [34] combining temporal logic and automata
based specifications used in the EDA domain, or the
pattern-based contract specification language defined by
the integrated project SPEEDS.

In addition, using contracts resting on logic-based
formalisms comes with the advantage, that “spurious”
unwanted behaviors can be excluded by “throwing in”
additional contracts, or strengthening assumptions, or by
considering additional cases for guarantees. A second
advantage rests in the capability of checking for con-
sistency by providing effective tests, whether a set of



226 A. Sangiovanni-Vincentelli et al.

contracts is realizable, or whether, in contrast, facets of
these are inherently conflicting, and thus no implementa-
tion is feasible.

2.4. Coping with Multi-Layer Design Optimization

System designs are often the result of modifications of
previous designs with the attempt of minimizing risks and
reducing delays and design costs. While this was an effec-
tive way of bringing new products to market in the past,
with the increase in demand for new functionality and the
advances of the implementation platforms, this strategy
has yielded more problems than it has fixed. Indeed, there
is a shared consensus that in most of the cases the designs
are not optimized in the sense that the full exploitation of
the new opportunities technology offers is not achieved
and that having visibility of the available options and an
evaluation framework for design alternatives are a sorely
missing capability.

An ideal scenario for optimization is to have access
to the entire design space at the lowest possible level of
abstraction and then run a global optimization algorithm
that could select these components satisfying constraints
and optimizing multiple criteria involving non-functional
aspects of the design. Unfortunately this approach is obvi-
ously out of the question for most designs given the size
of the design space and the capabilities of optimization
algorithms.

What is possible is to select solutions in a pre-
selected design space where the number of alternatives
to choose from is finite and searchable by state-of-the-
art optimization programs. Indeed, the platform-based
design paradigm offers scaffolding that would support this
approach. In fact, at any abstraction layer, we need to opti-
mize with respect to the components of the platform. The
selection process will have to look only at feasible combi-
nations of the components as dictated by the composability
contracts.

2.5. Managing Risk Across the Development Process

The realization of complex systems calls for design pro-
cesses that mitigate risks in highly concurrent, distributed,
and typically multi-domain engineering processes, often
involving more than one hundred sub-processes. Risk
mitigation measures typically cover all phases of design
processes, ranging from ensuring high quality initial
requirements to early assessments of risks in realizabil-
ity of product requirements during the concept phase, to
enforcing complete traceability of such requirements with
requirements management tools, to managing consistency
and synchronization across concurrent sub-processes
using PLM tools. A key challenge rests in balancing risk
reduction versus development time and effort: completely

eliminating the risks stemming from concurrent engineer-
ing essentially requires a complete synchronization along
a fine-grained milestone structure, which would kill any
development project due to the induced delays.

Current practice leads to typically implicit assump-
tions about design aspects to be guaranteed by concurrent
processes—designers are “speculating” on outcomes of
concurrent engineering sub-processes, based on their
experiences from previous designs. These assumptions
should be made explicit—emphasizing once again the
high methodological value of assumptions—and asso-
ciate these with risk-levels, which qualify or quantify
the expected risks in not achieving such assumptions [9].
This very same instrument can be put in place during the
concept phase of development processes, where vertical
assumptions form the key basis for assessing realizability
of requirements.

3. Contract Model Overview

In this section we briefly summarize the main concepts
behind contract-based design by presenting a simple
generic contract model centered around the notion of
component. A component is a hierarchical entity that
represents a unit of design. Components are connected
together by sharing and agreeing on the values of cer-
tain ports and variables. A component may include both
implementations and contracts. An implementation M is
an instantiation of a component and consists of a set P of
ports and variables (in the following, for simplicity, we
will refer only to ports) and of a set of behaviors, or runs,
also denoted by M, which assign a history of “values”
to ports. Runs are generic and abstract, since we do not
need a predetermined form of behavior for our basic def-
initions. The particular structure of the runs is defined by
specific instances of the model. For instance, runs could
be continuous functions that result from solving differen-
tial equations, or sequences of values or events recognized
by an automata model. Our basic definitions will not vary,
and only the way operators are implemented is affected.

We build the notion of a contract for a component as
a pair of assertions, which express its assumptions and
promises. An assertion E is modeled as a set of behav-
iors over ports, precisely as the set of behaviors that
satisfy it. An implementation M satisfies an assertion E
whenever they are defined over the same set of ports and
all the behaviors of M satisfy the assertion, i.e., when
M ⊆ E. A contract is an assertion on the behaviors of
a component (the promise) subject to certain assump-
tions. We therefore represent a contract C as a pair (A, G),
where A corresponds to the assumption, and G to the
promise. An implementation of a component satisfies
a contract whenever it satisfies its promise, subject to



Contract-Based Design for Cyber-Physical Systems 227

the assumption. Formally, M ∩ A ⊆ G, where M and C
have the same ports. We write M = C when M satisfies a
contract C.

Intuitively, an implementation can only provide
promises on the value of the ports it controls. On ports
controlled by the environment, instead, it may only declare
assumptions. Therefore, we will distinguish between two
kinds of ports: those that are controlled and those that
are uncontrolled. Uncontrollability can be formalized as a
notion of receptiveness: for E an assertion, and P′ ⊆ P a
subset of its ports, E is said to be P′-receptive if and only
if for all runs σ ′ restricted to ports belonging to P′, there
exists a run σ ∈ E such that σ ′ and σ coincide over P′. In
words, E accepts any history offered to the subset P′ of its
ports. This closely resembles the classical notion of inputs
and outputs in programs and HDLs; it is more general,
however, as it encompasses not only horizontal composi-
tions within a same layer, but also cross-layer integration
such as the integration between application and execution
platform performed at deployment. Contracts are there-
fore enriched with a profile π = (u, c) that partitions its
set of ports.

The combination of contracts associated to different
components can be obtained through the operation of par-
allel composition. If C1 = (A1, G1) and C2 = (A2, G2)

are contracts (possibly over different sets of ports), the
composite must satisfy the guarantees of both, implying
an operation of intersection. The situation is more sub-
tle for assumptions. Suppose first that the two contracts
have disjoint sets of ports. Intuitively, the assumptions
of the composite should be simply the conjunction of
the assumptions of each contract, since the environment
should satisfy all the assumptions. In general, however,
part of the assumptions A1 will be already satisfied by
composing C1 with C2, acting as a partial environment for
C1. Therefore, G2 can contribute to relaxing the assump-
tions A1. And vice-versa. The assumption and the promise
of the composite contract C = (π , A, G) can therefore be
computed as follows:

A = (A1 ∩ A2) ∪ ¬(G1 ∩ G2), (1)

G = G1 ∩ G2, (2)

which is consistent with similar definitions in other con-
texts [12], [14], [29]. For the profiles, we enforce the
property that each port should be controlled by at most
one contract. Hence, parallel composition is defined only
if the sets of controlled ports of the contracts are disjoint.

Parallel composition can be used to construct complex
contracts out of simpler ones, and to combine contracts
of different components. Despite having to be satisfied
simultaneously, however, multiple viewpoints associated
to the same component do not generally compose by paral-
lel composition. Take, for instance, a functional viewpoint

Cf and an orthogonal timed viewpoint Ct for a compo-
nent M. Contract Cf specifies allowed data pattern for the
environment, and sets forth the corresponding behavioral
property that can be guaranteed. For instance, if the envi-
ronment alternates the values T,F,T, . . . on port a, then
the value carried by port b never exceeds x. Similarly, Ct

sets timing requirements and guarantees on meeting dead-
lines. For example, if the environment provides at least one
data per second on port a (1ds), then the component can
issue at least one data every two seconds (.5ds) on port b.
Parallel composition fails to capture their combination,
because the combined contract must accept environments
that satisfy either the functional assumptions, or the timing
assumptions, or both. In particular, parallel composition
computes assumptions that are too restrictive. We would
like, instead, to compute the conjunction � of the con-
tracts, so that if M = Cf � Ct , then M = Cf and M = Ct .
This can best be achieved by first defining a partial order
on contracts, which formalizes a notion of substitutabil-
ity, or refinement. We say that C = (A, G) dominates
C′ = (A′, G′), written C 	 C′, if and only if A ⊇ A′ and
G ⊆ G′. Dominance amounts to relaxing assumptions and
reinforcing promises, therefore strengthening the contract.
Clearly, if M = C and C 	 C′, then M = C′.

Given the ordering of contracts, we can compute
greatest lower bounds and least upper bounds, which
correspond to taking the conjunction and disjunction of
contracts, respectively. For contracts C1 = (A1, G1) and
C2 = (A2, G2) (in canonical form), we have

C1 � C2 = (A1 ∪ A2, G1 ∩ G2), (3)

C1 � C2 = (A1 ∩ A2, G1 ∪ G2). (4)

Conjunction of contracts amounts to taking the union of
the assumptions, as required, and can therefore be used
to compute the overall contract for a component starting
from the contracts related to multiple viewpoints.

Relations between Contracts: We have already discussed
two relations that can be established between contracts and
implementations. A relation of satisfaction, that denotes
when an implementation satisfies a contract (i.e., provides
the required promises under the stated assumptions), and a
relation of refinement between contracts, that denotes the
process of concretizing the requirements by strengthening
the promises and relaxing the assumptions. Contracts can
also be related by a notion of consistency and compati-
bility. Technically, these two notions refer to individual
contracts. In practice, however, violations of these prop-
erties occur as a result of a parallel composition, so that
we can refer to the collection of components forming a
contract as consistent or compatible.

The notion of receptiveness and the distinction between
controlled and uncontrolled ports is at the basis of our



228 A. Sangiovanni-Vincentelli et al.

relations of consistency and compatibility between con-
tracts. Our first requirement is that an implementations M
with profile π = (u, c) be u-receptive, formalizing the
fact that an implementation has no control over the values
of ports set by the environment. For a contract C, we say
that C is consistent if G is u-receptive, and compatible if
A if c-receptive.

The sets A and G are not required to be receptive.
However, if G is not u-receptive, then the promises con-
strain the uncontrolled ports of the contract. In particular,
the contract admits no receptive implementation. This is
against our policy of separation of responsibilities, since
we stated that uncontrolled ports should remain entirely
under the responsibility of the environment. Correspond-
ing contracts are therefore called inconsistent.

The situation is dual for assumptions. If A is not
c-receptive, then there exists a sequence of values on
the controlled ports that are refused by all acceptable
environments. However, by our definition of satisfaction,
implementations are allowed to output such sequence.
Unreceptiveness, in this case, implies that a hypothet-
ical environment that wished to prevent a violation of
the assumptions should actually prevent the behavior
altogether, something it cannot do since the port is
controlled by the contract. Therefore, unreceptive assump-
tions denote the existence of an incompatibility internal to
the contract, that cannot be avoided by any environment.

4. Platform-Based and Contract-Based
Design

In the previous sections, we reviewed a number of
approaches that tackle the challenges set up in the intro-
duction and we introduced the basics of contracts. We
argue here that Platform Based Design (PBD) subsumes
most of the other approaches to system level design and
for this reason, we will use it to develop the concept of
contract-based design, albeit the extreme flexibility of
contracts allows their universal use in all methodologies.

Contract-based design can be merged with platform-
based design to formulate the design process as a meet-
in-the-middle approach, where design requirements are
implemented in a subsequent refinement process using as
much as possible elements from a library of available com-
ponents. Contracts are formalizations of the conditions for
correctness of element integration (horizontal contracts),
for lower level of abstraction to be consistent with the
higher ones, and for abstractions of available components
to be faithful representations of the actual parts (vertical
contracts). A typical use of contracts in cyber-physical sys-
tem design would be to govern the horizontal composition
of the cyber and the physical components and to establish
the conditions for correctness of their composition.

4.1. Platform-Based Design

Platform-based design was introduced in the late 1980s to
capture a design process that could encompass horizontal
(component-based design, virtual integration) and vertical
(layered and model-based design) decompositions, and
multiple viewpoints and in doing so, support the supply
chain as well as multi-layer optimization.

The idea was to introduce a general approach that could
be shared across industrial domain boundaries, that would
subsume the various definition and design concepts, and
that would extend it to provide a rigorous framework
to reason about design. Indeed, the concepts have been
applied to a variety of very different domains: from auto-
motive, to System-on-Chip, from analog circuit design, to
building automation to synthetic biology.

The basic tenets of platform-based design are as fol-
lows: The design progresses in precisely defined abstrac-
tion layers; at each abstraction layer, functionality (what
the system is supposed to do) is strictly separated
from architecture (how the functionality could be imple-
mented). This aspect is clearly related to layered design
and hence it subsumes it.

Each abstraction layer is defined by a design platform.
A design platform consists of

• A set of library components. This library not only
contains computational blocks that carry out the appro-
priate computation but also communication compo-
nents that are used to interconnect the computational
components.

• Models of the components that represent a charac-
terization in terms of performance and other non-
functional parameters together with the functionality
it can support. Not all elements in the library are pre-
existing components. Some may be “place holders” to
indicate the flexibility of “customizing” a part of the
design that is offered to the designer. In this case the
models represent estimates of what can be done since
the components are not available and will have to be
designed. At times, the characterization is indeed a con-
straint for the implementation of the component and it is
obtained top-down during the refinement process typ-
ical of layered designs. This layering of abstractions
based on mathematical models is typical of model-
based methods and the introduction of non-functional
aspects of the design relates to viewpoints.

• The rules that determine how the components can
be assembled and how the the functional and non-
functional characteristics can be computed given the
ones of the components to form an architecture. Then,
a platform represents a family of designs that satis-
fies a set of platform-specific constraints. This aspect
is related to component-based design enriched with
multiple viewpoints.



Contract-Based Design for Cyber-Physical Systems 229

This concept of platform encapsulates the notion of re-use
as a family of solutions that share a set of common fea-
tures (the elements of the platform). Since we associate
the notion of platform to a set of potential solutions to a
design problem, we need to capture the process of map-
ping a functionality (what the system is supposed to do)
with the platform elements that will be used to build a
platform instance or an “architecture” (how the system
does what it is supposed to do). The strict separation
between function and architecture as well as the mapping
process have been highly leveraged in AUTOSAR. This
process is the essential step for refinement and provides a
mechanism to proceed towards implementation in a struc-
tured way. Designs on each platform are represented by
platform-specific design models. A design is obtained by
a designer’s creating platform instances (architectures) via
composing platform components (process that is typical
of component-based design), by mapping the functionality
onto the components of the architecture and by propagat-
ing the mapped design in the design flow onto subsequent
abstraction layers that are dealt with in the same way thus
presenting the design process as an iterative refinement.
This last point dictates how to move across abstraction
layers: it is an important part of design space exploration
and offers a way of performing optimization across lay-
ers. In this respect PBD supports multiple perspectives in
a general way.

4.2. Contract-Based Design

In PBD, contracts can play a fundamental role in deter-
mining the correct composition rules so that when the
architecture space is explored, only “legal” compositions
of available components are taken into consideration. They
can be used to verify whether the system obtained by com-
posing the library elements according to the horizontal
contracts satisfies the requirements posed at the higher
level of abstraction. If these sets of contracts are satisfied,
the mapping mechanism of PBD can be used to produce
design refinements that are correct by construction.

To be more precise about these concepts, consider a
snapshot in a platform based design process, as shown
in Fig. 3, covering adjacent design layers N + 1, N , and
N − 1. System S is realized at layer N by the composition
of systems S1, S2, and S3.

Horizontal Contracts: In this setting, contracts serve dif-
ferent objectives. As highlighted in the subsection on
virtual integration testing, a key value of contracts is to
detect integration errors early. We use the term horizontal
contract related to virtual integration testing, which thus
in Fig. 3 define under what conditions the integration of
subsystems into the composite system S is considered suc-
cessful. Specifically, a horizontal contract CH of a system

Fig. 3. Contracts in a PBD flow.

S represents in its assumption AH the constraints it itself
imposes on any possible integration context C[ ], so as to
be able to realize its function F.

As an example of this contract-based virtual integration
testing, consider Fig. 3. Each of the subsystems Sj are
equipped with horizontal contracts CH(Sj) = (AH

j , GH
j ).

Contract-based virtual integration testing then requires to
be able to demonstrate all assumptions AH

j from the given
design context. For example, let us consider subsystem S2.
Its design context is in part given by subsystem S1, which
thus becomes responsible for establishing those horizontal
assumptions relating to S2Â’s in-port p21. Intuitively, then,
we expect the guarantee GH

1 of the horizontal contract of S1
to be sufficient to demonstrate compliance of any restric-
tions S2 was placing on allowed uses of p21. Note also
the dependency of S2 on the yet undetermined part of the
design context of S2 reflected by input p3S to the realization
of system S on layer N . In general, then, in contract-based
virtual integration testing, this yet unknown design con-
text is represented by horizontal contracts of the composed
system S itself; Fig. 3 highlights the horizontal contract
CH

N (S) = (AH
N (S), GH

N (S)) of S at layer N . This contract
will enforce, that any design context of S will be guar-
anteed to be compliant to AH

N (S). Thus, when checking
the design context of S2 for compliance to its horizon-
tal assumptions on uses of port p3S , we expect this to be
derivable from AH

N (S). In general, then, in contract-based
virtual integration testing, we need to demonstrate that all
horizontal assumptions of subsystems can be derived from
the conjunction of all horizontal guarantees of subsystems
and horizontal assumptions of the composed system.

Circular Reasoning: At the current level of discourse we
point to the fact, that the above argument typically involves
circular reasoning. For example, in Fig. 3 GH

1 will only be
guaranteed for legal design contexts of S1. Thus, only once
AH

1 is established, can we actually rest our argumentation



230 A. Sangiovanni-Vincentelli et al.

on GH
1 . Establishing, then, AH

1 , we would like to involve
GH

3 , which, however, is only sound once AH
3 is established.

This, finally, would involve GH
2 as witness, but it is exactly

for the purpose of establishing AH
2 , that this reasoning

chain is established. The mathematical theory essentially
justifies the use of such seemingly circular arguments, for
classes of contracts whose assumptions and guarantees
are expressible in the rich set of safety properties (which
can always be proven and disproved by finite observa-
tions). However, certain restrictions on how assumptions
and guarantees refer to out-ports respectively in-ports of
a system have to be observed.

Vertical Contracts: Each of the subsystems Sj can then
either be further refined, or assumed to be given as design
basis at layer N , as platform library elements. Such com-
ponents, as S2 in Fig. 3, could be placeholders, to be then
elaborated in a design process at layer N − 1. Symmetri-
cally, Fig. 3 shows the system S at layer N as a realization
of the placeholder S at layer N + 1. To transition across
design layers, we use what we call vertical contracts.

Specifically, when using placeholder S at layer N + 1,
bottom-up vertical contracts are used to capture what is
expected to be offered by possible implementations of S
at layer N , so as to be able for S to perform its intended
function at layer N +1 as expressed by a top-down vertical
contract. This entails, that the correctness of the level N+1
design hinges on finding an implementation of S meeting
this bottom-up vertical contract.

When using budgeting, the designer assigns respon-
sibilities to the subsystems of S by deriving top-down
contracts for each, which jointly establish SÂ´s bottom-up
vertical contract. Alternatively, when using a bottom-up
approach, we assume the top-down vertical contracts of Sj

as given, and establish either directly or passing through
a characterization of the functionality realized by S at
layer N (as a top-down contract), that the layer N + 1
bottom up contract of S is satisfied. In both the top-down
and bottom up approach, the verification of this cross-layer
design steps would assume that the contract-based virtual
integration test was successful. This allows using the guar-
antees of horizontal contracts as additional premise in the
verification of refinement steps.

We finally point out that additional verification steps are
required for each component to demonstrate that, based on
the expected capabilities of its realization, as expressed
by its bottom-up vertical contract, the functionality of the
component as expressed by its top-down vertical contract
can be achieved. Again, this proof can take horizontal
contracts of the component as additional supportive argu-
ments. For composed systems, such as the system S at
layer N in Fig. 3, the bottom-up contracts are given by the
set of bottom-up contracts of its leaf components.

Crossing design layers thus asks for verification of
either refinement (top-down) or aggregation (bottom-up)
steps. The presentation given so far ignores extensions
of the framework required in practice to deal with what is
often called interface refinement, e.g., [8], [25]. Due to the
very purpose of abstraction layers of hiding complexity, a
representation of a design at level N will typically explicate
implementations aspects such as representations of mes-
sages and variables, protocols used for communication
and synchronization. In general, both the representation
of the system in the data-domain as well as in the time
domain may change, calling for notions of refinement
which are expressive enough to deal both with re-timing
and type conversions. The theory for these notions of
weak simulation relations is well understood for particular
classes of mathematical models (see [19]), which jointly
are rich enough to support a broad spectrum of viewpoints,
including safety, real-time, performance, power.

To allow to build on these in the methodology for
contract-based design, we introduce what we call sim-
ulation components relating traces, i.e., sequences of
observations of ports of a level N + 1 component S to
sequences of observations of ports of components S at
level N . Referring to Fig. 3, this component would thus
have an interface towards layer N + 1 observing ports p1S

and p2S , and an interface towards layer N observing ports
p1S , p2S , and p3S . Simulation components can use con-
tracts to characterize the intended inter-relation between
valuations of these. These contracts can take the form of
both logic-based and automata-based formalisms, giving
sufficient expressivity in capturing the intended relations
between traces of interface objects of S at level N + 1 and
level N [4].

Strong vs. Weak Assumptions and the Issue of Compati-
bility: We close this section by pointing out a subtle, but
highly relevant, difference in the methodological use of
assumptions in horizontal and vertical contracts. Within
horizontal contracts, assumptions are used to restrict the
allowed design context of a component. By enforcing
contract-based virtual integration testing, as discussed
above, we therefore complement each model-based inte-
gration steps with verification activities demonstrating
that the currently known design context C[ ] of a compo-
nent S actually complies to these restrictions. This is key
to enforcing what has been called composability of sys-
tems by [26], a fundamental principle in good architecture
design ensuring functionality realized by components of
the architecture are maintained when integrating these into
a compound architecture. It is the purpose of assumptions
to support this composability property. Specifically, if
system S realizes function F(S) (e.g., as expressed in a top-
down vertical contract), and C[ ] meets the contract-based



Contract-Based Design for Cyber-Physical Systems 231

virtual integration test for S, then S will be guaranteed
to offer its functionality F(S) when being put into this
design context C[ ]. We refer to assumptions which must
be enforced for the component to behave as expected as
strong assumptions.

In contrast, additional assumptions may be added to the
strong assumption to ensure that if these assumptions are
met, then “non essential” but desired properties are guar-
anteed. These additional assumptions are called in contrast
weak assumptions. In vertical contracts, in particular in
bottom-up contracts, weak assumptions represent antici-
pations often based on experience or estimation functions
on what could be assumed to be realizable by lower
implementations levels. As the designs refines vertically
across multiple layers, eventually such assumptions either
become validated based on top-down contracts of com-
pleted designs, or invalidated (e.g., due to insufficient
processing power, non-matching assumptions on failure
distributions, or insufficient signal strength). By main-
taining dependency between contracts, it is then possible
to backtrack to the higher-level bottom up assumption
which thus became invalidated, and explore possibilities
of weakening, such as by re-budgeting.

Turning assumptions in vertical contracts to strong
assumptions would entail a binding restriction of the
design space: a failure to meet such strong vertical assump-
tions would be considered a contract failure. Strong
vertical assumptions can be used to enforce compliance
to standards, or within the supply chain hierarchy, to
eliminate the likelihood of deep design iterations crossing
organizational boundaries. In a generalized setting, such as
currently pushed in the context of the German Innovation
Alliance for Embedded Systems,21 we thus allow contracts
to refer to both strong and weak assumptions, allowing
to customize design processes supporting additional use
cases of strong assumptions as outlined above.

5. Control Design and Contracts with
an Example

In this section we present a simple example of control
of a cyber-physical system design that makes use of the
contract-based design methodology. The example, a Water
Flow Control system, was first proposed by the Israel
Aerospace Industries Ltd. (IAI) in the context of the
SPEEDS project, and has been analyzed by Parades using
hybrid modeling techniques [5]. Here we present a version
using a continuous model to highlight the use of contracts
in a familiar, equation-based notation. We will discuss how

21 See SPES2020 Architecture Modeling Deliverable of the German
Innovation Alliance on Embedded Systems SPES 2020,BMBF grant
FK 01 IS O8045 W, http://spes2020.informatik.tu-muenchen.de

to model the system requirements, as well as how these
are partitioned in assume/guarantee pairs (contracts) for
each component of the system. Different verification and
design activities can be carried out using this model.

5.1. The Water Flow Control System

A cylindrical water container is equipped with an inlet pipe
at the top, and an outlet pipe at the bottom. The container
has a diameter D = 5m and a height H = 9m. The inlet and
outlet cross sections are Sin = 0.5m2 and Sout = 0.16m2,
respectively. We are to design a system that guarantees a
continuous outlet flow Fout of 1.0 ≤ Fout ≤ 2.0m3/sec,
after 10 seconds since startup. In addition, the system must
guarantee that the container will not overflow, and that the
energy consumption is lower than a limit El. The designer
can assume a constant inlet pressure P ≥ 5, 000pa, and a
maximum evaporation rate ε = 0.25m3/hour.

To formalize the problem, we construct a component
representing the overall Water Flow Control system, with
input, output and parameters corresponding to the above
specification. To simplify our task, we decide to make state
variables, such as the water level, visible as primary out-
puts. The WFC formal specification is therefore composed
of the following items:

• Input: Inlet pressure P
• Output: Water Level wl, outlet flow rate Fout , energy

consumption E
• Parameters: container size D and H, inlet cross sections

Sin and Sout , evaporation rate ε.

To proceed with the system specification we define a con-
tract that the implementation must satisfy. The contract
distinguishes between the assumptions and the guarantees
that must be enforced. Assuming t represents time, the
above conditions can be formally specified as follows:

• Assumptions: P ≥ 5, 000.
• Promises:

∀t.(t ≥ 10 =⇒ (1.0 ≤ Fout ≤ 2.0))

∀t.(wl(t) ≤ H)

E ≤ El

5.2. Design Solution

There are many ways to guarantee the required proper-
ties given the assumptions. Here we examine a solution
method based on the regulation of the water level. From the
Bernoulli Law, we know that the outlet flow rate depends
on the water level according to the formula

Fout = V · Sout = √
2g wl · Sout



232 A. Sangiovanni-Vincentelli et al.

Fig. 4. Block diagram of the Water Flow Control system.

where V is the velocity. The water level is therefore
given by

wl =
(

Fout

Sout

)2

· 1

2g
.

Thus, the promise 1.0 ≤ Fout ≤ 2.0 is equivalent to having

2.0 ≤ wl ≤ 8.0.

We will therefore approach the problem by controlling the
water level in the container through a valve at the inlet. As
a result, the system will be composed of an inlet valve, the
water container, a water level sensor and a controller that
controls the opening and closing of the valve based on the
measured water level, as shown in Fig. 4.

Our methodology is the following:

• We define for each component the contract that it must
satisfy

• We compose the contracts for each component
• We finally verify that the composite contract refines the

contract for the system, given above.

Having verified the system at the virtual integration level,
the contract theory ensures that a composition of com-
ponents, each satisfying its contract, will also satisfy the
system specification.

5.2.1. Model for the Valve

The inlet flow is controlled by a valve that may get posi-
tion commands from the controller. We denote the valve
aperture by λ, where 0 ≤ λ ≤ 1. The valve is con-
trolled by a signal λcmd , coming from the controller, whose
range is also 0 ≤ λcmd ≤ 1. The position λ of the valve
follows that of the aperture command λcmd at a rate of
0.5/sec.

Assume that F is the flow rate at the input of the valve,
and call Fin the flow rate at the output of the valve, which
is also the flow rate at the input of the container. We can
express Fin as a function of the current valve position as
follows:

Fin = F · (0.2λ2 + 0.8λ)

In summary, the sets of inputs and outputs for the valve is

• Input: λcmd , F
• Output: λ, Fin

In this simplified model, the valve must satisfy a contract
that makes no assumption. In practice, one can use the
assumption to limit the range of validity of the model, for
example by requiring that the flow rate at the input be
less than a certain value. This translates, after composi-
tion with the rest of the components, in a requirement on
the environment that the pressure P be less than a certain
value. Obviously, if one such assumption is introduced,
the overall contract will not be satisfied, as no constraint
is imposed at the system level for the pressure P other than
it be greater than a certain value.

The valve satisfies the following promises.

• Rate of change of valve position

dλ

dt
= sgn(λcmd(t) − λ(t)) · 0.5

• Flow rate at the output of the valve

Fin = F · (0.2λ2 + 0.8λ)

• The initial position of the valve is closed

λ(0) = 0.

Sometimes it may appear ambiguous whether a certain
requirement should be guaranteed by a component, or
assumed from the environment. For instance, one could
take the initial position of the valve as an assumption. The
ambiguity disappears when one considers which compo-
nent is responsible for setting a certain value. Since the
position of the valve is an output of the valve, it is the valve
responsibility to ensure its initial value, and the require-
ment is therefore a guarantee. A valve that does not satisfy
this condition will simply not satisfy the contract.

5.2.2. Model for the Container and the Outlet

The container is characterized by the following inputs and
outputs:

• Input: the inlet flow rate Fin

• Output: the water level wl and the outlet flow rate Fout .

The water level depends on the inlet and the outlet flow
rate, as well as on the evaporation rate ε. We assume that
the evaporation rate is bounded. In order to model this
situation, we must add ε to the set of inputs. Then, the
container must satisfy the following contract.

For the assumptions, we assume that the evaporation
rate is bounded:

∀t.ε(t) ≤ 0.25



Contract-Based Design for Cyber-Physical Systems 233

The container must ensure the following promises:

• The water level is given by the integral of the difference
between the water coming in and the water going out
(including the evaporation), divided by the base are of
the container. Formally,

∀t, t′. t′ > t =⇒ wl(t′) = wl(t) + 1

π(D/2)2

×
∫ t′

t
(Fin(t

′′) − Fout(t
′′) − ε(t′′))dt′′

• The outlet water flow is given by the Bernoulli law

Fout = V · Sout = √
2g wl · Sout

5.2.3. Model for the Water Level Sensor

The sensor is modeled simply as a transducer that outputs
a measured water level wlm as an approximation of the
real water level wl. Thus, the sensor has wl as an input and
wlm as an output. The sensor makes no assumption, and
makes the promise:

∀t. 0.95 · wl(t) ≤ wlm(t) ≤ 1.05 · wl(t),

i.e., the sensor has a 5% error.

5.2.4. Model for the Controller

The controller takes as input the measured water level wlm,
and controls the position of the valve through the signal
λcmd , which is therefore an output of the controller.

We initially experiment with a simple control function.
In order to maintain the required output flow rate, and
to avoid the container overflow, the valve will be opened
when the water in the container goes below a certain level
wlmin (so that the container will be filled), and will be
closed when the water goes above a certain level wlmax

(to avoid overflow). The promises of the controller are
therefore as follows:

wlm ≤ wlmin =⇒ λcmd = 1

wlm ≥ wlmax =⇒ λcmd = 0

Note that the specification of the controller makes no
promise when wlm is between wlmin and wlmax . Thus the
specification admits several different possible implemen-
tations for the controller.

5.2.5. Determination of Consumed Energy

We assume that the energy consumption is due primarily
to the valve motion. We also assume that the energy is

proportional to the distance traveled by the valve, which
can be expressed as follows:

�(T) =
∫ T

0

∣∣∣∣dλ

dt

∣∣∣∣ dt.

The average distance traveled at time T is therefore

�(T) = �(T)

T
.

The energy can be computed using an appropriate con-
stant c

E(T) = c · �(T) = c · �(T)

T
.

The total energy is therefore given by

E = c · lim
T→∞

�(T)

T
.

We therefore add an output E to the valve, and add the addi-
tional promise that expresses the value of E as a function
of λ.

5.3. System Composition

Having defined the contracts for the component of the sys-
tem, our aim is to verify that their collective requirements
are consistent with the overall system contract. To do so,
we must derive an overall system by taking the composi-
tion of all the contracts of the components described above.
Composition in the context of this model is simple, and
corresponds to putting all the equations in a system so that
they are all satisfied simultaneously (i.e., we must take
the intersection of the sets of solutions of the individual
equations). One, however, has to take care of separat-
ing the assumptions from the guarantees, and make sure
that assumptions that are not already discharged by other
components of the system are properly propagated to the
composite.

To give an example, we compose the model of the valve
V with the model of the container C. The composition
is defined, since the set of outputs of the two compo-
nents is disjoint, and therefore there is no conflict over
which equation to use to define the value of a variable.
The composition has the following interface signals

I = {λcmd , F, ε}
O = {λ, Fin, wl, Fout}

which are obtained by taking as output any of the out-
puts of the two components, and as inputs the remaining
signals. The composite must satisfy the following assump-
tion, which is an assumption of the container which is not
discharged by the valve:

∀t.ε(t) ≤ 0.25



234 A. Sangiovanni-Vincentelli et al.

In addition, the composite must satisfy all of the following
promises:

dλ

dt
= sgn(λcmd(t) − λ(t)) · 0.5

Fin = F · (0.2λ2 + 0.8λ)

λ(0) = 0

∀t, t′. t′ > t =⇒ wl(t′) = wl(t) + 1

π(D/2)2

×
∫ t′

t
(Fin(t

′′) − Fout(t
′′) − ε(t′′))dt′′

Fout = V · Sout = √
2g wl · Sout

Note that some of the outputs may now be hidden in
the composition. For instance, the output Fin does not
need to appear explicitly, as long as it is considered in
the promises. That is, we need to replace the guaran-
teed expression of Fin in the expression for wl, and then
remove Fin from the set of outputs. Likewise, we could
remove λ from the set of outputs. However, since λ is not
defined explicitly as a function (but rather as the solution
to a differential equation) the substitution is problematic
from a formal point of view. From a theoretical stand-
point, however, if the constraint on λ were to be expressed
for example as an extended state machine, the usual pro-
cedure of taking the product can be used to compute the
final result.

Note also that the assumption coming from the container
is also an assumption of the composite. This is because the
other component in the composition does not discharge
the assumption, which must therefore be maintained and
propagated to the environment of the composition.

The parallel composition can then be extended to
include the water level sensor and the controller. The final
set of inputs and outputs (without hiding) is the following:

I = {F, ε}
O = {λ, λcmd , Fin, wl, wlm, Fout}

with the additional promises

∀t. 0.95 · wl(t) ≤ wlm(t) ≤ 1.05 · wl(t)

wlm ≤ wlmin =⇒ λcmd = 1

wlm ≥ wlmax =⇒ λcmd = 0

In addition to that, we can add the output E for the energy
consumption and the corresponding promise to compute
the energy consumption as a function of the position of
the valve. The total set of inputs and outputs is therefore:

I = {F, ε}
O = {λ, λcmd , Fin, wl, wlm, Fout , E}

5.4. Contract Verification

Contract verification consists now in checking whether
the contract for the composition that we have derived
in the previous section refines the contract for the sys-
tem, outlined in Section 5-A. Refinement, as discussed in
Section 3, amounts to checking that the guarantees offered
by the collection of components are stronger than the
guarantees required by the overall specification (the imple-
mentation promises at least the same, or more), under a
weaker set of assumptions (the implementation assumes
the same from the environment, or less). These conditions,
in turn, can be verified by comparing the set of solutions of
the equations. Stronger guarantees mean a smaller set of
solutions for the promises (a more constrained behavior),
while weaker assumptions imply a larger set. Formally, if
we take A and G as the sets of solutions, the contracts must
satisfy the usual relation

A′ ⊆ A

G ⊆ G′

where C′ = (A′, G′) is the system contract, while C =
(A, G) is the contract obtained by taking the composition
of the contracts for each component. This formulation,
however, is effective only when comparing contracts that
have the same set of inputs and outputs. This is not the
case here, since the overall system contract specification
and the system composite are defined on slightly different
alphabets of signals. Hence, the set of inputs and outputs
must somehow be equalized. One solution is to extend
the system specification to include the ports of the com-
position, such as λ, λcmd , Fin and wlm. The promises of
the system specification do not change, so that in practice
the system specification allows any value on those ports.
Alternatively, we may hide the extra outputs, and keep
only the relevant ones, i.e., wl, Fout and E.

The situation is different for the inputs. First, the com-
position depends on F rather than on P. Thus, we must
add to the composition a component PF that translates the
value of P into the corresponding value of F, by applying
again the Bernoulli law. That is, PF has P as an input and
F as an output. After the composition, the overall com-
posite will have P as an input (since it is an input of PF
and it is not an output of any other component), and F as
an output (since it is an output of PF and an input of the
valve). Obviously, at this point, the port F must be hidden,
since it is not an output in the system specification.

To equalize on ε, we may add it as an input to the system
specification. The equations do not change, so that the
system specification is effectively independent of the value
of ε.

After equalization, we can check containment of the
solution sets. It is apparent that the condition on the



Contract-Based Design for Cyber-Physical Systems 235

assumptions is not satisfied: in fact, A requires that ε be
bounded, which is a condition that is not specified by the
system specification A′. The problem can be solved by
changing the way we modeled the container. There, we
made the assumption that the evaporation rate is bounded.
Thus, we had to take ε as an input of the specification.
A closer look, however, reveals that the evaporation rate
is a function of the shape of the container. Hence, the
rate of evaporation can actually be guaranteed by the con-
tainer itself. Thus, ε should actually be an output of the
container, and the assumption on boundedness is changed
into a guarantee.

Checking the guarantees is more complex, and requires
solving the system of equations that characterize the com-
posite and deriving the expression of wl, Fout and E
explicitly. After that, we need to check the containment
relation. In our specific case, we can solve the equation
for the valve under some hypothesis on the value of the
command λcmd . However, the equation for the water level
requires a numerical solution. One way to address this
problem is to construct hybrid models of the system, as
described in our previous work [5]. Questions of scalabil-
ity do arise, and abstractions must be typically employed
to make the solution practical.

Note that we made no assumption on P in the imple-
mentation. Therefore, A admits more solutions than A′.
We can take advantage of this fact, and only check that

A′ ⊆ A

G ∪ ¬A ⊆ G′ ∪ ¬A′

since a promise is effective only if the corresponding
assumptions are satisfied. Because ¬A is smaller than
¬A′, satisfying the condition on the guarantees is easier,
as the formulation applies the assumptions for the system
specification to the implementation.

The model that we have developed still allows several
possible implementations. In particular, nothing is said
about the behavior of the controller when the water level
is between wlmin and wlmax . That is, the controller may
arbitrarily switch between open and close valve while in
that range. While all choices may actually be such that
the guarantee on Fout is satisfied, some choices may lead
to a violation of the guarantee of the energy consump-
tion. This would be detected during verification, if the
tools used for refinement checking are powerful enough
to handle the continuous time specification. The ability to
formalize and check non-functional requirements, under
the assumptions, is a critical advantage of a contract-based
design methodology in which different viewpoints can be
mixed in the specification. Observe also how the energy
consumption depends on the actual behavior of the imple-
mentation, so that the two viewpoints must be integrated
to obtain significant results.

Besides verification, controller synthesis can be applied
to derive automatically a controller that satisfies the sys-
tem contract. In this case, we take the composition of all
the components, except for the controller itself. The prob-
lem consists of deriving a contract for the controller, such
that when the controller is composed with the rest of the
system, the composition satisfies the system specification.
This problem is subject of current research, and typically
suffers from high computational complexity, especially in
the case of timed systems. The synthesis problem has been
addressed and solved in certain circumstances through an
operator of quotient [40], [39].

5.5. Vertical Contracts in Control

Contracts are most naturally established between entities
or components that operate at the same level of abstraction.
By sharing a common understanding of the system, two
components rely on each other’s guarantees to fulfil the
system requirements, while assumptions formalize this
interdependence thereby enabling their separate and inde-
pendent implementation. Of potentially greater interest,
however, is the use of contracts across different levels
of abstraction, as described in Section 4-B. When used
this way, a vertical contract defines a relation between
the properties of a system and those of its implementa-
tion platform. In other words, the system requirements
can be satisfied by operating not only at the level of the
application, but also by configuring execution parame-
ters and by taking advantage of the expected behavior,
as described by the assumptions, of both the application
and the platform. Co-design and multi-layer techniques
are therefore fully supported by the contract models, and
are well incorporated and extended by the Platform-Based
Design paradigm discussed in the previous sections.

These aspects are of increasing importance in the
context of control design. Martin Törngren describes con-
trollers as “bound by contracts to the plant”, in the sense
that the controller parameters must refer to closed loop sys-
tem dynamics, which are in turn determined by the plant
dynamics [44]. Likewise, timing constraints refer to both
open and closed loop systems, as the controller param-
eters depend on the chosen sampling period and on the
particular techniques (such as delay compensation) used
in designing the control loop. These contracts, therefore,
extend to the implementation platform. Indeed, in con-
trol design there are three entities that interact in different
ways, as illustrated in Fig. 5.

The controller implements the control law in a tight loop
with the plant. At the same time, the implementation plat-
form executes the controller and physically interfaces with
the plant, defining the critical non-functional parameters
(delay, jitter and throughput) that concur in establishing
the system properties.



236 A. Sangiovanni-Vincentelli et al.

Fig. 5. Typical interactions between controller, plant and implementa-
tion platform.

Fig. 6. Block diagram of a stability control application.

In this setting, we focus in particular on the interac-
tion between the controller and the platform. Here the
controller defines requirements in terms of several aspects
that include the timing behavior of the control tasks and
of the communication between tasks, their jitter, the
accuracy and resolution of the computation, and more gen-
erally requirements on power and resource consumption.
These requirements are taken as assumptions by the con-
troller, which in turn provides guarantees in terms of the
amount of requested computation, activation times and
data dependencies.

Examples of this kind of interaction abound, and high-
light the need for a theory that can integrate vertical
as well as horizontal contracts. A typical application,
shown in Fig. 6 and inspired by the cited presentation of
Martin Törngren, is the implementation of a vehicle sta-
bility control system, in which three different controllers
related to the yaw, the brakes and the engine must interact
together with the wheel, the engine and the overall vehicle
dynamics.

Different implementation platforms can be used to
support the functionality, guaranteeing different quality
levels. In this application, the control systems depends
upon several subsystems, each integrated on a separate
platform, and connected through often heterogeneous

communication fabric. Horizontal contracts at the level
of the platform can be used to understand the interactions
between the subsystems, and between the system and the
plant with respect to non-functional properties. Similarly,
at the level of the application horizontal contracts define
the global properties and the interaction between the con-
trol algorithm and the plant with respect to the functional
control specification. Vertical contracts fit across these two
levels as bridges that relate the performance of the different
implementation platforms to their mapped applications.

The relations between contracts outlined in Section 3
can be applied to vertical contracts, as well. The relation
of satisfaction is unchanged, since it involves the com-
parison between an implementation and its contract. In
the case of an execution platform, this typically requires
showing that the guaranteed timing constraints are met
under the load conditions assumed by the contract. Com-
patibility is more interesting. In the context of a platform,
the “environment” in a vertical contract refers to the other
possible applications running on the same execution plat-
form. Consequently, the composition (mapping) of an
application on its platform defines the conditions (assumed
and promised) under which other tasks can be run with-
out breaking the original contract. Quantitative notions
of robustness could be introduced [15] to provide a mea-
sure of the possible violations, and therefore instruct the
designers or an automatic mapping tool on the steps to be
taken to optimize the architecture.

6. Moving Forward: the Importance of
Contracts

We argued that contracts in their most elementary form
may just take the form of informal textual requirements,
yet with the key distinguishing feature of explicating the
separation of concerns: what must be guaranteed by the
system itself, and what are the constraints on environ-
ments, which are fundamentally required so as to allow
the system—based on such assumptions—to enforce its
guarantees. We have then seen how this core paradigm
matches well with the orthogonal notion of viewpoints:
contracts can thus be flagged as to the viewpoint they
relate to. Clearly, the number of viewpoints to be sup-
ported may vary from application to application—thus it
is up to the customization of contract-based design within
a company’s development process, to determine the set of
viewpoints that must be supported. For sure, this will go
beyond capturing the functionality, with safety viewpoints
and real-time viewpoints being a necessity in safety rel-
evant embedded systems development. Business related
viewpoints such as the ones reflecting costs, constraints
from manufacturing, maintainability are natural choices,
as are those related to resource consumption.



Contract-Based Design for Cyber-Physical Systems 237

Orthogonal to this discussion is the degree of formal-
ization used in contracts. As highlighted above, there is
already high methodological value when using informal
contracts. A natural next step is to restrict the vocabu-
lary of contracts to (domain specific) ontologies. Further
steps towards formalization are viewpoint dependent: they
can, for example, take the form of automata-based spec-
ifications, employ suitable logics, build on a library of
patterns, and capitalize on sequence charts. The addi-
tional effort in providing a degree of formalization is
typically well invested due to the additional benefits
we have outlined above, such as testing consistency of
requirements, identifying complex integration errors early
through virtual integration testing, boosting re-use though
component-based design, and allowing cross-layer design
optimizations based on performing platform-based design.
The key point we raise is that this formalization can be
done incrementally and on a case-by-case basis. Thus,
there is a clear migration strategy from using contracts
informally, to incorporating domain ontologies, to gradu-
ally enriching the number of covered viewpoints, and to
gradually increase the degree of formalization. No matter
in which order such steps are taken, each of these comes
with significant potentials for process improvements.

It is the objective of this paper to let designers capitalize
on this so-far largely unexploited tool. The value proposi-
tion of adding contracts to system companies development
processes is now on the table—the ultimate test rests in the
market take up. Strong indications of market acceptance
are the anchoring of the contract-based approach within
the CESAR22 Reference Technology Platform (RTP),
where 25 European global players in the systems mar-
ket team up with leading vendors, research institutes,
and SMEs, to create an innovation ecosystem around the
emerging standard meta-model of the CESAR RTP.

Acknowledgements

This work was supported in part by the EU project
COMBEST grant n. 215543, the EU NoE ArtistDesign
grant n. 214373, the EU DANSE IP, the European project
CESAR of the ARTEMIS Joint Undertaking, and by
the Multiscale Systems Center, one of six research cen-
ters funded under the Focus Center Research Program, a
Semiconductor Research Corporation program.

References

1. Road vehicles—functional safety. Standard ISO 26262.

22 www.cesarproject.eu

2. Balarin F, Hsieh H, Lavagno L, Passerone C, Sangiovanni-
Vincentelli AL, Watanabe Y. Metropolis: an integrated elec-
tronic system design environment. IEEE Computer, 2003;
36(4): 45–52.

3. Balarin F, Davare A, D’Angelo M, Densmore D, Meyerowitz
T, Passerone R, Pinto A, Sangiovanni-Vincentelli A,
Simalatsar A, Watanabe Y, Yang G, Zhu Q. Platform-based
design and frameworks: Metropolis and metro ii. In
Nicolescu G, Mosterman PJ, editors, Model-Based Design
for Embedded Systems, chapter 10, page 259. CRC Press,
Taylor and Francis Group, Boca Raton, London, New York,
November 2009.

4. Balarin F, Passerone R. Specification, synthesis and simula-
tion of transactor processes. IEEE Trans. Computer-Aided
Design Integrated Circuits Syst., 2007; 26(10): 1749–1762.

5. Benvenuti L, Ferrari A, Mangeruca L, Mazzi E, Passerone
R, Sofronis C. A contract-based formalism for the specifica-
tion of heterogeneous systems. In Proceedings of the Forum
on Specification and Design Languages (FDL08), 142–147,
Stuttgart, Germany, September 23–25, 2008.

6. Berry G. The effectiveness of synchronous languages for the
development of safety-critical systems. White paper, Esterel
Technologies, 2003.

7. Booch G, Rumbaugh J, Jacobson I. Unified Modeling Lan-
guage User Guide, The (2nd Edition) (Addison-Wesley
Object Technology Series). Addison-Wesley Professional,
2005.

8. Broy M. Compositional refinement of interactive systems.
J. ACM, 1997; 44(6): 555–600.

9. Damm W. Controlling speculative design processes using
rich component models. In Proceedings of 5th International
Conference on Application of Concurrency to System Design
(ACSD), 2005.

10. Damm W, Votintseva A, Metzner A, Josko B, Peikenkamp
T, Böde E. Boosting reuse of embedded automotive applica-
tions through rich components. In Proceedings of Founda-
tions of Interface Technologies (FIT05), San Francisco, CA,
August 21, 2005.

11. Davare A, Densmore D, Meyerowitz T, Pinto A,
Sangiovanni-Vincentelli A, Yang G, Zhu Q. A next-
generation design framework for platform-based design.
In Design Verification Conference (DVCon), San Jose’,
California, 2007.

12. de Alfaro L, Henzinger TA. Interface automata. In Pro-
ceedings of the Ninth Annual Symposium on Foundations
of Software Engineering, pages 109–120. ACM Press, 2001.

13. Derler P, Lee EA, Sangiovanni Vincentelli A. Modeling
cyber-physical systems. Proc. IEEE, 2012; 100(1): 13–28.

14. Dill DL. Trace Theory for Automatic Hierarchical Verifi-
cation of Speed-Independent Circuits. ACM Distinguished
Dissertations. MIT Press, 1989.

15. Doyen L, Henzinger T, Legay A, Nickovic D. Robustness of
sequential circuits. In Proceedings of the 10th International
Conference on Application of Concurrency to System Design
(ACSD 2010), Braga, Portugal, June 21–25, 2010.

16. Eker J, Janneck JW, Lee EA, Liu J, Liu X, Ludvig J,
Neuendorffer S, Sachs S, Xiong Y. Taming heterogeneity
- the ptolemy approach. Proc IEEE, 2003; 91(1): 127–144.

17. Fleurey F, Muller PA, Jzquel JM. Weaving executability
into object-oriented meta-languages. In Proceedgins of the
8th International Conference on Model Driven Engineering
Languages and Systems (MODELS05), October 2005.

18. Fritzson P. Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1. Wiley, 2003.



238 A. Sangiovanni-Vincentelli et al.

19. Glabbeek R, Weijland WP. Branching time and abstraction
in bisimulation semantics. J ACM, 1996; 43(3): 555–600.

20. Harel D, Kugler H, Marelly R, Pnueli A. Smart play-out of
behavioral requirements. In FMCAD, 378–398, 2002.

21. Harel D, Marelly R. Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine. Springer-
Verlag, 2003. http://www.wisdom.weizmann.ac.il/∼harel/.
ComeLetsPlay.pdf

22. Harel D, Segall I. Planned and traversable play-out: A flexible
method for executing scenario-based programs’. In TACAS,
485–499, 2007.

23. Karris S. Introduction to Simulink with Engineering Appli-
cations. Orchard Publications, 2006.

24. Karsai G, Sztipanovits J, Ledeczi A, Bapty T. Model-
integrated development of embedded software. Proc IEEE,
2003; 91(1): 145–164.

25. Kesten Y, Piterman N, Pnueli A. Bridging the gap between
fair simulation and trace inclusion. Information and Com-
puting, 2005; 200(1): 35–61.

26. Kopetz H. Composability in the time-triggered architecture.
SAE International Congress and Exhibition (2000-01-1382),
Detroit, MI, USA, 6–9 March 2000, March 2000.

27. Larman C, Basili VR. Iterative and incremental develop-
ments: a brief history. Computer, 2003; 36(6): 47–56.

28. Lee EA. Cyber physical systems: Design challenges.
In Proceedings of the 11th IEEE International Sympo-
sium on Object Oriented Real-Time Distributed Computing
(ISORC08), 363–369, May 2008.

29. Negulescu R. Process spaces. In CONCUR, volume 1877 of
Lecture Notes in Computer Science. Springer-Verlag, 2000.

30. Object Management Group (OMG). Model driven architec-
ture (MDA) FAQ. [online], http://www.omg.org/mda/.

31. Object Management Group (OMG). Unified Modeling Lan-
guage (UML) specification. [online], http://www.omg.org/
spec/UML/.

32. Object Management Group (OMG). A UML profile for
MARTE, beta 1. OMG Adopted Specification ptc/07-08-04,
OMG, August 2007.

33. Object Management Group (OMG). System modeling lan-
guage specification v1.1. Technical report, OMG, 2008.

34. The Design Automation Standards Committee of the IEEE
Computer Society, editor. 1850–2010—IEEE Standard for

Property Specification Language (PSL). IEEE Computer
Society, 2010.

35. Hudak J, Feiler P, Gluch D. The Architecture Analysis
and Design Language (AADL): An Introduction. Software
Engineering Institute (SEI) Technical Note, CMU/SEI-2006-
TN-011, February 2006.

36. Passerone R, de Alfaro L, Henzinger TA, Sangiovanni-
Vincentelli A. Convertibility verification and converter
synthesis: Two faces of the same coin. In Proceedings
of International Conference on Computer Aided Design,
San Jose, CA., 2002.

37. Passerone R, Hafaiedh IB, Graf S, Benveniste A, Cancila D,
Cuccuru A, Gérard S, Terrier F, Damm W, Ferrari A,
Mangeruca L, Josko B, Peikenkamp T, Sangiovanni-
Vincentelli A. Metamodels in Europe: Languages, tools, and
applications. IEEE Design Test Computers, 2009; 26(3):
38–53.

38. Sudarsan R, Fenves SJ, Sriram RD, Wang F. A product
information modeling framework for product lifecycle man-
agement. Computer-Aided Design, 2005; 37: 1399–1411.

39. Raclet J-B, Badouel E, Benveniste A, Caillaud B, Legay A,
Passerone R. Modal interfaces: Unifying interface automata
and modal specifications. In Proceedings of the Ninth Inter-
national Conference on Embedded Software (EMSOFT09),
87–96, Grenoble, France, October 12–16, 2009.

40. Raclet J-B, Badouel E, Benveniste A, Caillaud B, Legay A,
Passerone R. A modal interface theory for component-based
design. Fundamenta Informaticae, 2011; 108(1–2): 119–
149.

41. Sangiovanni-Vincentelli A, Shukla S, Sztipanovits J, Yang G,
Mathaikutty D. Metamodeling: An emerging representation
paradigm for system-level design". Special Section on Meta-
Modeling, IEEE Design and Test, 2009; 26(3): 54–69.

42. Functional safety of electrical/electronic/programmable
electronic safety-related systems. Standard IEC 61508.

43. Sztipanovits J. Composition of cyber-physical systems. In
Proceedings of the 14th Annual IEEE International Confer-
ence and Workshops on the Engineering of Computer-Based
Systems (ECBS07), 3–6, March 2007.

44. Törngren M. Timing problems and opportunities for embed-
ded control systems modeling and co-design, September 16,
2011. Seminar at the University of California, Berkeley.




