

PICSEL: Measuring User-Perceived Performance
to Control Dynamic Frequency Scaling

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Masters of Science

in
 COMPUTER ENGINEERING

By

Jack Cosgrove

April 2008

i

© COPYRIGHT JACK COSGROVE 2008

ALL RIGHTS RESERVED

ii

ABSTRACT

The ultimate goal of a computer system is to satisfy its users. The

success of architectural or system-level optimizations depends largely

on having accurate metrics for user satisfaction. I propose to derive

such metrics from information that is “close to flesh” and apparent to

the user rather than from information that is “close to metal” and

hidden from the user. Arindam Mallik, a graduate student in the

Electrical Engineering and Computer Science department at

Northwestern University, and I describe and evaluate PICSEL, a

dynamic voltage and frequency scaling (DVFS) technique that uses

measurements of variations in the rate of change of a computer’s video

output to estimate user-perceived performance. Adaptive algorithms,

one conservative and one aggressive, use these estimates to

dramatically reduce operating frequencies and voltages for

graphically-intensive applications while maintaining performance at a

satisfactory level for the user. I explore the best method to measure

video output. Arindam and I evaluate PICSEL through user studies

conducted on a Pentium M laptop running Windows XP. Experiments

performed with 20 users executing three applications indicate that

the measured laptop power can be reduced by up to 12.1%, averaged

across all users and applications, compared to the default Windows

iii

XP DVFS policy. User studies revealed that the difference in overall

user satisfaction between the more aggressive version of PICSEL and

Windows DVFS were statistically insignificant, whereas the

conservative version of PICSEL actually improved user satisfaction

when compared to Windows DVFS.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor Prof. Robert Dick for his insight,

enthusiasm, and patience, and without whom my research would not

have been possible. I would also like to thank Arindam Mallik for

being a top-flight collaborator, also without whom this research

would not have been possible. I would additionally like to thank Profs.

Gokhan Memik and Peter Dinda for their invaluable collaboration and

support. Many thanks also to Bin Lin who did early work in user-

driven frequency scaling, and to the participants in the user study. I

would also wish to extend my gratitude to the reviewers and

attendees of ASPLOS 2008 for their valuable feedback.

Much love and thanks to my family and friends who have brought

me to this point in my life.

Lastly, I would like to thank Profs. Dick, Memik, and Dinda for

administering my thesis examination.

This research is supported in part by DOE Awards DE-FG02-

05ER25691 and DE-AC05-00OR22725 (via ORNL), NSF Awards CNS-

0720691, CNS-0721978, CNS-0715612, IIS-0613568, CNS-0551639,

CNS-0347941, CCF-0541337, IIS-0536994, CCF-0444405, ANI-

v

0093221, ANI-0301108, and EIA-0224449, by SRC award 2007-HJ-

1593, by Wissner-Slivka Chair funds, and by gifts from Symantec, Dell,

and VMware.

vi

CONTENTS

_Toc196303359_Toc196303360List of Figures .. vii

List of Tables ... viii

Chapter 1 Introduction ... 1

Chapter 2 User-perceived performance .. 5

Chapter 3 PICSEL Framework .. 12

Section 3.1 PICSEL Display Access .. 13

Section 3.1.1 CPU Implementation on Target Hardware 15

Section 3.1.2 CPU Implementation on Contemporary Hardware 18

Section 3.1.3 GPU Implementation on Contemporary Hardware 19

Section 3.1.4 Hybrid Implementation on Contemporary Hardware 21

Section 3.1.5 PICSEL Benchmarks on Contemporary Hardware 22

Section 3.2 PICSEL Algorithm .. 25

Section 3.3 Current Implementation and Integration 28

Chapter 4 Evaluation .. 30

Section 4.1 Experimental Setup .. 32

Section 4.2 Frequency Results... 36

Section 4.3 Power Measurements .. 39

Section 4.3.1 CPU Dynamic Power Reduction .. 40

Section 4.3.2 System Power Measurement ... 44

Section 4.3.3 Changes in Peak Temperature .. 48

Section 4.4 User Satisfaction .. 51

Section 4.5 Related Work .. 56

Chapter 5 Conclusion ... 59

References .. 60

vii

LIST OF FIGURES

Figure 1. IPS and APC curve ... 7

Figure 2. APR curves for the three applications ... 11

Figure 3. Graphics pipeline in a modern PC ... 13

Figure 4. Sample time for PICSEL versions ... 23

Figure 5. Power consumption for PICSEL versions ... 24

Figure 6. Frequency vs. time for three user trials .. 38

Figure 7. CPU dynamic power reduction ... 41

Figure 8. System power reduction ... 46

Figure 9. Peak temperature reduction .. 50

Figure 10.User ranking distribution .. 53

Figure 11. Thermal emergencies under Windows DVFS 55

file:///C:\svn\user-driven\trunk\picsel\taco\thesis2.docx%23_Toc196302906

viii

LIST OF TABLES

Table 1. User-perceived performance metrics…………………………………………... 8

1

CHAPTER 1

INTRODUCTION

Existing architectures and systems software typically optimize for

user satisfaction by employing metrics based largely on instruction

throughput (e.g., instructions-per-second). These metrics are used

because they are easy to access, easy to compare across platforms,

and are believed to reflect user demands for performance at a very

low level. However, I will show that low-level information is not as

good a proxy for user satisfaction with performance as is high-level

information actually observed or perceived by the user. I focus on

interactive applications and show that it is possible to infer

information about user-perceived performance by measuring changes

in video output. This provides better information about the

performance level necessary to maintain user satisfaction. Arindam

Mallik and I demonstrate the utility of this information in on-line

power management.

Processor frequency has a strong effect on power consumption

and temperature, directly and also indirectly through the need for

higher voltages at higher frequencies. Dynamic Voltage and Frequency

Scaling (DVFS) is one of the most commonly used power reduction

2

techniques in modern processors. DVFS varies the frequency and

voltage of a microprocessor at runtime to trade off power

consumption and processor performance. Specifically, existing DVFS

techniques in high-performance processors select an operating point

(CPU frequency and voltage) based on the utilization of the processor

and other information available to the Operating System (OS) kernel.

This approach is often pessimistic regarding user satisfaction, setting

the processor frequency higher than necessary to ensure user

satisfaction with performance. A high level of CPU utilization or a

burst of certain OS events leads directly to a high frequency (and high

voltage), regardless of the user’s satisfaction with performance. This

can produce unnecessary increases in frequency, voltage, power

consumption, and temperature.

In response to this observation, Arindam and I have developed a

new power management technique that relies upon a more accurate

proxy for user performance needs than CPU- or OS-level events, but

that is still inexpensive to measure. We estimate user satisfaction with

processor performance using information that is “close to flesh” and

apparent to the user rather than information that is “close to metal”

and hidden from the user. Interface devices are the logical locations

for these measurements since they sit between computation and user

3

perception. Video output is particularly useful because it is the user’s

primary source of information regarding the performance of the

computer.

We must note that a user satisfaction-aware optimization policy

does not need an absolute metric for user-perceived performance to

make decisions. The policy will only make decisions for the

architecture on which it is implemented. Using this idea in the context

of DVFS, we can compare the displayed performance of applications

that change the display at lower frequencies to the displayed

performance at the processor’s highest available frequency. If the two

frequencies result in identical sequences and timing of frames on the

screen, then we can safely conclude that these two processor states

have the same displayed performance. This maximum frequency

satisfies user demands for displayed performance as well as the

architecture can, marking a basis for satisfying the user that is fixed

for the architecture. Hence, initializing a DVFS policy at the maximum

frequency “seeds” the policy with a meaningful level of displayed

performance.

To evaluate this idea, we have developed a new power

management framework called PICSEL (Perception-Informed CPU

4

performance Scaling to Extend battery Life) that monitors the rate of

change of pixel intensities in the display. An algorithm controlling the

processor’s operating frequency then makes decisions based upon

these rates of change. The algorithm is tested with two configurations:

conservative PICSEL (cPICSEL) and aggressive PICSEL (aPICSEL)

(Section 3.2). We focus on the DVFS technique implemented by a

commercial OS and show that runtime estimation of user-perceived

performance using pixel intensities can enhance the effectiveness of

the power management scheme. We also show that this approach can

result in optimizations that are not possible otherwise.

5

CHAPTER 2

USER-PERCEIVED PERFORMANCE

The motivation for including user-perceived performance in any

objective function is clear: the ultimate goal of computer systems

design is to satisfy the user. However, the difficulty in optimizing

directly for user-perceived performance is in finding a corresponding

metric that can be efficiently measured at runtime. For interactive

applications, the events occurring on the input/output devices are

good candidates for measuring user satisfaction with performance.

However, input events are rare compared to output events. Therefore,

considering output to the user is preferable for estimating the

performance experienced by the user. Of all the types of output

supplied to the user, graphics are used in the highest proportion of

applications. Therefore, we considered exploiting properties of the

display to estimate user-perceived performance.

Given an application that only changes the display, it is plausible

that the frame sequence and frame rate are indications of the user-

perceived performance of that application. For example, if there are

two architectural alternatives that result in identical frame sequences

and frame rates, we can reasonably say that these architectures

6

provide the same user-perceived performance. And even if there is

some degradation in video output, this degradation may be offset by

reductions in power consumption that ultimately lead to the same

user-perceived performance.

Trading off video output for power consumption requires

knowledge of when the video output has degraded beyond a level

acceptable to the user. Ghinea and Thomas [2005] have done a

perceptual study showing that varying both the color depth and the

frame rate has a significant effect on user satisfaction with

performance. However, extracting the exact frame rate and color

depth information would require changes in the application or OS.

Hence, we decided to employ a metric that is independent of the

application and easily measurable: the rate of pixel intensity change

over time. This captures the combination of color depth and frame

rate.

I built the experimental framework for testing this metric, and

Arindam performed an experiment to understand the relationships

between instruction throughput, rate of pixel change, and user-

perceived performance. In these experiments, we measured the

number of instructions-per-second (IPS) on a 2.13 GHz Intel Pentium

7

M-based laptop (please see Section 4.1 for further details on the

experimental study environment) for three applications: a 3D

Shockwave animation, a DVD quality video, and a 3D video game. We

also measured the changes in intensity in the red, green, and blue

channels of some of the pixels being used to display these applications

using the method described in Section 3.1, and averaged these

changes together for each time instance to obtain the Average Pixel

Change (APC). The procedure to calculate APC is presented in Table

1. We repeated these measurements at all six available processor

operating frequencies.

FIGURE 1. IPS AND APC CURVE

0.4

0.5

0.6

0.7

0.8

0.9

1

2.13 1.8 1.6 1.3 1 0.8

R
e
la

ti
v
e
 C

h
a

n
g

e
s

CPU Frequency [GHz]

Game (APC) Game (IPS)

3D Anim (APC) 3D Anim (IPS)

Video (APC) Video (IPS)

8

TABLE 1. USER-PERCEIVED PERFORMANCE METRICS

Metric Measurement Procedure

Average Pixel

Change (APC)

 Capture the Pixel intensities of the RGB

channels of all the pixels in a memory

buffer

 Calculate the relative changes for all the

sampled pixels

 The mean of relative changes is the APC

Rate of Average

Pixel Change (APR)
(APCTi – APCTi-1)/(Ti - Ti-1)

Figure 1 illustrates the results of this experiment, with the solid

lines representing the APC curve and dotted lines representing the IPS

curve. As depicted in the figure, the IPS of the system is closely related

to the operating frequency of the CPU and is fairly uniform across the

three applications. APC is also dependent on the operating frequency,

but this dependence is influenced by the application more than IPS is

influenced. For the Shockwave application, the effect on APC due to

frequency throttling is below 10% for the highest three frequencies.

9

The Video application shows similar properties. For this task, we

could simply set the frequency statically to a lower value without

causing noticeable change in the APC. For the game application, the

highest two frequency states can sustain the APC value within 10% of

its maximum value. However, the lower frequency states cause the

APC value to drop suddenly. Most importantly, we see a significant

difference between the reduction in IPS and APC. In other words,

these results show that the instruction throughput and user-perceived

performance are not linearly related. We observe that the APC value

of a system can quantify user perceived performance and can be used

as a metric for a power management scheme that implements DVFS

based on user-perceived performance.

The primary metric we use for user-perceived performance is APC

normalized to the total number of pixels in the display. As shown in

Figure 1, we observe considerable variation in the APC values across

different applications as well as different frequency states. On the

other hand, it is also possible that the reduction in the frequency may

result in discontinuities in the video output. Previous researchers

[Gulliver and Ghinea 2007] have found that jitter and latency are the

main sources of user discontent in networked multimedia

applications. For example, consider an application that starts skipping

10

frames when the computational power is reduced. In such a case, the

APC may not be affected significantly: in a sequence of frames, even if

some of the intermediate frames are skipped, the pixel difference

between the first and the last frames does not change.

To capture the occurrences of such discontinuities, we record the

Rate of Average Pixel Change (APR) normalized over the number of

pixels. In other words, we calculate the difference between the APC

values measured at each time instance. This is the derivative of the

APC. Figure 2 illustrates the APR trends observed in three

applications used in this paper. When there are glitches during

display, the APR value tends to increase rapidly. This is true for

applications where video glitches are observed at lower frequencies,

namely the Video and 3D Shockwave animation. For other

applications (such as the game), we simply observe an overall

slowdown and APR values drop in proportion to APC levels. Such

applications reduce game jitter at the price of reducing the frame rate.

As a result, for this particular application we actually observe a

reduction in APR value at lower frequencies as the game’s average

frame rate is reduced.

11

FIGURE 2. APR CURVES FOR THE THREE APPLICATIONS

APR reveals even more pronounced differential behavior across

applications than APC. This behavior can permit a DVFS algorithm to

differentiate between two applications with similar computational

loads and to assign them to different operating frequencies, one

potentially lower than would have otherwise been assigned by

existing pessimistic DVFS schemes.

0.4

0.8

1.2

1.6

2

2.4

2.13 1.8 1.6 1.3 1 0.8

R
e
la

ti
v
e
 C

h
a

n
g

e
s

CPU Frequency [GHz]

Game (APR)

3D Anim (APR)

Video (APR)

12

CHAPTER 3

PICSEL FRAMEWORK

User-perceived performance-based frequency scaling has two

components. First, we have to measure the rate of change in the pixels

displayed on the screen. This measurement tool is described in the

next section and was built by me. Then, we have to make a throttling

decision based on these measurements. The algorithm making this

decision is described in Section 3.2 and was designed by Arindam

Mallik. In Section 3.3, we describe how PICSEL interacts with the

system.

13

SECTION 3.1

PICSEL DISPLAY ACCESS

There are several methods for accessing the content of a computer

display owing to the many steps involved in generating this content.

Although more complex schemes are possible, the organization of a

generic graphics pipeline in a contemporary computer is shown in

Figure 3.

Application content is read and produced by the CPU, which

determines what action should be taken by the video card. The video

card then performs operations on the data stream sent by the CPU.

The most common operations are blitting, rendering, and decoding.

Blitting is a method to erase and redraw sections of a bitmapped

image faster than a pixel-by-pixel scan. Rendering uses highly parallel

floating-point processors to transform three-dimensional primitives

into two-dimensional images. Some video cards also decode

compression techniques such as MPEG-2. Each of these different

methods may use separate portions of video memory that are

Frame Buffer

Video Card

Blitting

Rendering

Decoding

CPU
Main

Memory

FIGURE 3. GRAPHICS PIPELINE IN A MODERN PC

14

invisible to each other until pieced together on the frame buffer by a

process called composition. The frame buffer consists of at least two

video memory buffers each as large as the monitor screen.

The use of both the processor and the graphics hardware offers

two implementation models for PICSEL. One model stores the

screenshots in main memory and performs the computations on the

CPU. This has the advantage of faster CPU speeds and the

disadvantage of transferring more data through the bus that lies

between the CPU and graphics hardware. This bus is a major

bottleneck in CPU-GPU communication. The other model stores the

screenshots in video memory and performs the computations on the

GPU. This has the advantage of transferring less data over the bus and

the disadvantage of using the slower and increasingly energy-hungry

GPU to perform the computation. We compared a main memory/CPU

implementation against a video memory/GPU implementation, as well

as a hybrid approach, and found that for most screen sizes the CPU

implementation was the most efficient. We used this main

memory/CPU implementation in our user studies with PICSEL.

15

SECTION 3.1.1

CPU IMPLEMENTATION ON TARGET HARDWARE

Our target hardware was an IBM Thinkpad T43p with a 2.13 GHz

Pentium M-770 CPU, an ATI Mobility FireGL V3200 GPU with PCI-

Express, and 1 GB memory running Microsoft Windows XP

Professional SP2.

CPU-based PICSEL gathers screen information using the Windows

GDI screenshot method, which is simple to implement and can blit any

region of the screen to main memory. However, screen content may

be missing from sections of the blitted region if those sections were

drawn elsewhere in video memory by a rendering or decoding

operation. We set our applications to perform rendering and decoding

in software in order to capture these operations with a GDI

screenshot. This also places the computational load for those

operations on the CPU, thus making them subject to CPU frequency

scaling. Ideally we would like to consider all the pixels present in the

display while calculating the APC. Furthermore, the rate of APC

calculation should be same as the rate of frame change in the system.

However, both of these constraints introduce heavy computational

overhead on the system used for the user studies. Therefore, it was

necessary to reduce the size of the captured screen area the CPU load

16

of the capturing process. We decided to limit the overhead to less than

2% CPU utilization. The final captured area is 64×51 pixels, or a

scaling down of each dimension of a 1280 by 1024 screen by a factor

of 20. This area contained 3276 pixels and was fixed at the center of

the screen. We chose to capture a contiguous rectangle of pixels

rather than a disjoint grid of pixels because capturing the disjoint grid

proved to be much more computationally intensive than capturing the

contiguous rectangle, holding the number of pixels constant. Because

blitting transfers contiguous blocks of data by design, fewer transfers

are necessary to capture an area covered by a fraction of the blocks

rather than a screen-size grid covered by all of the blocks.

The sampling frequency for calculating APC was chosen to be 10

Hz, the highest frequency with which our framework did not exceed

the 2% CPU utilization threshold for the captured pixel area. There is

a computational tradeoff between sampling frequency and capture

area. Arindam and I found an acceptable tradeoff through initial

testing on the game, video, and Shockwave applications. As we will

show in Section 4, these sampling parameters do not prevent PICSEL

from capturing the user-perceived performance for our target

applications. Nevertheless, it is possible that some applications will

17

not use our capture area; hence it may be desirable to overcome these

limitations for other application domains.

After a section of the screen has been captured, it is stored to a

memory buffer. This buffer is compared to another buffer containing

the previous screen capture, and the intensity differences for the red,

green, and blue channels are calculated. Only two buffers are

necessary, with each buffer toggling between old and new screen

captures. All of the magnitude differences are averaged to obtain the

APC.

It is important to understand that this method does not capture

each frame and that there are unaccounted-for frames between the

two frames used to calculate the intensity difference. This introduces

noise into the APC metric. However, since we also measure the APR,

we can detect trends in pixel intensity that would otherwise be

obscured by the noise. This permits a sampling frequency below the

frame rate of the screen.

18

SECTION 3.1.2

CPU IMPLEMENTATION ON CONTEMPORARY HARDWARE

We also tested CPU-based PICSEL on a Shuttle xPC with a 1.86 GHz

Core 2 Duo E6300 CPU, a NVIDIA GeForce 8600GT GPU with PCI-

Express, and 1 GB memory running Microsoft Windows XP Professional

SP2. This system allowed us to capture an area of 1024 by 1024 pixels

at a sampling frequency of 40 Hz while staying under the 2% utilization

ceiling. This capture area and sampling frequency are close to actual

screen sizes and display refresh rates. These results show that a

version of CPU-based PICSEL that captures the entire screen every

frame is practical with contemporary hardware.

19

SECTION 3.1.3

GPU IMPLEMENTATION ON CONTEMPORARY HARDWARE

The raw video output that is sampled by PICSEL resides in video

memory, and an implementation that was able to run on the GPU

would preclude transferring the sampled output to main memory.

This would remove the main bottleneck on performance. With this in

mind, I rebuilt PICSEL within NVIDIA’s CUDA framework for

programming on GPUs. Starting from the “postProcessGL” example in

the CUDA SDK [2008] and also using code from the “reduction”

example, the GPU-based version of PICSEL stores the captured screen

areas in video memory and also performs the computation on these

screenshots using the GPU, requiring minimal data transfer back to

main memory. GPU-based PICSEL does not use the Windows GDI

screenshot and can only capture the contents of one OpenGL

application window. This method of capture is acceptable for

performance measurements but is not practical for end-use since only

one window of the screen is captured.

GPU-based PICSEL renders the screen to a pixel buffer object

(PBO). Subsequent PBOs are then compared, with the absolute RGB

intensity differences between all of the pixels stored in a buffer in

video memory. This halves the amount of memory needed, since the

20

four channels in each pixel (ARGB) require four bytes while the sum

of absolute RGB intensity differences can be stored in two bytes.

These per-pixel sums are then summed together for the entire capture

area. This process is called reduction because it reduces many values

into a single value. The reduction portion of PICSEL display access is

not efficient on the GPU, and as will be seen, its overhead exceeds the

improvements resulting from efficient video memory transfer and

packing.

21

SECTION 3.1.4

HYBRID IMPLEMENTATION ON CONTEMPORARY HARDWARE

The first part of GPU-based PICSEL calculates the per-pixel sum of

absolute differences on the GPU. This sum can be expressed using

only two bytes, which is half the amount of data needed to express the

ARGB components of each pixel. This halves the amount of data that

needs to be transferred from video memory to main memory. To

exploit this improvement without incurring the cost of GPU-based

reduction, we implemented a third hybrid CPU-GPU-based version of

PICSEL that calculated the per-pixel sum of absolute intensity

differences between frames on the GPU and the sum of these

differences on the CPU. This method proved to have an overhead

comparable to CPU-based PICSEL and outperformed it at a screen size

of 1024 by 1024 pixels.

22

SECTION 3.1.5

PICSEL BENCHMARKS ON CONTEMPORARY HARDWARE

In order to capture the screen for the GPU-based and hybrid versions

of PICSEL, it was necessary to have a simple OpenGL application

running in the background. This application consisted of the GLUT

teapot rotating in space and placed a negligible load on both the CPU

and GPU. All timing information for the benchmarks was obtained

from clock cycle counters embedded in the code of the PICSEL

versions. Each counter captures all of the elapsed time since the last

counter, meaning all other processes running on the machine as

scheduled by the OS were included in each measurement. However,

we minimized the number of outside processes and any error

introduced by this timing technique is uniform across all three PICSEL

versions. The sampling frequency for all PICSEL versions was held

constant at 10 Hz and the CPU frequency was also held constant at

1.86 GHz.

The timing information shown in Figure 4 is the actual amount of

time that elapsed starting from the screen capture and ending with

the output of the final summed value for APC for that sample.

23

The power consumption shown in Figure 5 was measured using a

current clamp around one wire of the power supply cable to the

computer case, meaning the power consumption of the CPU and GPU

were both captured but the power consumption of the peripheral

devices with independent power supplies was excluded.

FIGURE 4. SAMPLE TIME FOR PICSEL VERSIONS AS CAPTURE AREA INCREASES

0

10

20

30

40

50

1024 4096 16384 65536 262144 1048576

C
a

p
tu

r
e
 a

n
d

 S
u

m
m

a
ti

o
n

 T
im

e
 (

m
s)

Capture Area (pixels)

CPU Only GPU Only Hybrid

24

FIGURE 5. POWER CONSUMPTION FOR PICSEL VERSIONS AS CAPTURE AREA
INCREASES

These results suggest that CPU-based PICSEL can be efficiently

implemented on contemporary processors with high sampling rates

and large capture areas. They also show that GPU-based PICSEL is

possible, although a CPU-based implementation is generally more

efficient on contemporary hardware.

80

85

90

95

100

105

110

115

1024 4096 16384 65536 262144 1048576

P
o

w
e
r
 C

o
n

su
m

p
ti

o
n

 (
W

)

Capture Area (pixels)

Idle CPU Only GPU Only Hybrid

25

SECTION 3.2

PICSEL ALGORITHM

PICSEL sets the frequency level based on three state variables: f, the

current CPU frequency; µAPC, APC in the last time interval; and µAPR,

APR in the last time interval. Pixel data are measured at fixed

sampling frequency and stored to a file by a background process.

Adaptation is controlled by three constant parameters: , the APC

change threshold; the APR change threshold; and , the threshold

difficulty level corresponding to each frequency state.

PICSEL can either be in the initialization or the control state. The

idea in the initialization stage is to capture information about the APC

and APR values observed at the highest frequency. These values will

be used as a base case for comparison during the control stage to

make throttling decisions. Therefore, during initialization, the CPU

frequency is set at the highest value fmax for a time interval Tinit. The

APC and APR values of the system over the time interval Tinit are

obtained from the background process and initialized as APCinit and

APRinit. PICSEL then enters the control state in which, at the end of

each time interval Ti, the APC and APR of the system over the last

26

interval are obtained from the background process. PICSEL then

makes a decision as follows:

IF (APCinit - APC) < ×(1-) × APCinit

 OR |APRinit - APR| < ×(1-) × APRinit

Reduce f by one level

Reset of the last level to 0

ELSE

Increase f by one level

Increment

The main idea in this pseudocode is to compare the last observed

APC and APR against the APC and APR captured when the processor is

executing at the highest frequency. Then, based on the threshold

factors defined by and we may conclude that the user-

perceived performance is unchanged and try to reduce the frequency

and power consumption. Otherwise, out-of-bound values of APC and

APR suggest that user-perceived performance has suffered in the last

interval due to low CPU frequency and it is increased accordingly to

improve the user-perceived performance.

Factor helps the algorithm to learn from those times when it

decreased the frequency too much. If PICSEL had to increase the

processor frequency several times to restore user-perceived

27

performance, makes it harder to subsequently decrease the

frequency. Following every third (n=3) update to , PICSEL reenters

the initialization state. This feature of the algorithm permits PICSEL to

gradually adjust to a new set of operating conditions. The constant

parameters (Ti = 7 seconds, Tinit = 10 seconds) were set based on the

experience of the authors using the system. α is initialized to zero for

each of the frequency levels and is incremented by 0.1 for each

frequency boost. We used two variations of the PICSEL algorithm by

fixing the and which correspond to

conservative PICSEL (cPICSEL) and aggressive PICSEL (aPICSEL),

respectively.

Ideally, we would like to empirically evaluate the sensitivity of

PICSEL performance to these parameters. However, it is important to

note that any such study would require having real users in the loop,

and thus would be quite slow. Testing three values of five parameters

on 20 users would require 243 days (based on 20 users per day and

25 minutes per user). For this reason, we decided to choose the

parameters based on qualitative evaluation by the authors and then

close the loop by evaluating the whole system with the choices.

28

SECTION 3.3

CURRENT IMPLEMENTATION AND INTEGRATION

For our user studies, we disabled the default DVFS policy and give

control of the processor frequency to PICSEL. Once PICSEL is active, it

executes client software that runs as a Windows toolbar task as well

as an API that controls CPU frequency based on user perceived

performance. In the client, we log the APC and APR at the background.

The API uses these values to control CPU frequency. It is this

implementation that we evaluate in the next section.

In its current implementation, PICSEL has some limitations that

would require integration with the OS to overcome. One limitation is

that PICSEL always controls the processor frequency while it is

running. PICSEL should control the processor frequency only if the

system is executing an application that modifies the display. This

could be accomplished by sampling the video output as usual without

making frequency decisions. If the APC/ APR values cross a threshold,

PICSEL frequency control is activated. If the APC/APR values drop

below a threshold, PICSEL gives the processor frequency control back

to the OS. This means that although PICSEL will always monitor the

video output, it will only assume control of the processor frequency

when appropriate. Another limitation is that PICSEL cannot detect the

29

computational needs of processes without video output, such as code

compilation and computational analysis. This limitation is partially

overcome if another process with video output is running at the same

time as the process without video output. In this case, the frequency

will be kept high if a background job takes CPU resources away from

the process with video output. In this way, the process with video

output is acting as a “canary in a coal mine” whose performance

degradation is apparent to PICSEL.

We must note that running background jobs does not cause any

problem for PICSEL. In fact, one of our applications targeted in the

next section includes a non-interactive background job to

demonstrate that our concept is applicable in such cases. If there is a

CPU-intensive background job, a reduction in the frequency causes a

significant reduction in the APC (even if the interactive application

itself is not computationally intensive). Therefore, PICSEL will keep

the frequency high. If, on the other hand, the background job is not

CPU-intensive, the frequency can be safely reduced, which is exactly

the action taken by PICSEL.

30

CHAPTER 4

EVALUATION

We now evaluate cPICSEL and aPICSEL. We compare against the

native Windows XP DVFS scheme, displaying reductions in power

consumption and temperature. In Section 4.4, we also present user

satisfaction results.

Our evaluations are based on user studies conducted by both

Arindam Mallik and me. These are described in Section 4.1. We trace

the user’s activity on the system during the use of the applications and

monitor the responses of Windows DVFS, cPICSEL, and aPICSEL. For

studies involving PICSEL, the cPICSEL and aPICSEL algorithms are

used online to control the clock frequency in response to APC and APR

values. In the rest of this section, we first describe a user study of

PICSEL that provides both independent results and traces for later

use. Next, we present dynamic CPU power consumption estimates,

system power measurements, and temperature measurements.

PICSEL estimates user-perceived performance via APC and APR

values and customizes processor frequency to the individual user.

This typically leads to significant power savings compared to existing

dynamic frequency schemes that rely only on CPU utilization as

31

feedback. The frame buffer readings and the corresponding

calculations for measuring user-perceived performance are

infrequent, and impose less than 2% computational overhead. PICSEL

performs APC and APR readings during user studies, hence all the

results presented for PICSEL (including power and user satisfaction)

include this overhead and its potential impact on user satisfaction.

32

SECTION 4.1

EXPERIMENTAL SETUP

Our experiments were done using an IBM Thinkpad T43p with a 2.13

GHz Pentium M-770 CPU and 1 GB memory running Microsoft

Windows XP Professional SP2. The Pentium M uses the second

generation of Intel’s SpeedStep technology, in which six CPU

frequency-voltage operating points are available.

Our base case for comparison, the Windows XP Adaptive scheme,

is Microsoft’s adaptive DVFS scheme for portables/laptops. Adaptive

DVFS uses all of the frequency states in the Intel Speedstep

technology. Performance needs are measured from heuristics “such as

processor utilization, current battery level, use of processor idle

states, and inrush current events” [Microsoft Corporation 2003]. In

our experimental setup, we ran the computer off AC power, the

processor was always active, and we ran trials close enough together

to prevent hard disk timeout in order to minimize inrush current

events. This leaves processor utilization as the main input to the

adaptive DVFS, which makes decisions according to the following

algorithm. The algorithm is evaluated whenever the system is in the

idle loop, or every 300 ms if running processes prevent the system

from entering the idle loop.

33

IF 150 ms have passed since the last frequency state adjustment

AND Performance has increased by 20% since the last evaluation

Increase f by one level within the next 10 ms

IF 500 ms have passed since the last frequency state adjustment

AND Performance has decreased by 30% since the last evaluation

AND A decrease of frequency state by one operating point will remain above

50% of the maximum frequency state

Decrease f by one level within the next 10 ms

In all our studies, we make use of three applications, some of

which are CPU intensive and some of which frequently block while

waiting for user input:

 Watching a 3D Shockwave animation using the Microsoft Internet

Explorer web browser. The animation was stored locally.

Shockwave options were configured so that rendering was done

entirely in software on the CPU.

 Playing the FIFA 2005 Soccer game. FIFA 2005 is a popular sports

game. The game was stored locally. There were no constraints on

user gameplay.

 Watching an HD quality movie trailer in Windows Media Player

(WMP) while decoding another MPEG movie clip in the

34

background. Both clips were stored locally and decoding was done

in software on the CPU.

We conducted a study with twenty users to evaluate PICSEL. We

developed a user pool by advertising our studies within Northwestern

University. Some participating users were computer science,

computer engineering, or electrical engineering students and others

were less experienced with computer use. The studies were double-

blind and randomized (i.e., the order of DVFS techniques during the

tests were randomized to eliminate any bias that might potentially be

introduced by the order of techniques). The studies included

intervention by proctors between trials. Each user evaluation lasted

about thirty minutes, and consisted of the user doing the following:

1. Filling out a questionnaire that asked the user to rate his or her

level of experience in the use of PCs, Windows XP, DVD video, 3D

animation, and FIFA 2005 from among the following set: “Power

User”, “Typical User”, or “Beginner”.

2. Listening to an explanation of how to play FIFA 2005 and how to

rate his or her satisfaction with each application instance.

3. Watching the 3D Shockwave animation three times using cPICSEL,

aPICSEL, and Windows DVFS (2 minutes each).

35

4. Playing FIFA 2005 three times using cPICSEL, aPICSEL, and

Windows DVFS (3.5 minutes each).

5. Watching the movie trailer three times using cPICSEL, aPICSEL,

and Windows DVFS (2 minutes each).

After each application, the users were instructed to assign one of

five levels of satisfaction to their experiences with the system

performance for each instance of an application. The users were not

asked to rank the instances against each other.

36

SECTION 4.2

FREQUENCY RESULTS

Figure 6 illustrates the performance of the two algorithms for three

applications in our study. Each graph shows the CPU frequency for a

randomly-selected user as a function of time. Notice that in all the

applications both versions of PICSEL generally reduced processor

frequency more than the Windows DVFS policy. The amount of

frequency reduction varies across applications. PICSEL is most

effective for the 3D animation application. As illustrated in Figure 2,

this has the least variation in APC and APR values at lower

frequencies. As a result, PICSEL greatly reduced the CPU frequency

without affecting user-perceived performance. Similar results were

observed for the video application. For the game, we observe less

processor throttling. This is also expected because the APC values in

Figure 1 degrade very quickly for the game and PICSEL can reduce the

frequency in few cases. These results show that PICSEL reduces

frequency compared to Windows DVFS while maintaining user

satisfaction. In Section 4.4, we also analyze user satisfaction with the

default Windows DVFS and PICSEL algorithms and show that the user

satisfaction is not adversely affected for any of our target applications.

37

(A) 3D SHOCKWAVE ANIMATION

(B) VIDEO

0

0.5

1

1.5

2

2.5

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

C
P

U
 F

r
e
q

u
e
n

c
y

 [
G

H
z
]

Time [sec]

DVFS

cPICSEL

aPICSEL

0

0.5

1

1.5

2

2.5

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

C
P

U
 F

r
e
q

u
e
n

c
y

 [
G

H
z
]

Time [sec]

DVFS

cPICSEL

aPICSEL

38

 (C) FIFA GAME

FIGURE 6. FREQUENCY VS. TIME FOR THREE USER TRIALS

0

0.5

1

1.5

2

2.5

0 14 28 42 56 70 84 98 112 126 140 154 168 182 196 210

C
P

U
 F

r
e
q

u
e
n

c
y

 [
G

H
z
]

Time [sec]

DVFS

cPICSEL

aPICSEL

39

SECTION 4.3

POWER MEASUREMENTS

To analyze the effect of cPICSEL and aPICSEL on the power

consumption of the system, we logged the frequency over time during

the user studies described in the previous section. We then combine

this frequency information with the offline profile to derive power

savings for cPICSEL, aPICSEL, and the default Windows XP DVFS

policy. In Section 4.3.1 we present the CPU dynamic power savings

and in Section 4.3.2 we present the total system power savings.

Section 4.3.3 presents the changes in the operating temperatures.

40

SECTION 4.3.1

CPU DYNAMIC POWER REDUCTION

The dynamic power consumption of a processor is directly related to

its frequency and supply voltage and can be expressed using the

formula P V2CF, which states that power is equal to the product of

voltage squared, capacitance, and frequency. By using the frequency

traces and the nominal voltage levels on our target processor

[Gochman et al. 2003], we calculated the relative dynamic power

consumption. Figure 7 presents the CPU dynamic power reduction

achieved by the PICSEL algorithms (cPICSEL and aPICSEL) for

individual users. The rightmost bars correspond to the savings

averaged across users.

(A) 3D SHOCKWAVE ANIMATION

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M
ea

n

P
o

w
e
r
 I

m
p

r
o

v
e
m

e
n

t
[%

]

Users

cPICSEL

aPICSEL

41

(B) VIDEO

 (C) FIFA GAME

FIGURE 7. CPU DYNAMIC POWER REDUCTION WITH CPICSEL AND APICSEL OVER
WINDOWS DVFS

For the 3D Shockwave animation, we see mixed responses from

the users, although on average PICSEL reduces power by 21.8%. On

average, cPICSEL and aPICSEL independently reduce the power

consumption by 15.3% and 28.2%, respectively. aPICSEL reduces

processor frequency more because it is less likely to identify changes

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M
ea

n

P
o

w
e
r
 I

m
p

r
o

v
e
m

e
n

t
[%

]

Users

cPICSEL

aPICSEL

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M
ea

n

P
o

w
e
r
 I

m
p

r
o

v
e
m

e
n

t
[%

]

Users

cPICSEL

aPICSEL

42

in video output that annoy the user. The results show a considerable

variation among different users. This can be explained by the fact that

the control agent for APC calculation considers a sampling window of

64×51 pixels at the center of the display window. The relative position

of the shockwave player while the user watches the 3D animation

plays a role in the calculation of APC and APR. It subsequently affects

the decision taken by the PICSEL algorithm. Nevertheless, as we will

show in Section 4.4, such variations do not have an impact on user

satisfaction.

For the Video application, cPICSEL and aPICSEL reduce power

consumption by averages of 9.6% and 19.7%, respectively. This

suggests that the Video application is less conducive to frequency

throttling than the Shockwave application. User 19 is the only

exception where aPICSEL results in a power savings of 45.8%, greater

than those for the Shockwave application. For the FIFA game, the

average power improvements of 2.6% for cPICSEL and 6.7% for

aPICSEL were lower than Video and Shockwave applications,

suggesting that the FIFA game was the least conducive to frequency

throttling. Note that PICSEL does not reduce the frequency for all the

users while they play the FIFA game. For example, cPICSEL does not

reduce the frequency for user 19. Similarly, aPICSEL does not reduce

43

the frequency for user 17. This is understandable since the game

application has the most steeply-sloped APC curve (Figure 1),

meaning a change in frequency will have a larger effect on the game’s

displayed output than on the displayed output of the other

applications.

For all three applications, we see that in all cases cPICSEL and

aPICSEL lead to power savings compared to Windows DVFS. Averaged

over three applications and 20 users, aPICSEL reduces the dynamic

power consumption by 18.2%. cPICSEL results in a 9.1% power

reduction.

44

SECTION 4.3.2

SYSTEM POWER MEASUREMENT

To further measure the impact of our techniques, we replayed the

traces from the user studies described in Section 4.3.1 on the laptop.

The laptop was connected to a National Instruments 6034E data

acquisition board attached to the PCI bus of a host workstation, which

permitted us to measure the power consumption of the entire laptop

(including other memory, screen, hard disk, etc.). The sampling rate

was set to 10 Hz. Each of the user studies was replayed five times to

average out variation across trials.

Figure 8 presents the system-level power savings of cPICSEL and

aPICSEL relative to Windows DVFS. In general, the reduction in

system-level power consumption is similar to the estimated processor

dynamic power savings. cPICSEL and aPICSEL reduce power

consumption by 16.8% and 25.7% on average for the 3D Shockwave

animation, by 8.0% and 14.5% on average for the Video application,

and by 2.6% and 6.2% on average for the FIFA game, respectively. On

average, aPICSEL reduces system-level power consumption by 12.1%,

aggregated over 20 users and three applications. cPICSEL reduces the

system-level power consumption by 7.1%.

45

(A) 3D SHOCKWAVE ANIMATION

(B) VIDEO

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M
ea

n

P
o

w
e
r
 I

m
p

r
o

v
e
m

e
n

t
[%

]

Users

cPICSEL aPICSEL

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M
ea

n

P
o

w
e
r
 I

m
p

r
o

v
e
m

e
n

t
[%

]

Users

cPICSEL aPICSEL

46

 (C) FIFA GAME

FIGURE 8. SYSTEM POWER REDUCTION WITH CPICSEL AND APICSEL COMPARED
TO WINDOWS DVFS

We must note that the dynamic CPU power savings presented in

the previous section and the system-level power savings presented in

this section cannot be directly compared because the previous section

reports the dynamic power consumption of the CPU. This section, on

the other hand, reports the measured power consumption of the

laptop (which includes leakage power of the CPU as well as all the

power consumption of other components in the laptop including

memory, screen, hard disk, etc.). However, some conclusions can be

drawn from the data in both sections. Applications that result in high

CPU dynamic power consumption tend to also observe high system

power savings. Clearly, part of the system power reduction comes

from the decrease in the CPU dynamic power consumption. Leakage is

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M
ea

n

P
o

w
e
r
 I

m
p

r
o

v
e
m

e
n

t
[%

]

Users

cPICSEL aPICSEL

47

also reduced due to the decrease in voltage and the decrease in

temperature resulting from reduced dynamic power consumption.

48

SECTION 4.3.3

CHANGES IN PEAK TEMPERATURE

We used CPUCool [Podien 2007], a Windows-based tool that logs

temperatures at processor cores, to measure CPU temperature in the

system. Figure 9 shows the reductions in peak temperatures of the

system when using the cPICSEL and aPICSEL schemes. In all cases, the

cPICSEL and aPICSEL schemes lower the temperature compared to

the Windows native DVFS scheme due to the power reductions we

have reported in the previous sections. The maximum temperature

reduction of 16 C is seen in the case of the aPICSEL scheme used for

the Shockwave application. On average, for all three applications,

cPICSEL and aPICSEL reduce the peak temperature of the system by

1.7 C and 4.3 C, respectively, aggregated over all 20 users.

49

(A) 3D SHOCKWAVE ANIMATION

(B) VIDEO

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M
ea

n

T
e
m

p
e
r
a

tu
r
e

R
e
d

u
c
ti

o
n

 [
C

]

Users

cPICSEL

aPICSEL

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M
ea

n

T
e
m

p
e
r
a

tu
r
e

R
e
d

u
c
ti

o
n

 [
C

]

Users

cPICSEL

aPICSEL

50

 (C) FIFA GAME

FIGURE 9. PEAK TEMPERATURE REDUCTION

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M
ea

n

T
e
m

p
e
r
a

tu
r
e

R
e
d

u
c
ti

o
n

 [
C

]

Users

cPICSEL

aPICSEL

51

SECTION 4.4

USER SATISFACTION

We now discuss the satisfaction levels with the Windows DVFS and

PICSEL algorithms for three applications as reported by individual

users. During the user study, each participant was asked to give a

satisfaction level from 1 to 5 (5 being the most satisfactory

performance) for each application. Figure 10 illustrates the ranks

awarded by each user. Compared to Windows DVFS, cPICSEL results

in slightly better satisfaction levels for all three applications

aggregated over 20 users. The student t-test analysis of the results

reveals that the difference is not due to chance with 90% confidence.

aPICSEL and Windows DVFS provide the same satisfaction (a

Student’s t-test analysis identifies the two means to be identical

with over 99% confidence). On average, aPICSEL is rated highest for

the game application (3.8) where it results in the least power

reduction. For the Shockwave application, maximum power reduction

for the aPICSEL scheme caused it to have the lowest average user

satisfaction score (3.5).

52

(A) 3D SHOCKWAVE ANIMATION

(B) VIDEO

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M
ea

n

R
a

n
k

in
g

Users

DVFS cPICSEL aPICSEL

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M
ea

n

R
a

n
k

in
g

Users

DVFS cPICSEL aPICSEL

53

 (C) FIFA GAME

FIGURE 10.USER RANKING DISTRIBUTION

We noticed cPICSEL was ranked higher than Windows DVFS

although Windows DVFS runs the system at higher frequencies. The

only time Windows DVFS will throttle the frequency below what CPU

utilization would prescribe is in the case of the temperature crossing a

thermal trip point [Microsoft Corporation 2003]. This led to the

hypothesis that user dissatisfaction caused by thermal emergencies

was the reason for the decreased user satisfaction with Windows

DVFS. We ran an experiment in which FIFA 2005 was played under

Windows DVFS until the user observed several distinct processor

frequency reductions triggered by thermal emergencies. The results

of this experiment are shown in Figure 11.

This figure shows processor temperature and frequency when

FIFA 2005 is played until it triggers a thermal emergency (about 16

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M
ea

n

R
a

n
k

in
g

Users

DVFS cPICSEL aPICSEL

54

minutes after starting the game). At that point, the processor itself

reduces its own frequency to the lowest value possible. This causes a

perceivable slowdown in game play and lower instruction throughput.

Windows DVFS continues to operate even though it has been over-

ridden by the processor, and lowers its frequency to match the lower

instruction throughput. Soon after the processor returns frequency

control to Windows DVFS, the frequency is again set to the highest

available frequency on the processor. This causes the temperature to

rise again quickly, leading to consecutive thermal emergencies.

Both cPICSEL and aPICSEL reduced the occurrence of thermal

emergencies, with a total of 51 and 52 thermal emergencies during

the game across all users, as compared to a total of 59 thermal

emergencies under Windows DVFS. As a result, for processor-

intensive applications, PICSEL may deliver better user-perceived

performance by reducing the probability of thermal emergencies. The

satisfaction results also support this claim: aPICSEL provides the

highest satisfaction for the game on average, because for this highly

compute-intensive application, aPICSEL allows the greatest reduction

in temperature, and resulting thermal emergencies.

55

FIGURE 11. THERMAL EMERGENCIES UNDER WINDOWS DVFS

50

60

70

80

90

100

110

0.7

1.1

1.5

1.9

2.3

15 16 17 18 19 20 21 22 23

C
P

U
 T

e
m

p
e
r
a

tu
r
e
 [°C

]C
P

U
 F

r
e
q

u
e
n

c
y

 [
G

H
z
]

Time Elapsed [min]

Frequency

Temperature

56

SECTION 4.5

RELATED WORK

Dynamic voltage and frequency scaling (DVFS) is an effective

technique for microprocessor energy and power control for most

modern processors [Brock and Rajamani 2003, Gochman et al. 2003].

Energy efficiency has been a major concern for mobile computers.

Gurun and Krintz [2006] have proposed a new model for estimating

energy consumption using hardware and software counters. Fei et al.

[2004] proposed an energy aware dynamic software management

framework that improves battery utilization for mobile computers.

However, this technique is only applicable to highly-adaptive mobile

applications. Researchers have proposed algorithms based on

workload decomposition [Choi et al. 2004], but these tend to provide

power improvements only for memory-bound applications. Wu et al.

[2005] presented a design framework of a run-time DVFS optimizer in

a general dynamic compilation system. The Razor [Ernst et al. 2003]

architecture dynamically finds the minimal reliable voltage level. Dhar

et al. [2002] proposed adaptive voltage scaling that uses a closed-loop

controller targeted towards standard-cell ASICs. Intel Foxton

technology [Wei 2007] provides a mechanism for certain Intel

Itanium 2 processors to adjust core frequency during operation to

57

boost application performance. However, unlike PICSEL it does not

perform dynamic voltage setting. To the best of our knowledge, no

previous DVFS techniques consider user-perceived performance.

Other DVFS algorithms use task information, such as response

times in interactive applications [Lorch and Smith 2003, Yan et al.

2005] as a proxy for the user. Vertigo [Flautner and Mudge 2002]

monitors application messages and could be used to perform the

optimizations implemented in our study. However, compared to

Vertigo, our approach is simpler to implement and achieves

comparable power savings. Xu et al. [2005] proposed novel

schemes to minimize energy consumption in certain real-time

embedded systems. However, they try to adapt to the variability of the

workload rather than to the users. Gupta et al. [2004] studied user

satisfaction with resource borrowing and noted a high variation in

user tolerance for any given level of system resources in desktop

computing applications. Lin and Dinda [2006] developed a CPU

scheduling system that used direct user feedback to exploit this

variation. Mallik et al. [2006] showed that this variation also exists for

power management, and presented a successful power management

approach based on direct user feedback.

58

Ranganathan et al. [2006] explored using OS-level knowledge

about screen content to reduce the power consumption of the screen

itself, however no work has been done using knowledge of screen

content to control the voltage and frequency of a processor. Gurun

and Krintz [2005] looked at OS-level knowledge of user-generated

events to control a DVFS scheme but did not use knowledge of screen

content. Our work, instead, uses detailed screen information to

control the CPU’s voltage and frequency levels.

A study of user perception of audio and video quality found that

the loss of video frames decreases user satisfaction [Wijesekera

1999]. Frame rate also has a significant effect on user satisfaction,

with satisfaction increasing logarithmically with the number of frames

displayed per second [Claypool et al., 2006]. Finally, Gulliver and

Ghinea [2007] found that both video delay and jitter cause a

significant reduction in users’ perception of the quality of a video.

However, none of these results were used to control processor

resources.

59

CHAPTER 5

CONCLUSION

Any architectural optimization ultimately aims to satisfy the user. Its

success or failure rests on the accuracy of its performance metrics as

proxies for user satisfaction. In this work, we argue that rather than

using metrics that are “close to metal”, architectures should optimize

for metrics that are “close to flesh”. To evaluate such an approach, we

have developed a new power management technique: PICSEL

(Perception-Informed CPU performance Scaling to Extend battery

Life). This technique reduces CPU power consumption in comparison

with existing DVFS techniques. User studies show that our technique

reduces system-level power consumption of our target laptop on

average by 7.1% for a conservative approach (cPICSEL) and 12.1% for

the aggressive version (aPICSEL) compared to the Windows XP DVFS

scheme. Furthermore, CPU temperatures can be markedly decreased

through the use of our techniques. User studies also revealed that the

difference in overall user satisfaction between the more aggressive

version of PICSEL and Windows DVFS were statistically insignificant,

whereas the conservative version of PICSEL improved the users’

overall satisfaction when compared to Windows DVFS.

60

REFERENCES

BROCK, B. AND RAJAMANI, K. 2003. Dynamic power management for
embedded systems. In Proc. of the IEEE SOC Conf. (SOC’03).

CHOI, K., SOMA, R., AND PEDRAM, M. 2004. Dynamic voltage and
frequency scaling based on workload decomposition. In Proc. of the
2004 Int. Symp. on Low Power Electronics and Design. (ISPLED’04),
174-179.

CLAYPOOL, M., CLAYPOOL, K., AND DAMAA, F. 2006. The effects of
frame rate and resolution on users playing first-person shooter
games. In Proc. of ACM/SPIE Multimedia Computing and Networking
(MMCN’06),

DHAR, S., MAKSIMOVIC, D., AND KRANZEN, B. 2002. Closed-loop
adaptive voltage scaling controller for standard cell asics. In Proc. of
the 2005 Int. Symp. on Low Power Electronics and Design (ISPLED’05),
103-107.

ERNST, D., KIM, N. S., DAS, S., PANT, S., RAO, R., PHAM, T., ZIESLER, C.,
BLAAUW, D., AUSTIN, T., FLAUTNER, K., AND MUDGE, T. 2003. Razor:
a low-power pipeline based on circuit-level timing speculation. In
Proc. of the 36th ACM/IEEE Int. Symp. on Microarchitecture (MICRO’03),
7-18.

FEI, Y., ZHONG, L., AND JHA, N. K. 2004. An energy-aware framework
for coordinated dynamic software management in mobile computers.
In Proc. of the IEEE Computer Society's Int. Symp. on Modeling, Analysis,
and Simulation of Computer and Telecommunications Systems
(MASCOTS’04), 306-317.

FLAUTNER, K. AND MUDGE, T. 2002. Vertigo: automatic performance-
setting for Linux. ACM SIGOPS Operating Systems Review 36, SI (Winter
2002), 105-116.

GHINEA, G. AND THOMAS, J. P. 2005. Quality of perception: user quality
of service in multimedia presentations. IEEE T. Multimedia 7, 4 (Aug.
2005), 786-789.

GOCHMAN, S. RONEN, R., ANATI, I., BERKOVITS, A., KURTS, T., NAVEH,
A., SAEED, A., SPERBER, Z., AND VALENTINE, R. C. 2003. The Intel

61

Pentium M processor: Microarchitecture and Performance. Intel
Technology J. 7, 2 (May 2003), 21-36.

GULLIVER, S.R. AND GHINEA, G. 2007. The perceptual and attentive
impact of delay and jitter in multimedia delivery. IEEE T. Broadcast 53,
2 (June 2007), 449-458.

GUPTA, A., LIN, B., AND DINDA, P. A. 2004. Measuring and
understanding user comfort with resource borrowing. In Proc. of the
13th IEEE Int. Symp. on High Performance Distributed Computing
(HPDC’04), 214-224.

GURUN, S. AND KRINTZ, C. 2005. AutoDVS: an automatic, general-
purpose, dynamic clock scheduling system for hand-held devices. In
Proc. of the 5th ACM Int. Conf. on Embedded Software (EMSOFT’05),
218-226.

GURUN, S. AND KRINTZ, C. 2006. A run-time, feedback-based energy
estimation model for embedded devices. In Proc. of the Int. Conf. on
Hardware/Software Codesign and System Synthesis. (CODES+ISSS’06).

LIN, B. AND DINDA, P. A. 2006. Towards scheduling virtual machines
based on direct user input. In Proc. of the 1st Int. Workshop on
Virtualization Technology in Distributed Computing (VTDC’06). See
also technical report NWU-EECS-06-07, Northwestern University,
EECS.

LORCH, J. AND SMITH, A. 2003. Using user interface event information
in dynamic voltage scaling algorithms. In Proc. of the IEEE Computer
Society's Int. Symp. on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems (MASCOTS’03), 46-55.

MALLIK, A., COSGROVE, J., MEMIK, G., DICK, R. P, AND DINDA, P. A.
2008. PICSEL: measuring user-perceived performance to control
dynamic frequency scaling. In Proc. of the 13th Int. Conf. on
Architectural Support for Programming Languages and Operating
Systems, (ASPLOS’08). 70-79.

MALLIK, A., LIN, B. MEMIK, G., DINDA, P. A., AND DICK, R. P. 2006. User-
driven frequency scaling. IEEE Computer Architecture Letters 5, 2 (July
2006), 16. A summary of this work also appeared in ACM SIGMETRICS
2007.

62

MICROSOFT CORPORATION. 2003. Windows native processor
performance control. Windows Platform Design Notes (May 2003).
Retrieved from
http://www.microsoft.com/whdc/system/pnppwr/powermgmt/Pro
cPerfCtrl.mspx.

NVIDIA CORPORATION. 2008. CUDA SDK version 1.1 for Windows XP.
Retrieved from http://www.nvidia.com/object/cuda_get.html.

PODIEN, W. CPUCool. Retrieved from http://www.cpu-
cool.de/index.html.

RANGANATHAN, P., GEELHOED, E., MANAHAN, M, AND NICHOLAS, K.
2006. Energy-aware user interfaces and energy-adaptive displays.
Computer 39, 3 (March 2006), 31-38.

WEI, J. Foxton technology pushes processor frequency, application
performance. Technology@Intel Mag. (July 2007). Retrieved from
http://www.intel.com/technology/magazine/computing/foxton-
technology-0905.htm.

WIJESEKERA, D., SRIVASTAVA, J., NERODE, A., FORRSTI, M. 1999.
Experimental evaluation of loss perception in continuous media.
Multimedia Systems 7, 6 (Nov. 1999), 486-499.

WU, Q., MARTONOSI, M., CLARK, D. W., REDDI, V. J., CONNORS, D., WU,
Y., LEE, J., AND BROOKS, D. 2005. Dynamic compilation framework for
controlling microprocessor energy and performance. In Proc. of the
38th IEEE/ACM Int. Symp. on Microarchitecture (MICRO’05), 271-282.

XU, R., MOSS, D., AND MELHEM, R. 2005. Minimizing expected energy in
real-time embedded systems. In Proc. of the 5th ACM Int. Conf. on
Embedded Software (EMSOFT’05), 251-254.

YAN, L., ZHONG, L., AND JHA, N. K. 2005. User-perceived latency-based
dynamic voltage scaling for interactive applications. In Proc. of
ACM/IEEE Design Automation Conf. (DAC’05), 624-627.

