
Automated Construction of Fast and Accurate

System-Level Models For Wireless Sensor Networks

Lan S. Bai† Robert P. Dick† Pai H. Chou‡ Peter A. Dinda*

{lanbai, dickrp}@umich.edu phchou@uci.edu pdinda@northwestern.edu

†University of Michigan ‡University of California, Irvine *Northwestern University

Abstract—Rapidly and accurately estimating the impact of design
decisions on performance metrics is critical to both the manual and
automated design of wireless sensor networks. Estimating system-level
performance metrics such as lifetime, data loss rate, and network
connectivity is particularly challenging because they depend on many
factors, including network design and structure, hardware characteristics,
communication protocols, and node reliability. This paper describes a
new method for automatically building efficient and accurate predictive
models for a wide range of system-level performance metrics. These
models can be used to eliminate or reduce the need for simulation
during design space exploration. We evaluate our method by building
a model for the lifetime of networks containing up to 120 nodes,
considering both fault processes and battery energy depletion. With our
adaptive sampling technique, only 0.27% of the potential solutions are
evaluated via simulation. Notably, one such automatically produced model
outperforms the most advanced manually designed analytical model,
reducing error by 13% while maintaining very low model evaluation
overhead. We also propose a new, more general definition of system
lifetime that accurately captures application requirements and decouples
the specification of requirements from implementation decisions.

I. INTRODUCTION

Any sensor network design process, whether manual or automated,

requires that the designer or synthesis toolchain estimate the quality

of prospective designs. Many performance metrics exist, and the

relevant quality metric is often application-dependent. The faster the

metric can be estimated for a prospective design, the better, as this

permits more of the solution space to be evaluated in the same amount

of time. However, the estimate must also have sufficient accuracy and

fidelity to support appropriate design decisions.

The modeling work in this paper is part of a project on automated

synthesis of sensor networks driven by very high-level specifications

written by application domain experts. The goal of the synthesis

process is to produce a sensor network implementation that meets

the specifications and optimizes or bounds system-level performance

metrics such as lifetime, price, and sampling resolution. Our work

and related automated synthesis research [1], [2] share the need to

rapidly and accurately estimate such metrics for prospective designs

in the “inner loop” of the synthesis process. Accurate system-level

performance models can be used to rapidly evaluate a multi-objective

optimization function and find Pareto-optimal designs.

There are currently three approaches to estimating system-level

performance metrics; each has a different tradeoff between efficiency

and accuracy. Measurement-based approaches are based on data from

real wireless sensor network deployments. They are accurate, but

also the most costly in terms of hardware and human effort, and

are particularly challenging to use for metrics relevant to long-term

behavior. Simulation-based approaches are based on simulation of the

prospective design. Detailed network simulation can handle numerous

performance metrics but is so slow that relying solely on simulation

for design space exploration is impractical. Analytical approaches are

based on manually constructed models that quickly compute specific

This work was supported in part by the National Science Foundation under
awards CNS-0721978, CNS-0910816, and CNS-0347941.

978-3-9810801-7-9/DATE11©2011 EDAA

performance metrics for a prospective design. However, such models

are less accurate than measurement or simulation because simplifying

assumptions must be made in their construction, particularly in

regards to network and environment behavior.

We have developed a technique for the automated construction

of fast and accurate models for estimating system-level sensor net-

work performance metrics. Our technique combines the accuracy

of simulation-based approaches with the rapid evaluation time of

analytical approaches. The key idea is to automatically derive a model

for a system-level performance metric from measured component

behavior and detailed simulation results. Model construction is done

offline and may be time-consuming without cause for concern, as it

needs not be repeated during the design or synthesis process. Once

the model is constructed, it can be rapidly and repeatedly evaluated.

Automated Model Construction: Our technique is based on

fitting a statistical model to the multidimensional simulated quality

metric data that characterize a design space. The black-box technique

we propose can be readily automated and permits rapid evaluation of

the resulting models. Numerous stochastic processes influence met-

rics such as system lifetime. Models constructed with the proposed

process support prediction of the values of deterministic variables,

and the distributions of stochastic variables. This allows a variety

of metrics to be computed. In our system lifetime example, metrics

such as mean time to system failure or time to n-probability of

system failure can also be readily computed. As more simulation

data are included, the model improves at the cost of increased model

construction time. Our iterative sampling technique allows desired

model accuracy to be achieved with few simulation runs. We have

considered a range of alternative modeling techniques, and have

found that Kriging (an interpolation method) is most appropriate [3].

Our technique also incorporates known component time-dependent

characteristics into the models it builds for system-level metrics.

This makes it possible to capture long-term behavior that might

not be observed in measurement or simulation spanning short time

intervals. One important behavior is component failure. Node failures

are common in deployed wireless sensor networks because sensor

nodes are generally constructed using inexpensive components and

often operate in harsh environments. However, node fault processes

are often ignored when considering system-level metrics, such as life-

time. Most previous work equates node lifetime and battery lifetime.

In our system lifetime example, our model considers both node-level

fault processes and battery depletion. We conducted experiments in

which device faults were measured for a specific sensor network

platform. The node temporal fault distribution we use is consistent

with our 21 months of measurement data.

Definition of system lifetime: We evaluate our model con-

struction technique using the system lifetime performance metric.

System lifetime has generally been defined as the duration from

the start of operation until the sensor network ceases to meet

its operating requirements, but most existing work uses a limited

definition of “operating requirements” to simplify the system lifetime

estimation problem. Past work has defined network failure as (1)

first node failure [4], (2) first link disconnection, (3) failure of a

specific number or percentage of nodes [5], and (4) disconnection

of a specific number or percentage of nodes. These definitions have

unfortunate implications for system design because they are often

poorly related to specific application requirements. More importantly,

lifetime metrics based on such criteria conflate specification and

implementation decisions. Consider an application in which one

must sample temperature with a spatial resolution of one sample

per square meter. The common metrics would not appropriately

capture the lifetimes of implementations that use redundant nodes

for fault tolerance because the failure of a number or percentage of

nodes differs from the inability to gather data at the required spatial

resolution. Coupling specification and implementation is especially

troublesome if the application domain expert, e.g., a geologist or

biologist, is not an expert in embedded system design. Reasoning

about the relationship between network-level and application-level

behaviors requires understanding the low-level system components

and how they interact with each other. Domain experts rarely have

the time or inclination to develop this understanding.

We believe that the definition of system lifetime should capture

the requirements of application domain experts while limiting ties

to implementation decisions. The definition should also be flexible

enough to support a class of applications instead of a specific applica-

tion. Section V-B presents and provides support for such a definition

of sensor network lifetime, which can be summarized as follows:

system lifetime is the duration from the start of operation until the

sensor network ceases to meet the specified application-dependent

but implementation-independent data gathering requirements. More

generally, our automated construction process makes it possible to

generate a model based on the application domain expert’s preferred

system lifetime metric.

Using our proposed definition of system lifetime, we applied our

automatic model construction technique to modeling system lifetime

for data gathering applications. Our iterative sampling technique

supports construction of a predictive model with 3.6% error relative

to exhaustive simulation based on simulation of only 0.27% of the

design space.
Contributions: Our work makes the following contributions.

1. We are the first to propose an automatic method to construct

fast and accurate models of multiple system-level metrics in wireless

sensor networks.

2. We evaluate our framework by using it to build a model of system

lifetime, and comparing this model with the most advanced analytical

model in the literature, which it surpasses in accuracy. The resulting

model itself is therefore a contribution.

3. We propose a new definition for system lifetime that better rep-

resents application requirements than current definitions and allows

sensor network specification be decoupled from implementation.

4. We present a measurement-based model for node-level fault

processes, and use it for system-level reliability modeling.

Those interested in using the techniques described in this paper can

find more information at the associated project website [6].

II. RELATED WORK

Model construction from simulation or measurements with statisti-

cal methods or machine learning techniques has been used to model

processor design spaces [7], [8], [9]. Previous work has demonstrated

that accurate predictive models can be built by sampling a small

percentage of points in the design space. We are the first to apply

simulation-based model generation methods to system-level sensor

network performance metrics. We focus on defining appropriate

system-level performance metrics and developing a framework to

automatically construct models to estimate them.

Researchers have previously proposed definitions and models for

system lifetime [4], [5], [10]. Generally, node-level fault processes

have been ignored. However, a lifetime model that considers only bat-

tery lifetime is insufficient, because node-level faults can occur before

battery depletion and they also influence system performance [11],

[12]. Our problem is formulated using a system lifetime definition

that, as we will later argue, is more general and better suited for use

by application designers. Lee et al. constructed analytical models

for sensor network aging analysis using a network connectivity

metric [13]. They consider node fault processes in addition to

battery depletion. In contrast, we use a definition of system lifetime

that decouples specification from implementation and describe a

regression technique to automatically construct system-level lifetime

models based on node-level characteristics. We also provide evidence

that our automatically derived model is more accurate than their

manually constructed analytical model when evaluated using their

system lifetime definition.

Node-level lifetime models can be used as a foundation for esti-

mating system-level lifetime. Most work assumes that node lifetime

equals battery lifetime, which is estimated by computing time spent

in each power state [14]. A few researchers directly measured device

fault processes. The developers of the ZN1 sensor node module [15]

accelerated aging by inducing rapid thermal cycling in order to

estimate node lifetime. Our work considers both factors, battery

depletion and device faults.

III. NODE-LEVEL MODELING

This section describes methods of building models for device fault

processes and battery energy depletion. They are two key factors that

determine the lifetimes of individual wireless sensor network nodes.

III.A. Fault Modeling

Node-level fault models relate functionality to time, node charac-

teristics, and node operating modes; they may be used as building

blocks to estimate system-level lifetime. Models for node-level fault

processes can be obtained in three ways. (1) The node manufacturer

may evaluate the reliability of sensor node modules via direct testing

and provide a fault model to users [15]. Models obtained in this way,

however, may not characterize the in-field behavior if the deployment

environment differs from the expected operating environment. (2)

Node-level lifetime models may be derived from reports on prior

deployments of the nodes under consideration. (3) Finally, it is

possible for application developers to experimentally characterize the

sensor nodes being considered. This approach allows a controlled

testing environment and workload.

We conducted experiments to model the lifetime fault distribution

of ultra-compact Eco wireless sensor node [16]. The nodes were

used for various wearable applications including infant monitoring,

gesture-based input devices, and water pipe monitoring. We wrote

programs to test the ADC, radio, and EEPROM node components

in the field, and tracked the status of 250 Eco nodes manufactured

during June 2007 for 21 months.

Figure 1 shows the accumulated failure rate. Seven global node

status evaluations were conducted during this study. Almost half

of the nodes failed after 20 months. The Weibull extreme value

distribution is widely used in reliability models, and is the ap-

propriate distribution for modeling the first component fault in a

node composed of many components with arbitrary temporal fault

distributions [17]. We tentatively fit a Weibull distribution to the

measured data. Figure 2 shows the log plot of time and 1/R(t). R(t)
is the reliability function. The Weibull distribution implies a linear

relationship between ln(t) and ln(ln(1/R(t))). The resulting Weibull

distribution has shape parameter 0.33 and scale parameter 0.02. Its

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 5 10 15 20 25

F
a
ilu

re
 r

a
te

Time (month)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0 0.5 1 1.5 2 2.5 3 3.5

lo
g
(l
o
g
(1

/R
))

log(t)

Fig. 1. Device failure of Eco
nodes.

Fig. 2. Fit failure data to Weibull
distribution.

Fig. 3. Overview of the model
construction technique.

Fig. 4. Monte Carlo simulation for
system lifetime distribution compu-
tation.

standard residual error is 0.08 and its R2 is 0.96. The statistical

significance test shows that the result is significant (p-value 0.04%).

These results indicate that the measured data are consistent with those

that would be produced by a fault process with a Weibull distribution.

We use the resulting model in our characterization of system-level

lifetime.

III.B. Battery Energy Dissipation Modeling

Battery models are used to predict the remaining energy of a

battery and node failure time due to battery depletion. We adopt

a simple battery model that assumes a constant deliverable energy

capacity that is independent of variation in discharge rate. A battery

is depleted when the total consumed energy equals the rated battery

capacity. This model is accurate when the battery’s internal resistance

and the device current are low [18]. Most sensor nodes meet these

conditions. The proposed model generation technique could easily be

used with more complex battery models.

IV. AUTOMATIC MODEL CONSTRUCTION

This section describes our framework to automatically generate

models for system-level sensor network performance metrics.

IV.A. Overview

Figure 3 gives an overview of the automatic model construction

process, which takes four types of inputs: performance metrics to

be modeled (response variables), constraints on prediction error

associated with the performance metrics, design parameters (predictor

variables), and their associated ranges. It outputs a model for each

performance metric. Our model construction technique starts with a

sparse and uniformly distributed sample set. It then incrementally

adds more samples in rough regions (regions where the magnitude

of cost differences for adjacent points are large) according to prior

simulation results. The process is iterative and contains two loops.

As shown in Figure 3, the first loop iteratively augments the sample

set until differences in response variables of already sampled points

that are close in the design space are below a threshold. The second

loop adjusts the bound parameter if currently derived models do not

meet accuracy requirements. Each sample represents a possible value

assignment to design parameters. The values of performance metrics

for each design are determined with Monte Carlo trials based on

detailed sensor network simulations. Statistical modeling is used to

fit the simulation results for the sampled points. Cross-validation is

used to estimate the prediction errors for the derived models. The

procedure terminates when the estimated prediction errors meet the

specified requirements. The steps in this procedure will be explained

later in this section.

Our framework models multiple performance metrics simultane-

ously in order to reduce total simulation time. Response surfaces for

different metrics may have different shapes. As a consequence, the

minimum sample set required to model different metrics may differ.

The model may be used by designers with different multiobjective

cost functions, making it necessary to consider the surface roughness

associated with each metric. However, all the metrics are modeled

with the same set of samples. We choose this option for two reasons.

(1) The total number of simulation runs depends on the metric that

requires the largest number of samples. This technique better utilizes

the available simulation results and can therefore generate more accu-

rate models than an alternative technique using subsets of available

samples to model different metrics. (2) It reduces implementation

complexity. The only disadvantage is that model construction time for

some metrics may be longer than necessary. However, since modeling

is done offline, this is acceptable.

A wireless sensor network design can be evaluated with various

performance metrics. We are interested in developing design tools

that are accessible to domain experts who are generally not embedded

system experts. To this end, we focus on system-level performance

metrics that directly reflect application requirements from a domain

expert’s perspective. For example, domain experts may have specific

requirements for end-to-end data delivery latency, but are rarely

interested in node-to-node data transmission latency. System-level

performance metrics such as data delivery rate, event miss rate, query

response time, and unattended lifetime are affected by numerous

factors. Some are specified by domain experts to characterize func-

tionality, requirements, and the operating environment. They are fixed

for the application and cannot be adjusted by design tools. Examples

are size of deployment field and required sensor readings. Other

factors, defined as design parameters (e.g., communication protocols,

network size, and node positions) are implementation options that can

be determined either manually by the designer or automatically by

a design tool. The interdependencies among these factors and their

complex impact on system-level performance metrics make deriving

accurate closed-form analytical models for them a challenging or

intractable problem.

Our technique has the following beneficial features.

1. Using a detailed sensor network simulator allows the use of

realistic simulation models, e.g., wireless communication models that

consider signal attenuation, interference, and contention.

2. Adaptive sampling and statistical modeling allows production

of models that have accuracies comparable to exhaustive on-line

simulation. However, only a small part of the design space must

be simulated.

3. Our technique can be used to model any system-level performance

metric. Our examples consider system lifetime and data latency.

4. The constructed models can be reused by multiple application

developers and synthesis tools. The pool of models can be expanded

to support new hardware platforms or deployment environments.

IV.B. Sampling Technique

The sampling procedure determines which design points to simu-

late. Using fine-grained sampling results in a long simulation time,

while coarse-grained sampling results in inaccurate models. Adap-

tively increasing the number of samples can reduce simulation time

without sacrificing model accuracy. A straightforward approach is to

increase the uniform sampling resolution until accuracy requirements

are met. However, this approach has significant drawbacks. Increasing

the resolution for any parameter requires either invalidating all

prior samples due to the new inter-sample spacing, or requires the

resolution for the parameter to double. If uniform sampling is used,

doubling the resolution of any parameter is very costly; even adding

a single new parameter value requires m new samples, where m
is the product of value counts for all other parameters. Finally,

uniform sampling may introduce new samples in smooth regions of

the parameter space, which will have little impact on accuracy.

We propose an algorithm that starts with sparse uniform sampling

and incrementally adding samples to the rough regions. The iteration

terminates when the difference in each response variable between

adjacent samples is smaller than a threshold. Each iteration of

the algorithm does the following. (1) For each sample point, the

differences (delta) of output values between its K nearest neighbors

and itself are computed. K is an empirically determined variable.

(2) If the difference in output value between the sample point and

any of its neighbors is larger than the given bound, a new sample

is added between them. If there exists no point at the exact middle

position due to discretization of some design parameters, the nearest

unsimulated point is added. After normalizing each design parameter

component of the vector to its range, the Euclidean distance between

two samples is used to determine the nearest neighbors.

IV.C. Modeling Technique

We consider two types of modeling methods: global polynomial

regression and Kriging.

A polynomial model has the form y = β0+β1t1+· · ·+βmtm+ǫ,

where y is the response variable, variable tj is either a single predictor

variable or a product of multiple predictors, and each tj can be raised

to a positive power. ǫ is a random error with zero mean. The order

of a polynomial model is determined by the maximum of the sum

of the powers of the predictor variables in each term of the model.

Least-squared error minimizing linear regression is used to estimate

coefficients βj .

Kriging [3] is an interpolation method that minimizes the error of

estimated values based on the spatial distribution of known values. A

Kriging model is defined as y(x) =
PN

j=1
βjBj(x) + z(x), where

Bj(x) is basis function over the experimental domain and z(x) is a

random error modeled as a Gaussian process. The general formula is

a weighted sum of the data, y(s0) =
PN

i=1
λiy(si), where s0 is the

prediction location, y(si) is the measured value at the ith location,

λi is an unknown weight for the measured value at the ith location,

and N is the number of measured values.

The above modeling techniques are implemented in R, open-source

software for statistical computing. The following functions are used

in our technique: lm (linear regression), Krig (Kriging), and cv.lm

(cross-validation).

IV.D. Test of Model Adequacy

The prediction error of the model is estimated with 10-fold

cross-validation. The sample set is randomly divided into 10 equal-

sized groups. Nine are used as training data and one is used as

testing data. We run the 10-fold cross-validation 50 times with

different random seeds and average the results. The prediction error

for a particular set of testing data is computed with the equation

E =
q

P

i∈T
(yp

i − ys
i)

2/|T |, where E is the estimated error, T is

the testing data set, yp

i is the predicted value for data point i using

a model constructed with the training data, and ys
i is the simulated

value for data point i. When the average error of the 50 tests is smaller

than the required maximum error, we deem the model adequate.

IV.E. Wireless Sensor Network Simulation

We use the SIDnet-SWANS simulator [19]. Simulator validation

is important because the accuracy of the simulator directly affects

the accuracies of the models it is used to build. The simulator itself

contains a collection of component models that can be separately

validated. The following simulation models have major effects on

typical system-level performance metrics: radio propagation model,

power consumption model, and network protocol models. SIDnet-

SWANS uses an SNR-based reception model validated by Halkes

and Langendoen [20]. The error rates for delivery ratio and energy

consumption are lower than 5%. The IEEE 802.15.4 implementation

in SIDnet-SWANS is ported from ns-2 and was validated by Ivanov

et al. [21]. The packet delivery ratio, connectivity graph, and packet

latencies have average errors of 0.3%, 10%, and 57%. The power

consumption model is based on the power states of MicaZ nodes.

Note that our model construction framework can be used with any

sensor network simulator. The accuracies of derived models depend

on the accuracy of the simulator in use. However, the focus of our

work is not on developing accurate simulators for sensor networks.

We therefore assume the error of underlying simulator is ignorable for

the remaining analysis and focus on system-level modeling accuracy.

V. SYSTEM LIFETIME MODELING

This section describes the use of the proposed technique to generate

a model of system lifetime.

V.A. Domain of Applications and Assumptions

Sensor network applications span a wide domain. Different ap-

plications may have very different goals (e.g., data collection vs.

object tracking) as well as different performance metrics (e.g., data

delivery rate vs. event miss rate). Building one model for each specific

application is infeasible since there are numerous applications. We

therefore propose to divide the application domain into classes with

shared characteristics. In order to select a class of applications for

which to generate a system lifetime model, we start with the most

frequently encountered type of application: periodic data gathering in

a stationary network. Our prior survey of 32 sensor network applica-

tions provides evidence that this is the most frequently deployed type

of sensor network application [22]. We evaluate our model generation

technique for this class of applications. Note that the proposed

technique is general enough for use in other domains. Longer model

construction time is expected for more complex applications because

they require more parameters to represent (e.g., mobile sensor net-

works need extra parameters to describe motion). We now list our

other assumptions. (1) Sensor nodes are homogeneous and have the

same lifetime fault model. (2) Sensor node temporal fault distributions

are modeled by independent Weibull processes. (3) Sensor nodes are

uniformly distributed in a 2D field. (4) A node failure disconnects

the affected node from the network. (5) Data from the network are

gathered at a sink node located in the center of the field. (6) Data from

sensor nodes are routed to the sink using a dynamic data gathering

tree. When a parent node fails, its children select other nodes in their

communication range with the minimum hop count from the root

node as their new parent nodes. (7) We consider two data aggregation

cases: perfect aggregation and no aggregation. In the case of perfect

aggregation, a single unit of data is transmitted up the routing tree

regardless of the number of units of data received from children. In

Lifetime (hour)

F
re

q
u

e
n

c
y

1500 2000 2500 3000

0
5

1
0

1
5

2
0

2
5

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Fig. 5. Histogram of lifetime. Fig. 6. Quantile-quantile plot of
lifetime.

the case of no aggregation, each node transmits a quantity of data

equal the sum of received and sensed data quantities. Relaxing these

assumptions only requires changing the simulated programs.

V.B. System Lifetime Definition

We define system lifetime as the time elapsed since the start

of operation until the spatial density of promptly delivered data

drops below a threshold specified by the application developer. This

definition allows developers to view the system from a data-oriented

perspective relevant to their application requirements, while ignoring

implementation details such as network structure, communication

protocols, and use of redundant nodes. For example, to monitor a

field with a large amount of spatial variation in data, the developer

may require a higher sampling density. The sampling density criterion

cannot be represented with or trivially mapped to other existing

criteria. For example, the percentage of functioning nodes or the

percentage of connected nodes alone cannot determine the density of

data acquisition, because they do not indicate network size, network

structure, and packet drop rate.

V.C. Predictor and Response Variables

The system lifetime of a sensor network is affected by many

factors, including sensor node reliability, total number of nodes, node

positions, node activities, network protocol, battery capacities, power

consumptions of components in different power states, etc.

As a case study, we will build a lifetime model for a specific type of

hardware platform and assume an outdoor deployment environment.

Consequently, some parameters can be assumed to be fixed, e.g.,

those for radio communication and node lifetime distribution. The

proposed technique can be used to build system-level models for

various hardware platforms by adjusting the appropriate simulation

parameters. Six design parameters are evaluated during simulation:

sampling period, network size, distance between adjacent nodes,

battery capacity, aggregation, and threshold for desired data delivery

density. The predictor variables are independent. They can be sepa-

rately controlled without affecting each other. However, their impacts

on system lifetime are interdependent. We focus on a sub-region of

the design space that contains most previously deployed applications.

The sub-region further determines the range of each design factor:

network size ranges from 9–121 nodes; sampling density threshold

ranges from 27–1,000 samples per square kilometer; sampling period

ranges from 10 minutes to 1 hour; and inter-node distance ranges

from 100–500 feet.

For a specific network design, the system lifetime is best described

using a distribution. The network may fail at different times de-

pending on the failure times of individual nodes. Modeling lifetime

with a single number, such as mean time to failure, is unnecessarily

restrictive. Using a distribution within the model allows application

developers to specify confidence levels for lifetime lower bounds.

The Monte Carlo simulation results suggest that system lifetime

has a Gaussian distribution. Figures 5 and 6 show the histogram

and the quantile–quantile plot of the lifetime for a specific network

setting. Results of other network settings show a similar trend and

were verified with statistical tests. We therefore assume a Gaussian

distribution. We further tested our hypothesis with normality tests,

a type of goodness-of-fit test that indicates whether it is reasonable

to assume that random samples come from a normal distribution.

The average p-value is 0.54 for tests on lifetimes of 100 different

design points. According to the test results, we can accept the null

hypothesis that the sample data belong to a Gaussian distribution.

After determining the distribution of system lifetime, two parameters

are sufficient to describe it: mean and standard deviation. These are

used as our response variables.

V.D. Monte Carlo Simulation

For each combination of predictors corresponding to a specific

network design, we use Monte Carlo simulation to obtain the system

lifetime distribution. This procedure is shown in Figure 4. The state

of the system corresponds to a particular network topology. A state

change in network topology occurs upon each node failure. Each

state is associated with a power profile indicating the average power

consumption of each node in this state, a residual energy profile

indicating the remaining battery energy for each node, and a data

delivery ratio indicating the percentage of promptly delivered data.

The power profile and data delivery ratio are generated using the

SWANS simulator. The remaining battery lifetime of each node is

then computed, allowing estimation of the time of the next node

failure due to battery depletion. The next battery depletion or node

failure event causes a state change. Every time a node fails, it is

removed from the network and the updated network placement is

used for the next simulation run. Each Monte Carlo trial marches the

system through states with decreasing node counts and data delivery

ratios. Note that the run does not terminate at a user-specified data

delivery ratio. Instead, sufficient data are gathered to build a model

that can be evaluated for arbitrary data delivery ratios specified during

model evaluation. Trials are repeated (with new, randomized, node

fault failure sequences) until the mean lifetime converges.

If it were necessary to do prolonged network simulation for each

network state, simulation time would be excessive, rendering the tech-

nique impractical. Fortunately, we observe that with a fixed network

topology, the power consumption stabilizes within a few sampling

periods in the simulated system. Therefore, it is not necessary to run

the detailed network simulator until the next node failure. Instead,

the network simulator is run long enough to determine average node

power consumptions for the current network state. We found that

power consumptions converge within three sampling periods for the

simulated network. To be conservative, we simulated for five periods.

A Python script coordinates the use of the detailed network

simulator for multiple Monte Carlo trials to calculate the system life-

time distribution. Many predictor variable combinations and Monte

Carlo trials are required for model construction. Therefore, we run

the simulations in parallel on a cluster of machines composed of

over 3,500 Opteron cores. The total CPU time required for model

construction was approximately 8 weeks, although the task was

completed in much less time due to parallelization of the parameter

study. The model can be rapidly evaluated on a laptop computer:

model use is not computationally demanding.

V.E. Comparison of Modeling Technique Accuracies and Efficiencies

We first compare the performance of polynomial regression and

Kriging. Figure 7 shows the relationship between the prediction

error and the sample count for applications with and without data

aggregation. The x-axis represents the size of the sample set. The

y-axis represents the estimated prediction error. The lines labeled

“Adaptive regression” and “Adaptive Kriging” represent the errors

of a 2nd-order polynomial model and a Kriging model, derived from

 0

 100

 200

 300

 400

 500

 300 350 400 450 500 550 600

M
o
d
e
l
e
rr

o
r

(h
o
u
r)

Sample count

Without aggregation

Adaptive regression
Adaptive Kriging

 0

 20

 40

 60

 80

 100

 120

 140

 300 350 400 450 500 550 600

M
o
d
e
l
e
rr

o
r

(h
o
u
r)

Sample count

With aggregation

Adaptive regression
Adaptive Kriging

Fig. 7. Model error and sample size.

identical sample sets determined by our adaptive sampling technique.

Each point on the lines corresponds to a model generated at the end

of a sampling and modeling iteration. Note that the prediction error

is estimated with cross validation and is affected by how the data

are partitioned. Therefore, the resulting curve is not monotonic. The

errors of the polynomial regression models are always larger than

those of the Kriging models. On average, the polynomial regression

models have 42% larger error than the Kriging models. We conclude

that Kriging is more appropriate.

The design space we consider in this case contains 405,790

potential solutions (31 battery capacity levels, 5 network sizes, 11

sampling periods, 17 network densities, 7 thresholds, and 2 aggrega-

tion options). Our modeling technique was able to build models with

3.6% average error (absolute error divided by average lifetime) based

on approximately 1,100 simulations, i.e., 0.27% of the design space.

This demonstrates that the proposed model generation technique is

very efficient.

V.F. Comparison with an Analytical Model

To the best of our knowledge, the most relevant is the aging

analysis of wireless sensor networks by Lee et al. [13], which focuses

on analyzing the degradation in network connectivity due to node-

level faults and battery depletion. Their work uses a disc graph model

of radio communication and ignores MAC-level behaviors, e.g., con-

tention and collision. Unfortunately, no existing work analyzes system

lifetime using our proposed definition. For the sake of comparison,

we revert to a definition in past work [13], where lifetime is defined

as the time until the percentage of nodes transitively connected to the

sink node drops below a threshold. The resulting model has an error

of 72 hours (2.1% of average lifetime). In comparison, the average

prediction error of the analytical model proposed by Lee et al. is 525

hours (15% of average lifetime).

VI. CONCLUSIONS AND CAVEATS

This paper has described an automated technique for generating

system performance models for wireless sensor networks, and ex-

plained its use to build a system lifetime model for distributed,

periodic data gathering applications. We have also proposed a system

lifetime definition that captures application-level requirements and

decouples specification and implementation. It considers battery life-

times and node-level fault processes. The proposed adaptive sampling

technique allows the generation of lifetime models with only 3.6%

error, despite simulating only 0.27% of the solutions in the design

space. Taking advantage of more realistic models in sensor network

simulators and offline model construction, our modeling technique

reduces error by 13% compared with the most advanced analytical

model, while supporting rapid model evaluation. Our modeling tech-

nique can be applied to other performance metrics. We must comment

that the effectiveness of the proposed technique relies on the ability to

accurately estimate relevant quality metrics for a number of potential

designs, either through simulation or measurement. In future work,

we plan to use this modeling technique in automated design of sensor

networks.

REFERENCES

[1] A. Bakshi and V. K. Prasanna, “Algorithm design and synthesis for
wireless sensor networks,” in Proc. Int. Conf. Parallel Processing,
Aug. 2004, pp. 423–430.

[2] A. Bonivento, L. P. Carloni, and A. Sangiovanni-Vincentelli, “Plat-
form based design for wireless sensor networks,” Mobile Networks
and Applications, vol. 11, no. 4, pp. 469–485, Aug. 2006.

[3] J. Kleijnen, “Kriging metamodeling in simulation: A review,”
Tilburg University, Center for Economic Research, Tech. Rep., 2007.

[4] D. E. J. Melo and M. Liu, “Analysis of energy consumption and
lifetime of heterogeneous wireless sensor networks,” in Proc. Global
Telecommunications Conf., vol. 1, Nov. 2002, pp. 21–25.

[5] V. Rai and R. N. Mahapatra, “Lifetime modeling of a sensor
network,” in Proc. Design, Automation & Test in Europe Conf., Mar.
2005, pp. 202–203.

[6] 2009, http://absynth-project.org.
[7] B. C. Lee and D. M. Brooks, “Accurate and efficient regression mod-

eling for microarchitectural performance and power prediction,” in
Proc. Int. Conf. Architectural Support for Programming Languages
and Operating Systems, Oct. 2006, pp. 185–194.

[8] B. Ozisikyilmaz, G. Memik, and A. Choudhary, “Efficient system
design space exploration using machine learning techniques,” in
Proc. Design Automation Conf., Jun. 2008, pp. 966–969.

[9] H. Cook and K. Skadron, “Predictive design space exploration
using genetically programmed response surfaces,” in Proc. Design
Automation Conf., Jun. 2008, pp. 960–965.

[10] L. Mounier, L. Samper, and W. Znaidi, “Worst-case lifetime com-
putation of a wireless sensor network by model-checking,” in Proc.
Wkshp. on Performance Evaluation of Wireless Ad Hoc, Sensor, and
Ubiquitous Networks. ACM, Oct. 2007, pp. 1–8.

[11] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons
from a sensor network expedition,” in Proc. European Wkshp. on
Sensor Networks, Jan. 2004.

[12] K. Langendoen, A. Baggio, and O. Visser, “Murphy loves potatoes:
Experiences from a pilot sensor network deployment in precision
agriculture,” in Proc. Int. Wkshp. Parallel and Distributed Real-Time
Systems, Apr. 2006, pp. 1–8.

[13] J.-J. Lee, B. Krishnamachari, and C.-C. J. Kuo, “Aging analysis
in large-scale wireless sensor networks,” Ad Hoc Networks, vol. 6,
no. 7, pp. 1117–1133, Sep. 2008.

[14] D. Jung, T. Teixeira, and A. Savvides, “Sensor node lifetime
analysis: Models and tools,” ACM Trans. on Sensor Networks, vol. 5,
no. 1, pp. 1–33, Feb. 2009.

[15] S. Yamashita, T. Shimura, K. Aiki, K. Ara, Y. Ogata, I. Shimokawa,
T. Tanaka, H. Kuriyama, K. Shimada, and K. Yano, “A 15 ×

15 mm, 1 µA, reliable sensor-net module: enabling application-
specific nodes,” in Proc. Int. Conf. Information Processing in Sensor
Networks, Apr. 2006, pp. 383–390.

[16] C. Park, J. Liu, and P. H. Chou, “Eco: an ultra-compact low-power
wireless sensor node for real-time motion monitoring,” in Proc. Int.
Conf. Information Processing in Sensor Networks, Apr. 2005, pp.
398–403.

[17] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge, “Reliability mod-
eling and management in dynamic microprocessor-based systems,”
in Proc. Design Automation Conf., Jul. 2006, pp. 1057–1060.

[18] D. Linden and T. B. Reddy, Handbook of Batteries. MacGraw-Hill,
2002.

[19] O. C. Ghica, G. Trajcevski, P. Scheuermann, Z. Bischof, and
N. Valtchanov, “SIDnet-SWANS: a simulator and integrated devel-
opment platform for sensor networks applications,” in Proc. Int.
Conf. Embedded Networked Sensor Systems, Nov. 2008, pp. 385–
386.

[20] G. Halkes and K. Langendoen, “Experimental evaluation of simula-
tion abstractions for wireless sensor network MAC protocols,” Delft
University of Technology, Tech. Rep., Jan. 2009.

[21] S. Ivanov, A. Herms, and G. Lukas, “Experimental validation of the
ns-2 wireless model using simulation, emulation, and real network,”
in Proc. on Mobile Ad-Hoc Networks, 2007.

[22] L. S. Bai, R. P. Dick, and P. A. Dinda, “Archetype-based design:
sensor network programming for application experts, not just pro-
gramming experts,” in Proc. Int. Conf. Information Processing in
Sensor Networks, Apr. 2009, pp. 85–96.

