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ABSTRACT 

The ultimate goal of a computer system is to satisfy its users. The 

success of architectural or system-level optimizations depends largely 

on having accurate metrics for user satisfaction. I propose to derive 

such metrics from information that is “close to flesh” and apparent to 

the user rather than from information that is “close to metal” and 

hidden from the user. Arindam Mallik, a graduate student in the 

Electrical Engineering and Computer Science department at 

Northwestern University, and I describe and evaluate PICSEL, a 

dynamic voltage and frequency scaling (DVFS) technique that uses 

measurements of variations in the rate of change of a computer’s video 

output to estimate user-perceived performance. Adaptive algorithms, 

one conservative and one aggressive, use these estimates to 

dramatically reduce operating frequencies and voltages for 

graphically-intensive applications while maintaining performance at a 

satisfactory level for the user. I explore the best method to measure 

video output. Arindam and I evaluate PICSEL through user studies 

conducted on a Pentium M laptop running Windows XP. Experiments 

performed with 20 users executing three applications indicate that 

the measured laptop power can be reduced by up to 12.1%, averaged 

across all users and applications, compared to the default Windows 
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XP DVFS policy. User studies revealed that the difference in overall 

user satisfaction between the more aggressive version of PICSEL and 

Windows DVFS were statistically insignificant, whereas the 

conservative version of PICSEL actually improved user satisfaction 

when compared to Windows DVFS. 
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CHAPTER 1 

INTRODUCTION  

Existing architectures and systems software typically optimize for 

user satisfaction by employing metrics based largely on instruction 

throughput (e.g., instructions-per-second). These metrics are used 

because they are easy to access, easy to compare across platforms, 

and are believed to reflect user demands for performance at a very 

low level. However, I will show that low-level information is not as 

good a proxy for user satisfaction with performance as is high-level 

information actually observed or perceived by the user. I focus on 

interactive applications and show that it is possible to infer 

information about user-perceived performance by measuring changes 

in video output. This provides better information about the 

performance level necessary to maintain user satisfaction.  Arindam 

Mallik and I demonstrate the utility of this information in on-line 

power management. 

Processor frequency has a strong effect on power consumption 

and temperature, directly and also indirectly through the need for 

higher voltages at higher frequencies. Dynamic Voltage and Frequency 

Scaling (DVFS) is one of the most commonly used power reduction 
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techniques in modern processors. DVFS varies the frequency and 

voltage of a microprocessor at runtime to trade off power 

consumption and processor performance. Specifically, existing DVFS 

techniques in high-performance processors select an operating point 

(CPU frequency and voltage) based on the utilization of the processor 

and other information available to the Operating System (OS) kernel. 

This approach is often pessimistic regarding user satisfaction, setting 

the processor frequency higher than necessary to ensure user 

satisfaction with performance. A high level of CPU utilization or a 

burst of certain OS events leads directly to a high frequency (and high 

voltage), regardless of the user’s satisfaction with performance. This 

can produce unnecessary increases in frequency, voltage, power 

consumption, and temperature. 

In response to this observation, Arindam and I have developed a 

new power management technique that relies upon a more accurate 

proxy for user performance needs than CPU- or OS-level events, but 

that is still inexpensive to measure. We estimate user satisfaction with 

processor performance using information that is “close to flesh” and 

apparent to the user rather than information that is “close to metal” 

and hidden from the user. Interface devices are the logical locations 

for these measurements since they sit between computation and user 
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perception. Video output is particularly useful because it is the user’s 

primary source of information regarding the performance of the 

computer.   

We must note that a user satisfaction-aware optimization policy 

does not need an absolute metric for user-perceived performance to 

make decisions. The policy will only make decisions for the 

architecture on which it is implemented. Using this idea in the context 

of DVFS, we can compare the displayed performance of applications 

that change the display at lower frequencies to the displayed 

performance at the processor’s highest available frequency. If the two 

frequencies result in identical sequences and timing of frames on the 

screen, then we can safely conclude that these two processor states 

have the same displayed performance. This maximum frequency 

satisfies user demands for displayed performance as well as the 

architecture can, marking a basis for satisfying the user that is fixed 

for the architecture. Hence, initializing a DVFS policy at the maximum 

frequency “seeds” the policy with a meaningful level of displayed 

performance. 

To evaluate this idea, we have developed a new power 

management framework called PICSEL (Perception-Informed CPU 
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performance Scaling to Extend battery Life) that monitors the rate of 

change of pixel intensities in the display. An algorithm controlling the 

processor’s operating frequency then makes decisions based upon 

these rates of change. The algorithm is tested with two configurations: 

conservative PICSEL (cPICSEL) and aggressive PICSEL (aPICSEL) 

(Section 3.2). We focus on the DVFS technique implemented by a 

commercial OS and show that runtime estimation of user-perceived 

performance using pixel intensities can enhance the effectiveness of 

the power management scheme. We also show that this approach can 

result in optimizations that are not possible otherwise. 
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CHAPTER 2 

USER-PERCEIVED PERFORMANCE 

The motivation for including user-perceived performance in any 

objective function is clear: the ultimate goal of computer systems 

design is to satisfy the user. However, the difficulty in optimizing 

directly for user-perceived performance is in finding a corresponding 

metric that can be efficiently measured at runtime. For interactive 

applications, the events occurring on the input/output devices are 

good candidates for measuring user satisfaction with performance. 

However, input events are rare compared to output events. Therefore, 

considering output to the user is preferable for estimating the 

performance experienced by the user. Of all the types of output 

supplied to the user, graphics are used in the highest proportion of 

applications. Therefore, we considered exploiting properties of the 

display to estimate user-perceived performance. 

Given an application that only changes the display, it is plausible 

that the frame sequence and frame rate are indications of the user-

perceived performance of that application. For example, if there are 

two architectural alternatives that result in identical frame sequences 

and frame rates, we can reasonably say that these architectures 
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provide the same user-perceived performance. And even if there is 

some degradation in video output, this degradation may be offset by 

reductions in power consumption that ultimately lead to the same 

user-perceived performance. 

Trading off video output for power consumption requires 

knowledge of when the video output has degraded beyond a level 

acceptable to the user. Ghinea and Thomas [2005] have done a 

perceptual study showing that varying both the color depth and the 

frame rate has a significant effect on user satisfaction with 

performance. However, extracting the exact frame rate and color 

depth information would require changes in the application or OS. 

Hence, we decided to employ a metric that is independent of the 

application and easily measurable: the rate of pixel intensity change 

over time. This captures the combination of color depth and frame 

rate.  

I built the experimental framework for testing this metric, and 

Arindam performed an experiment to understand the relationships 

between instruction throughput, rate of pixel change, and user-

perceived performance. In these experiments, we measured the 

number of instructions-per-second (IPS) on a 2.13 GHz Intel Pentium 



7 

 

M-based laptop (please see Section 4.1 for further details on the 

experimental study environment) for three applications: a 3D 

Shockwave animation, a DVD quality video, and a 3D video game. We 

also measured the changes in intensity in the red, green, and blue 

channels of some of the pixels being used to display these applications 

using the method described in Section 3.1, and averaged these 

changes together for each time instance to obtain the Average Pixel 

Change (APC). The procedure to calculate APC is presented in Table 

1. We repeated these measurements at all six available processor 

operating frequencies. 

 

FIGURE 1. IPS AND APC CURVE  
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TABLE 1. USER-PERCEIVED PERFORMANCE METRICS 

Metric Measurement Procedure 

Average Pixel 

Change (APC) 

 Capture the Pixel intensities of the RGB 

channels of all the pixels in a memory 

buffer 

 Calculate the relative changes for all the 

sampled pixels 

 The mean of relative changes is the APC 

Rate of Average 

Pixel Change (APR) 
(APCTi – APCTi-1)/(Ti - Ti-1) 

 

Figure 1 illustrates the results of this experiment, with the solid 

lines representing the APC curve and dotted lines representing the IPS 

curve. As depicted in the figure, the IPS of the system is closely related 

to the operating frequency of the CPU and is fairly uniform across the 

three applications. APC is also dependent on the operating frequency, 

but this dependence is influenced by the application more than IPS is 

influenced. For the Shockwave application, the effect on APC due to 

frequency throttling is below 10% for the highest three frequencies.  
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The Video application shows similar properties. For this task, we 

could simply set the frequency statically to a lower value without 

causing noticeable change in the APC. For the game application, the 

highest two frequency states can sustain the APC value within 10% of 

its maximum value. However, the lower frequency states cause the 

APC value to drop suddenly. Most importantly, we see a significant 

difference between the reduction in IPS and APC. In other words, 

these results show that the instruction throughput and user-perceived 

performance are not linearly related. We observe that the APC value 

of a system can quantify user perceived performance and can be used 

as a metric for a power management scheme that implements DVFS 

based on user-perceived performance. 

The primary metric we use for user-perceived performance is APC 

normalized to the total number of pixels in the display. As shown in 

Figure 1, we observe considerable variation in the APC values across 

different applications as well as different frequency states. On the 

other hand, it is also possible that the reduction in the frequency may 

result in discontinuities in the video output. Previous researchers 

[Gulliver and Ghinea 2007] have found that jitter and latency are the 

main sources of user discontent in networked multimedia 

applications. For example, consider an application that starts skipping 
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frames when the computational power is reduced. In such a case, the 

APC may not be affected significantly: in a sequence of frames, even if 

some of the intermediate frames are skipped, the pixel difference 

between the first and the last frames does not change. 

To capture the occurrences of such discontinuities, we record the 

Rate of Average Pixel Change (APR) normalized over the number of 

pixels. In other words, we calculate the difference between the APC 

values measured at each time instance. This is the derivative of the 

APC. Figure 2 illustrates the APR trends observed in three 

applications used in this paper. When there are glitches during 

display, the APR value tends to increase rapidly. This is true for 

applications where video glitches are observed at lower frequencies, 

namely the Video and 3D Shockwave animation. For other 

applications (such as the game), we simply observe an overall 

slowdown and APR values drop in proportion to APC levels. Such 

applications reduce game jitter at the price of reducing the frame rate. 

As a result, for this particular application we actually observe a 

reduction in APR value at lower frequencies as the game’s average 

frame rate is reduced. 
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FIGURE 2. APR CURVES FOR THE THREE APPLICATIONS 
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CHAPTER 3 

PICSEL FRAMEWORK 

User-perceived performance-based frequency scaling has two 

components. First, we have to measure the rate of change in the pixels 

displayed on the screen. This measurement tool is described in the 

next section and was built by me. Then, we have to make a throttling 

decision based on these measurements. The algorithm making this 

decision is described in Section 3.2 and was designed by Arindam 

Mallik. In Section 3.3, we describe how PICSEL interacts with the 

system. 
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SECTION 3.1 

PICSEL DISPLAY ACCESS 

There are several methods for accessing the content of a computer 

display owing to the many steps involved in generating this content. 

Although more complex schemes are possible, the organization of a 

generic graphics pipeline in a contemporary computer is shown in 

Figure 3. 

 

 

 

Application content is read and produced by the CPU, which 

determines what action should be taken by the video card. The video 

card then performs operations on the data stream sent by the CPU. 

The most common operations are blitting, rendering, and decoding. 

Blitting is a method to erase and redraw sections of a bitmapped 

image faster than a pixel-by-pixel scan. Rendering uses highly parallel 

floating-point processors to transform three-dimensional primitives 

into two-dimensional images. Some video cards also decode 

compression techniques such as MPEG-2. Each of these different 

methods may use separate portions of video memory that are 
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FIGURE 3. GRAPHICS PIPELINE IN A MODERN PC 
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invisible to each other until pieced together on the frame buffer by a 

process called composition. The frame buffer consists of at least two 

video memory buffers each as large as the monitor screen. 

The use of both the processor and the graphics hardware offers 

two implementation models for PICSEL. One model stores the 

screenshots in main memory and performs the computations on the 

CPU. This has the advantage of faster CPU speeds and the 

disadvantage of transferring more data through the bus that lies 

between the CPU and graphics hardware. This bus is a major 

bottleneck in CPU-GPU communication.  The other model stores the 

screenshots in video memory and performs the computations on the 

GPU. This has the advantage of transferring less data over the bus and 

the disadvantage of using the slower and increasingly energy-hungry 

GPU to perform the computation. We compared a main memory/CPU 

implementation against a video memory/GPU implementation, as well 

as a hybrid approach, and found that for most screen sizes the CPU 

implementation was the most efficient. We used this main 

memory/CPU implementation in our user studies with PICSEL. 
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SECTION 3.1.1 

CPU IMPLEMENTATION ON TARGET HARDWARE 

Our target hardware was an IBM Thinkpad T43p with a 2.13 GHz 

Pentium M-770 CPU, an ATI Mobility FireGL V3200 GPU with PCI-

Express, and 1 GB memory running Microsoft Windows XP 

Professional SP2. 

CPU-based PICSEL gathers screen information using the Windows 

GDI screenshot method, which is simple to implement and can blit any 

region of the screen to main memory. However, screen content may 

be missing from sections of the blitted region if those sections were 

drawn elsewhere in video memory by a rendering or decoding 

operation. We set our applications to perform rendering and decoding 

in software in order to capture these operations with a GDI 

screenshot. This also places the computational load for those 

operations on the CPU, thus making them subject to CPU frequency 

scaling. Ideally we would like to consider all the pixels present in the 

display while calculating the APC. Furthermore, the rate of APC 

calculation should be same as the rate of frame change in the system. 

However, both of these constraints introduce heavy computational 

overhead on the system used for the user studies. Therefore, it was 

necessary to reduce the size of the captured screen area the CPU load 
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of the capturing process. We decided to limit the overhead to less than 

2% CPU utilization. The final captured area is 64×51 pixels, or a 

scaling down of each dimension of a 1280 by 1024 screen by a factor 

of 20. This area contained 3276 pixels and was fixed at the center of 

the screen. We chose to capture a contiguous rectangle of pixels 

rather than a disjoint grid of pixels because capturing the disjoint grid 

proved to be much more computationally intensive than capturing the 

contiguous rectangle, holding the number of pixels constant. Because 

blitting transfers contiguous blocks of data by design, fewer transfers 

are necessary to capture an area covered by a fraction of the blocks 

rather than a screen-size grid covered by all of the blocks.  

The sampling frequency for calculating APC was chosen to be 10 

Hz, the highest frequency with which our framework did not exceed 

the 2% CPU utilization threshold for the captured pixel area. There is 

a computational tradeoff between sampling frequency and capture 

area. Arindam and I found an acceptable tradeoff through initial 

testing on the game, video, and Shockwave applications. As we will 

show in Section 4, these sampling parameters do not prevent PICSEL 

from capturing the user-perceived performance for our target 

applications. Nevertheless, it is possible that some applications will 
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not use our capture area; hence it may be desirable to overcome these 

limitations for other application domains. 

After a section of the screen has been captured, it is stored to a 

memory buffer. This buffer is compared to another buffer containing 

the previous screen capture, and the intensity differences for the red, 

green, and blue channels are calculated. Only two buffers are 

necessary, with each buffer toggling between old and new screen 

captures. All of the magnitude differences are averaged to obtain the 

APC. 

It is important to understand that this method does not capture 

each frame and that there are unaccounted-for frames between the 

two frames used to calculate the intensity difference. This introduces 

noise into the APC metric. However, since we also measure the APR, 

we can detect trends in pixel intensity that would otherwise be 

obscured by the noise. This permits a sampling frequency below the 

frame rate of the screen. 
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SECTION 3.1.2 

CPU IMPLEMENTATION ON CONTEMPORARY HARDWARE 

We also tested CPU-based PICSEL on a Shuttle xPC with a 1.86 GHz 

Core 2 Duo E6300 CPU, a NVIDIA GeForce 8600GT GPU with PCI-

Express, and 1 GB memory running Microsoft Windows XP Professional 

SP2. This system allowed us to capture an area of 1024 by 1024 pixels 

at a sampling frequency of 40 Hz while staying under the 2% utilization 

ceiling. This capture area and sampling frequency are close to actual 

screen sizes and display refresh rates. These results show that a 

version of CPU-based PICSEL that captures the entire screen every 

frame is practical with contemporary hardware. 
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SECTION 3.1.3 

GPU IMPLEMENTATION ON CONTEMPORARY HARDWARE 

The raw video output that is sampled by PICSEL resides in video 

memory, and an implementation that was able to run on the GPU 

would preclude transferring the sampled output to main memory. 

This would remove the main bottleneck on performance. With this in 

mind, I rebuilt PICSEL within NVIDIA’s CUDA framework for 

programming on GPUs. Starting from the “postProcessGL” example in 

the CUDA SDK [2008] and also using code from the “reduction” 

example, the GPU-based version of PICSEL stores the captured screen 

areas in video memory and also performs the computation on these 

screenshots using the GPU, requiring minimal data transfer back to 

main memory. GPU-based PICSEL does not use the Windows GDI 

screenshot and can only capture the contents of one OpenGL 

application window. This method of capture is acceptable for 

performance measurements but is not practical for end-use since only 

one window of the screen is captured.  

GPU-based PICSEL renders the screen to a pixel buffer object 

(PBO). Subsequent PBOs are then compared, with the absolute RGB 

intensity differences between all of the pixels stored in a buffer in 

video memory. This halves the amount of memory needed, since the 
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four channels in each pixel (ARGB) require four bytes while the sum 

of absolute RGB intensity differences can be stored in two bytes. 

These per-pixel sums are then summed together for the entire capture 

area. This process is called reduction because it reduces many values 

into a single value. The reduction portion of PICSEL display access is 

not efficient on the GPU, and as will be seen, its overhead exceeds the 

improvements resulting from efficient video memory transfer and 

packing. 
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SECTION 3.1.4 

HYBRID IMPLEMENTATION ON CONTEMPORARY HARDWARE 

The first part of GPU-based PICSEL calculates the per-pixel sum of 

absolute differences on the GPU. This sum can be expressed using 

only two bytes, which is half the amount of data needed to express the 

ARGB components of each pixel. This halves the amount of data that 

needs to be transferred from video memory to main memory. To 

exploit this improvement without incurring the cost of GPU-based 

reduction, we implemented a third hybrid CPU-GPU-based version of 

PICSEL that calculated the per-pixel sum of absolute intensity 

differences between frames on the GPU and the sum of these 

differences on the CPU. This method proved to have an overhead 

comparable to CPU-based PICSEL and outperformed it at a screen size 

of 1024 by 1024 pixels. 
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SECTION 3.1.5 

PICSEL BENCHMARKS ON CONTEMPORARY HARDWARE 

In order to capture the screen for the GPU-based and hybrid versions 

of PICSEL, it was necessary to have a simple OpenGL application 

running in the background. This application consisted of the GLUT 

teapot rotating in space and placed a negligible load on both the CPU 

and GPU. All timing information for the benchmarks was obtained 

from clock cycle counters embedded in the code of the PICSEL 

versions. Each counter captures all of the elapsed time since the last 

counter, meaning all other processes running on the machine as 

scheduled by the OS were included in each measurement. However, 

we minimized the number of outside processes and any error 

introduced by this timing technique is uniform across all three PICSEL 

versions. The sampling frequency for all PICSEL versions was held 

constant at 10 Hz and the CPU frequency was also held constant at 

1.86 GHz. 

The timing information shown in Figure 4 is the actual amount of 

time that elapsed starting from the screen capture and ending with 

the output of the final summed value for APC for that sample. 
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The power consumption shown in Figure 5 was measured using a 

current clamp around one wire of the power supply cable to the 

computer case, meaning the power consumption of the CPU and GPU 

were both captured but the power consumption of the peripheral 

devices with independent power supplies was excluded. 

 

FIGURE 4. SAMPLE TIME FOR PICSEL VERSIONS AS CAPTURE AREA INCREASES 

0

10

20

30

40

50

1024 4096 16384 65536 262144 1048576

C
a

p
tu

r
e
 a

n
d

 S
u

m
m

a
ti

o
n

 T
im

e
 (

m
s)

Capture Area (pixels)

CPU Only GPU Only Hybrid



24 

 

 

FIGURE 5. POWER CONSUMPTION FOR PICSEL VERSIONS AS CAPTURE AREA 
INCREASES 

These results suggest that CPU-based PICSEL can be efficiently 

implemented on contemporary processors with high sampling rates 

and large capture areas. They also show that GPU-based PICSEL is 
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SECTION 3.2 

PICSEL ALGORITHM 

PICSEL sets the frequency level based on three state variables: f, the 

current CPU frequency; µAPC, APC in the last time interval; and µAPR, 

APR in the last time interval. Pixel data are measured at fixed 

sampling frequency and stored to a file by a background process. 

Adaptation is controlled by three constant parameters: , the APC 

change threshold; the APR change threshold; and , the threshold 

difficulty level corresponding to each frequency state.  

PICSEL can either be in the initialization or the control state. The 

idea in the initialization stage is to capture information about the APC 

and APR values observed at the highest frequency. These values will 

be used as a base case for comparison during the control stage to 

make throttling decisions. Therefore, during initialization, the CPU 

frequency is set at the highest value fmax for a time interval Tinit. The 

APC and APR values of the system over the time interval Tinit are 

obtained from the background process and initialized as APCinit and 

APRinit. PICSEL then enters the control state in which, at the end of 

each time interval Ti, the APC and APR of the system over the last 
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interval are obtained from the background process. PICSEL then 

makes a decision as follows: 

IF (APCinit - APC) < ×(1- ) × APCinit  

  OR |APRinit - APR| < ×(1- ) × APRinit  

Reduce f by one level 

Reset  of the last level to 0  

ELSE 

Increase  f  by one level 

Increment  

The main idea in this pseudocode is to compare the last observed 

APC and APR against the APC and APR captured when the processor is 

executing at the highest frequency. Then, based on the threshold 

factors defined by  and  we may conclude that the user-

perceived performance is unchanged and try to reduce the frequency 

and power consumption. Otherwise, out-of-bound values of APC and 

APR suggest that user-perceived performance has suffered in the last 

interval due to low CPU frequency and it is increased accordingly to 

improve the user-perceived performance. 

Factor helps the algorithm to learn from those times when it 

decreased the frequency too much. If PICSEL had to increase the 

processor frequency several times to restore user-perceived 
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performance, makes it harder to subsequently decrease the 

frequency. Following every third (n=3) update to , PICSEL reenters 

the initialization state. This feature of the algorithm permits PICSEL to 

gradually adjust to a new set of operating conditions. The constant 

parameters (Ti = 7 seconds, Tinit = 10 seconds) were set based on the 

experience of the authors using the system. α is initialized to zero for 

each of the frequency levels and is incremented by 0.1 for each 

frequency boost. We used two variations of the PICSEL algorithm by 

fixing the and  which correspond to 

conservative PICSEL (cPICSEL) and aggressive PICSEL (aPICSEL), 

respectively.  

Ideally, we would like to empirically evaluate the sensitivity of 

PICSEL performance to these parameters. However, it is important to 

note that any such study would require having real users in the loop, 

and thus would be quite slow. Testing three values of five parameters 

on 20 users would require 243 days (based on 20 users per day and 

25 minutes per user). For this reason, we decided to choose the 

parameters based on qualitative evaluation by the authors and then 

close the loop by evaluating the whole system with the choices. 
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SECTION 3.3 

CURRENT IMPLEMENTATION AND INTEGRATION 

For our user studies, we disabled the default DVFS policy and give 

control of the processor frequency to PICSEL. Once PICSEL is active, it 

executes client software that runs as a Windows toolbar task as well 

as an API that controls CPU frequency based on user perceived 

performance. In the client, we log the APC and APR at the background. 

The API uses these values to control CPU frequency. It is this 

implementation that we evaluate in the next section.  

In its current implementation, PICSEL has some limitations that 

would require integration with the OS to overcome. One limitation is 

that PICSEL always controls the processor frequency while it is 

running. PICSEL should control the processor frequency only if the 

system is executing an application that modifies the display. This 

could be accomplished by sampling the video output as usual without 

making frequency decisions. If the APC/ APR values cross a threshold, 

PICSEL frequency control is activated. If the APC/APR values drop 

below a threshold, PICSEL gives the processor frequency control back 

to the OS. This means that although PICSEL will always monitor the 

video output, it will only assume control of the processor frequency 

when appropriate. Another limitation is that PICSEL cannot detect the 
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computational needs of processes without video output, such as code 

compilation and computational analysis. This limitation is partially 

overcome if another process with video output is running at the same 

time as the process without video output. In this case, the frequency 

will be kept high if a background job takes CPU resources away from 

the process with video output. In this way, the process with video 

output is acting as a “canary in a coal mine” whose performance 

degradation is apparent to PICSEL.   

We must note that running background jobs does not cause any 

problem for PICSEL. In fact, one of our applications targeted in the 

next section includes a non-interactive background job to 

demonstrate that our concept is applicable in such cases. If there is a 

CPU-intensive background job, a reduction in the frequency causes a 

significant reduction in the APC (even if the interactive application 

itself is not computationally intensive). Therefore, PICSEL will keep 

the frequency high. If, on the other hand, the background job is not 

CPU-intensive, the frequency can be safely reduced, which is exactly 

the action taken by PICSEL. 
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CHAPTER 4 

EVALUATION 

We now evaluate cPICSEL and aPICSEL. We compare against the 

native Windows XP DVFS scheme, displaying reductions in power 

consumption and temperature. In Section 4.4, we also present user 

satisfaction results. 

Our evaluations are based on user studies conducted by both 

Arindam Mallik and me. These are described in Section 4.1. We trace 

the user’s activity on the system during the use of the applications and 

monitor the responses of Windows DVFS, cPICSEL, and aPICSEL. For 

studies involving PICSEL, the cPICSEL and aPICSEL algorithms are 

used online to control the clock frequency in response to APC and APR 

values. In the rest of this section, we first describe a user study of 

PICSEL that provides both independent results and traces for later 

use. Next, we present dynamic CPU power consumption estimates, 

system power measurements, and temperature measurements.  

PICSEL estimates user-perceived performance via APC and APR 

values and customizes processor frequency to the individual user. 

This typically leads to significant power savings compared to existing 

dynamic frequency schemes that rely only on CPU utilization as 
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feedback. The frame buffer readings and the corresponding 

calculations for measuring user-perceived performance are 

infrequent, and impose less than 2% computational overhead. PICSEL 

performs APC and APR readings during user studies, hence all the 

results presented for PICSEL (including power and user satisfaction) 

include this overhead and its potential impact on user satisfaction. 
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SECTION 4.1 

EXPERIMENTAL SETUP 

Our experiments were done using an IBM Thinkpad T43p with a 2.13 

GHz Pentium M-770 CPU and 1 GB memory running Microsoft 

Windows XP Professional SP2. The Pentium M uses the second 

generation of Intel’s SpeedStep technology, in which six CPU 

frequency-voltage operating points are available. 

Our base case for comparison, the Windows XP Adaptive scheme, 

is Microsoft’s adaptive DVFS scheme for portables/laptops. Adaptive 

DVFS uses all of the frequency states in the Intel Speedstep 

technology. Performance needs are measured from heuristics “such as 

processor utilization, current battery level, use of processor idle 

states, and inrush current events” [Microsoft Corporation 2003]. In 

our experimental setup, we ran the computer off AC power, the 

processor was always active, and we ran trials close enough together 

to prevent hard disk timeout in order to minimize inrush current 

events. This leaves processor utilization as the main input to the 

adaptive DVFS, which makes decisions according to the following 

algorithm. The algorithm is evaluated whenever the system is in the 

idle loop, or every 300 ms if running processes prevent the system 

from entering the idle loop. 
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IF 150 ms have passed since the last frequency state adjustment  

AND Performance has increased by 20% since the last evaluation  

Increase f  by one level within the next 10 ms 

IF 500 ms have passed since the last frequency state adjustment  

AND Performance has decreased by 30% since the last evaluation 

AND A decrease of frequency state by one operating point will remain above 

50% of the maximum frequency state  

Decrease f  by one level within the next 10 ms 

In all our studies, we make use of three applications, some of 

which are CPU intensive and some of which frequently block while 

waiting for user input:  

 Watching a 3D Shockwave animation using the Microsoft Internet 

Explorer web browser. The animation was stored locally. 

Shockwave options were configured so that rendering was done 

entirely in software on the CPU. 

 Playing the FIFA 2005 Soccer game. FIFA 2005 is a popular sports 

game. The game was stored locally. There were no constraints on 

user gameplay.  

 Watching an HD quality movie trailer in Windows Media Player 

(WMP) while decoding another MPEG movie clip in the 
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background. Both clips were stored locally and decoding was done 

in software on the CPU. 

We conducted a study with twenty users to evaluate PICSEL. We 

developed a user pool by advertising our studies within Northwestern 

University. Some participating users were computer science, 

computer engineering, or electrical engineering students and others 

were less experienced with computer use. The studies were double-

blind and randomized (i.e., the order of DVFS techniques during the 

tests were randomized to eliminate any bias that might potentially be 

introduced by the order of techniques). The studies included 

intervention by proctors between trials. Each user evaluation lasted 

about thirty minutes, and consisted of the user doing the following:  

1. Filling out a questionnaire that asked the user to rate his or her 

level of experience in the use of PCs, Windows XP, DVD video, 3D 

animation, and FIFA 2005 from among the following set: “Power 

User”, “Typical User”, or “Beginner”. 

2. Listening to an explanation of how to play FIFA 2005 and how to 

rate his or her satisfaction with each application instance. 

3. Watching the 3D Shockwave animation three times using cPICSEL, 

aPICSEL, and Windows DVFS (2 minutes each). 
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4. Playing FIFA 2005 three times using cPICSEL, aPICSEL, and 

Windows DVFS (3.5 minutes each). 

5. Watching the movie trailer three times using cPICSEL, aPICSEL, 

and Windows DVFS (2 minutes each). 

After each application, the users were instructed to assign one of 

five levels of satisfaction to their experiences with the system 

performance for each instance of an application. The users were not 

asked to rank the instances against each other. 
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SECTION 4.2 

FREQUENCY RESULTS 

Figure 6 illustrates the performance of the two algorithms for three 

applications in our study. Each graph shows the CPU frequency for a 

randomly-selected user as a function of time. Notice that in all the 

applications both versions of PICSEL generally reduced processor 

frequency more than the Windows DVFS policy. The amount of 

frequency reduction varies across applications. PICSEL is most 

effective for the 3D animation application. As illustrated in Figure 2, 

this has the least variation in APC and APR values at lower 

frequencies. As a result, PICSEL greatly reduced the CPU frequency 

without affecting user-perceived performance. Similar results were 

observed for the video application. For the game, we observe less 

processor throttling. This is also expected because the APC values in 

Figure 1 degrade very quickly for the game and PICSEL can reduce the 

frequency in few cases. These results show that PICSEL reduces 

frequency compared to Windows DVFS while maintaining user 

satisfaction. In Section 4.4, we also analyze user satisfaction with the 

default Windows DVFS and PICSEL algorithms and show that the user 

satisfaction is not adversely affected for any of our target applications. 
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(A) 3D SHOCKWAVE ANIMATION 
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 (C) FIFA GAME 

FIGURE 6. FREQUENCY VS. TIME FOR THREE USER TRIALS 
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SECTION 4.3 

POWER MEASUREMENTS 

To analyze the effect of cPICSEL and aPICSEL on the power 

consumption of the system, we logged the frequency over time during 

the user studies described in the previous section. We then combine 

this frequency information with the offline profile to derive power 

savings for cPICSEL, aPICSEL, and the default Windows XP DVFS 

policy. In Section 4.3.1 we present the CPU dynamic power savings 

and in Section 4.3.2 we present the total system power savings. 

Section 4.3.3 presents the changes in the operating temperatures. 
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SECTION 4.3.1 

CPU DYNAMIC POWER REDUCTION 

The dynamic power consumption of a processor is directly related to 

its frequency and supply voltage and can be expressed using the 

formula P  V2CF, which states that power is equal to the product of 

voltage squared, capacitance, and frequency. By using the frequency 

traces and the nominal voltage levels on our target processor 

[Gochman et al. 2003], we calculated the relative dynamic power 

consumption. Figure 7 presents the CPU dynamic power reduction 

achieved by the PICSEL algorithms (cPICSEL and aPICSEL) for 

individual users. The rightmost bars correspond to the savings 

averaged across users. 
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(B) VIDEO 

 

 (C) FIFA GAME 

FIGURE 7. CPU DYNAMIC POWER REDUCTION WITH CPICSEL AND APICSEL OVER 
WINDOWS DVFS 
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in video output that annoy the user. The results show a considerable 

variation among different users. This can be explained by the fact that 

the control agent for APC calculation considers a sampling   window of 

64×51 pixels at the center of the display window. The relative position 

of the shockwave player while the user watches the 3D animation 

plays a role in the calculation of APC and APR. It subsequently affects 

the decision taken by the PICSEL algorithm. Nevertheless, as we will 

show in Section 4.4, such variations do not have an impact on user 

satisfaction. 

For the Video application, cPICSEL and aPICSEL reduce power 

consumption by averages of 9.6% and 19.7%, respectively. This 

suggests that the Video application is less conducive to frequency 

throttling than the Shockwave application. User 19 is the only 

exception where aPICSEL results in a power savings of 45.8%, greater 

than those for the Shockwave application. For the FIFA game, the 

average power improvements of 2.6% for cPICSEL and 6.7% for 

aPICSEL were lower than Video and Shockwave applications, 

suggesting that the FIFA game was the least conducive to frequency 

throttling. Note that PICSEL does not reduce the frequency for all the 

users while they play the FIFA game.  For example, cPICSEL does not 

reduce the frequency for user 19. Similarly, aPICSEL does not reduce 
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the frequency for user 17. This is understandable since the game 

application has the most steeply-sloped APC curve (Figure 1), 

meaning a change in frequency will have a larger effect on the game’s 

displayed output than on the displayed output of the other 

applications. 

For all three applications, we see that in all cases cPICSEL and 

aPICSEL lead to power savings compared to Windows DVFS. Averaged 

over three applications and 20 users, aPICSEL reduces the dynamic 

power consumption by 18.2%. cPICSEL results in a 9.1% power 

reduction. 
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SECTION 4.3.2 

SYSTEM POWER MEASUREMENT 

To further measure the impact of our techniques, we replayed the 

traces from the user studies described in Section 4.3.1 on the laptop. 

The laptop was connected to a National Instruments 6034E data 

acquisition board attached to the PCI bus of a host workstation, which 

permitted us to measure the power consumption of the entire laptop 

(including other memory, screen, hard disk, etc.). The sampling rate 

was set to 10 Hz. Each of the user studies was replayed five times to 

average out variation across trials. 

Figure 8 presents the system-level power savings of cPICSEL and 

aPICSEL relative to Windows DVFS. In general, the reduction in 

system-level power consumption is similar to the estimated processor 

dynamic power savings. cPICSEL and aPICSEL reduce power 

consumption by 16.8% and 25.7% on average for the 3D Shockwave 

animation, by 8.0% and 14.5% on average for the Video application, 

and by 2.6% and 6.2% on average for the FIFA game, respectively. On 

average, aPICSEL reduces system-level power consumption by 12.1%, 

aggregated over 20 users and three applications. cPICSEL reduces the 

system-level power consumption by 7.1%. 
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 (C) FIFA GAME 

FIGURE 8. SYSTEM POWER REDUCTION WITH CPICSEL AND APICSEL COMPARED 
TO WINDOWS DVFS 
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also reduced due to the decrease in voltage and the decrease in 

temperature resulting from reduced dynamic power consumption. 
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SECTION 4.3.3 

CHANGES IN PEAK TEMPERATURE 

We used CPUCool [Podien 2007], a Windows-based tool that logs 

temperatures at processor cores, to measure CPU temperature in the 

system. Figure 9 shows the reductions in peak temperatures of the 

system when using the cPICSEL and aPICSEL schemes. In all cases, the 

cPICSEL and aPICSEL schemes lower the temperature compared to 

the Windows native DVFS scheme due to the power reductions we 

have reported in the previous sections. The maximum temperature 

reduction of 16 C is seen in the case of the aPICSEL scheme used for 

the Shockwave application. On average, for all three applications, 

cPICSEL and   aPICSEL reduce the peak temperature of the system by 

1.7 C and 4.3 C, respectively, aggregated over all 20 users. 
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 (C) FIFA GAME 

FIGURE 9. PEAK TEMPERATURE REDUCTION 
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SECTION 4.4 

USER SATISFACTION 

We now discuss the satisfaction levels with the Windows DVFS and 

PICSEL algorithms for three applications as reported by individual 

users. During the user study, each participant was asked to give a 

satisfaction level from 1 to 5 (5 being the most satisfactory 

performance) for each application. Figure 10 illustrates the ranks 

awarded by each user.  Compared to Windows DVFS, cPICSEL results 

in slightly better satisfaction levels for all three applications 

aggregated over 20 users. The student t-test analysis of the results 

reveals that the difference is not due to chance with 90% confidence. 

aPICSEL and Windows DVFS provide the same satisfaction (a 

Student’s t-test analysis  identifies the two means  to be  identical  

with  over  99%  confidence). On average, aPICSEL is rated highest for 

the game application (3.8) where it results in the least power 

reduction. For the Shockwave application, maximum power reduction 

for the aPICSEL scheme caused it to have the lowest average user 

satisfaction score (3.5). 
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 (C) FIFA GAME 

FIGURE 10.USER RANKING DISTRIBUTION 
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minutes after starting the game). At that point, the processor itself 

reduces its own frequency to the lowest value possible. This causes a 

perceivable slowdown in game play and lower instruction throughput. 

Windows DVFS continues to operate even though it has been over-

ridden by the processor, and lowers its frequency to match the lower 

instruction throughput. Soon after the processor returns frequency 

control to Windows DVFS, the frequency is again set to the highest 

available frequency on the processor. This causes the temperature to 

rise again quickly, leading to consecutive thermal emergencies. 

Both cPICSEL and aPICSEL reduced the occurrence of thermal 

emergencies, with a total of 51 and 52 thermal emergencies during 

the game across all users, as compared to a total of 59 thermal 

emergencies under Windows DVFS. As a result, for processor-

intensive applications, PICSEL may deliver better user-perceived 

performance by reducing the probability of thermal emergencies. The 

satisfaction results also support this claim: aPICSEL provides the 

highest satisfaction for the game on average, because for this highly 

compute-intensive application, aPICSEL allows the greatest reduction 

in temperature, and resulting thermal emergencies. 
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FIGURE 11. THERMAL EMERGENCIES UNDER WINDOWS DVFS  
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SECTION 4.5 

RELATED WORK 

Dynamic voltage and frequency scaling (DVFS) is an effective 

technique for microprocessor energy and power control for most 

modern processors [Brock and Rajamani 2003, Gochman et al. 2003]. 

Energy efficiency has been a major concern for mobile computers. 

Gurun and Krintz [2006] have proposed a new model for estimating 

energy consumption using hardware and software counters. Fei et al. 

[2004] proposed an energy aware dynamic software management 

framework that improves battery utilization for mobile computers. 

However, this technique is only applicable to highly-adaptive mobile 

applications. Researchers have proposed algorithms based on 

workload decomposition [Choi et al. 2004], but these tend to provide 

power improvements only for memory-bound applications. Wu et al. 

[2005] presented a design framework of a run-time DVFS optimizer in 

a general dynamic compilation system. The Razor [Ernst et al. 2003] 

architecture dynamically finds the minimal reliable voltage level. Dhar 

et al. [2002] proposed adaptive voltage scaling that uses a closed-loop 

controller targeted towards standard-cell ASICs. Intel Foxton 

technology [Wei 2007] provides a mechanism for certain Intel 

Itanium 2 processors to adjust core frequency during operation to 
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boost application performance. However, unlike PICSEL it does not 

perform dynamic voltage setting. To the best of our knowledge, no 

previous DVFS techniques consider user-perceived performance. 

Other DVFS algorithms use task information, such as response 

times in interactive applications [Lorch and Smith 2003, Yan et al. 

2005] as a proxy for the user. Vertigo [Flautner and Mudge 2002] 

monitors application messages and could be used to perform the 

optimizations implemented in our study. However, compared to 

Vertigo, our approach is simpler to implement and achieves 

comparable power savings. Xu et al. [2005] proposed novel 

schemes to minimize energy consumption in certain real-time 

embedded systems. However, they try to adapt to the variability of the 

workload rather than to the users. Gupta et al. [2004] studied user 

satisfaction with resource borrowing and noted a high variation in 

user tolerance for any given level of system resources in desktop 

computing applications.  Lin and Dinda [2006] developed a CPU 

scheduling system that used direct user feedback to exploit this 

variation. Mallik et al. [2006] showed that this variation also exists for 

power management, and presented a successful power management 

approach based on direct user feedback. 
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Ranganathan et al. [2006] explored using OS-level knowledge 

about screen content to reduce the power consumption of the screen 

itself, however no work has been done using knowledge of screen 

content to control the voltage and frequency of a processor.  Gurun 

and Krintz [2005] looked at OS-level knowledge of user-generated 

events to control a DVFS scheme but did not use knowledge of screen 

content. Our work, instead, uses detailed screen information to 

control the CPU’s voltage and frequency levels. 

A study of user perception of audio and video quality found that 

the loss of video frames decreases user satisfaction [Wijesekera 

1999]. Frame rate also has a significant effect on user satisfaction, 

with satisfaction increasing logarithmically with the number of frames 

displayed per second [Claypool et al., 2006]. Finally, Gulliver and 

Ghinea [2007] found that both video delay and jitter cause a 

significant reduction in users’ perception of the quality of a video. 

However, none of these results were used to control processor 

resources. 
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CHAPTER 5 

CONCLUSION 

Any architectural optimization ultimately aims to satisfy the user. Its 

success or failure rests on the accuracy of its performance metrics as 

proxies for user satisfaction. In this work, we argue that rather than 

using metrics that are “close to metal”, architectures should optimize 

for metrics that are “close to flesh”. To evaluate such an approach, we 

have developed a new power management technique: PICSEL 

(Perception-Informed CPU performance Scaling to Extend battery 

Life). This technique reduces CPU power consumption in comparison 

with existing DVFS techniques. User studies show that our technique 

reduces system-level power consumption of our target laptop on 

average by 7.1% for a conservative approach (cPICSEL) and 12.1% for 

the aggressive version (aPICSEL) compared to the Windows XP DVFS 

scheme. Furthermore, CPU temperatures can be markedly decreased 

through the use of our techniques. User studies also revealed that the 

difference in overall user satisfaction between the more aggressive 

version of PICSEL and Windows DVFS were statistically insignificant, 

whereas the conservative version of PICSEL improved the users’ 

overall satisfaction when compared to Windows DVFS. 
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