
2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

COWLS: Hardware–Software Cosynthesis of
Wireless Low-Power Distributed Embedded

Client–Server Systems
Robert P. Dick, Member, IEEE, and Niraj K. Jha, Fellow, IEEE

Abstract—In this paper, we present COWLS, a hardware–soft-
ware cosynthesis algorithm that targets embedded systems
composed of servers and low-power clients that communicate with
each other through a channel of limited bandwidth, e.g., a wireless
link. A novel scheduling algorithm is used to pipeline the execution
of tasks that serve multiple clients associated with a given server.
COWLS simultaneously optimizes the price of the client–server
system, the power consumption of the clients, and the response
times of tasks that have only soft deadlines, while meeting all of
the hard deadlines. It produces numerous solutions that trade off
different architectural features, e.g., price, power consumption,
and response time, of an embedded client–server system. As far
as we know, this is the first synthesis algorithm of its kind. We
present the experimental results for numerous pseudorandom
examples, a low-power client–server camera system, as well as
the rest of the benchmarks within a publicly released embedded
system synthesis benchmark suite.

Index Terms—Client–server systems, embedded systems, ge-
netic algorithms, hardware–software cosynthesis, multiobjective
optimization, processor scheduling, real time systems, wireless
communication.

I. INTRODUCTION

A
WIRELESS embedded client–server system is a special-
purpose computer in which clients and servers communi-

cate with each other via a channel of limited bandwidth. Clients
are frequently consumer products, e.g., portable communica-
tion devices, for which price is often particularly important.
Server price is also an important factor, although it is usually
less important than client price because clients typically out-
number servers. In this work, we assume that servers have ac-
cess to high-capacity power supplies. In order to maintain mo-
bility, clients may be small and battery powered. Therefore,
client-power consumption must be minimized to reduce heat
production and increase battery life. Either clients or servers
may initiate communication events.

The literature contains numerous case studies of embedded
client–server system design and general descriptions of the

Manuscript received September 26, 2000; revised October 10, 2002. This
work was supported in part by a National Science Foundation Graduate Fellow-
ship, in part by Princeton University’s George Van Ness Lothrop Fellowship in
Engineering, and in part by DARPA under Contract DAAB07-00-C-L516. This
paper was recommended by Associate Editor R. Gupta.

R. P. Dick is with the Department of Electrical and Computer Enginerring,
Northwestern University, Evanston, IL 60208 USA (e-mail: dickrp@ece.north-
western.edu).

N. K. Jha is with the Department of Electrical Engineering, Princeton Uni-
versity, Princeton, NJ 08544 USA (e-mail: jha@ee.princeton.edu).

Digital Object Identifier 10.1109/TCAD.2003.819884

client–server problem domain. Some researchers have dis-
cussed wireless and cellular systems [1], [2], some have
focused on embedded systems in which the server is a satellite
[3], [4], and others have studied telerobotics, systems in which
a robot is partially or totally controlled via a limited-bandwidth
communication channel [5], [6]. The majority of previous
research on embedded client–server systems either surveys the
problems typically faced by the designer of such systems or
provides case studies detailing specific solutions to individual
problems.

There is a significant body of work on hardware–software
codesign, i.e., concurrent design of the hardware and software
portions of an embedded system, and hardware–software
cosynthesis, the automatic synthesis of hardware–software
embedded systems [7], [8]. It should be noted that much
of the work in hardware–software cosynthesis assumes the
availability of a database describing the performance of dif-
ferent general-purpose and special-purpose processors when
executing different types of tasks. This allows one to treat
hardware and software implementations of the same task
similarly during cosynthesis. Some work within the cosynthesis
field concentrates on producing this database [9], [10].

The literature on solving the heterogeneous distributed
embedded system hardware–software cosynthesis problem
(the cosynthesis problem) can be placed within three main
categories: 1) optimal solvers; 2) studies comparing different
classes of optimization algorithms; and 3) potentially subop-
timal heuristics. The hardware–software cosynthesis problem
is composed of a number of subproblems, many of which are
NP-complete, e.g., allocation-assignment and scheduling [11].
Presently, only potentially suboptimal algorithms are capable
of synthesizing large distributed embedded system instances in
a reasonable amount of time. Therefore, research on optimal
solutions to hardware–software cosynthesis problem typically
targets simplified versions of the problem or only tackles small
problem instances. However, these approaches allow us to
know the optimal solutions to some simple problems, making it
possible to test the quality of potentially suboptimal heuristics
when run on these problems.

Bender [12], Prakash and Parker [13], as well as Schwieger-
shausen and Pirsch [14] solved the cosynthesis problem with
mixed integer linear programming (MILP). Kuchcinski used
constraint logic programming to minimize the price of an em-
bedded system under time constraints [15]. Lee et al. developed
an search algorithm in order to optimize embedded system
resource allocation [16]. This algorithm uses earliest deadline

0278-0070/04$20.00 © 2004 IEEE

DICK AND JHA: COSYNTHESIS OF WIRELESS LOW-POWER DISTRIBUTED EMBEDDED CLIENT–SERVER SYSTEMS 3

first scheduling integrated with a load balancing assignment al-
gorithm borrowed from behavioral synthesis. However, it does
not model intertask dependencies.

Some researchers compared different algorithms used to
solve problems related to the cosynthesis problem. Axelsson
compared the solutions produced by three different types of
algorithms when run on a simplified version of the hard-
ware–software cosynthesis problem [17]. Unfortunately, such
comparative studies often suffer from time constraints, i.e.,
the problem definitions are simplified and easy to implement
versions of meta-algorithms, e.g., simulated annealing, tabu
search, and genetic algorithms, are compared.

In order to solve larger instances of the cosynthesis problem,
many researchers have considered heuristics that take into
account problem-specific information but are not guaranteed to
arrive at optimal results. Researchers have developed iterative
improvement algorithms [18], constructive algorithms [19],
simulated annealing algorithms [20], evolutionary algorithms
[21], [22], and a rapid, potentially suboptimal timing con-
straints solver [15]. Providing a complete survey of previous
hardware–software cosynthesis research is beyond the scope of
this article. However, a dissertation [23] and several research
papers [8], [24]–[29] survey this research area,

COWLS synthesizes wireless embedded systems composed
of servers and low-power clients that communicate with each
other through a channel of limited bandwidth, e.g., a wireless
link. Although a number of researchers have looked at specific
manual architectural changes to allow power reduction in wire-
less systems, we know of no other algorithm that makes archi-
tectural power-aware wireless system design decisions automat-
ically. In addition, COWLS uses a novel scheduling algorithm
to pipeline the execution of tasks that serve multiple clients as-
sociated with a given server. This algorithm does not require
client implementations to differ from each other. COWLS con-
ducts Pareto-rank-based multiobjective optimization [30] to si-
multaneously optimize the price of the client–server system,
the power consumption of the clients, and the response times
of tasks that have only soft deadlines, while meeting all of the
hard deadlines. It produces numerous solutions that trade off dif-
ferent architectural features, e.g., price, power consumption, and
response time, of embedded client–server systems. We present
experimental results for the recently released and publicly avail-
able embedded system synthesis benchmark suite (E3S) [10].

The paper is organized as follows. Section II describes the
means by which embedded system behavior and timing con-
straints are specified to COWLS. In addition, it describes the
models used for processing elements (PEs) and communication
resources. In Section III we give a descriptive example to illus-
trate the sort of decisions COWLS must make during synthesis.
Section IV formalizes the wireless client–server synthesis
problem definition and describes the algorithms used within
COWLS. In Section V, we introduce the E3S benchmark suite
and present experimental results. We conclude in Section VI.

II. EMBEDDED CLIENT-SERVER SYSTEM

PROBLEM SPECIFICATION

In this section, we describe the inputs of the COWLS algo-

rithm. The behavior of the synthesized embedded system and

Client
only

Client
only

Server
only

Server
only

Period = 500 ms

Hard DL = 100 ms

Soft DL = 200 ms

Hard DL = 200 ms

22 KB

12 KB

54 KB

1 KB

224 KB

1 KB

22 KB

QRY

ID IND

SCN

RNG

REP
IND

Fig. 1. Client–server task graph.

the timing constraints placed on this behavior are specified using

client–server task sets, as described in the next subsection. The

models for PEs, communication resources, and memory are de-

scribed in Sections II-B–D.

A. Client–Server Task Sets

COWLS accepts a description of the behavior and timing con-

straints of the embedded systems it synthesizes in the form of

client–server task sets. A client–server task set is composed of

one or more client–server task graphs. A task graph is a directed

acyclic graph in which each node represents a task and each

arc represents a data dependency and communication event. In

Fig. 1, the top node represents the SCN task type and that node’s

outgoing arc represents a communication of 224 KB of data to

the ID task. There may be more than one task instance of a given

type, e.g., IND in Fig. 1. The ID task’s incoming arc indicates

that it may not begin execution until the SCN task has completed

execution and transmitted 224 KB of data to it. Any task may

have a hard deadline, signified by a solid bar, or a soft deadline,

signified by a dotted bar. Thus, a designer may provide a specifi-

cation containing only hard deadlines, i.e., real-time constraints,

a specification containing only soft deadlines, or a specification

containing any combination of the two types of deadlines. In the

first case, COWLS will attempt to minimize price and power

consumption while meeting all hard deadlines. In the second

case, it will attempt to simultaneously minimize soft deadline

violation, price, and power consumption. If all soft deadlines

are set to zero, it will minimize system execution time, price,

and power consumption.

In Fig. 1, the upper IND task must complete execution within

100 ms of the start of the task graph’s execution. This hard dead-

line must be met for the synthesized architecture to be valid. The

REP task should complete execution by 200 ms after the start

of the task graph’s execution. However, the system will still be

valid if this soft deadline is not met. In the case of a task with a

soft deadline, the aim is to minimize its finish time if the dead-

line cannot be met. The specification may require some tasks to

be executed on the client, e.g., SCN. Others must be executed

on the server, e.g., REP. A task graph’s period is the amount of

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

time that elapses between its consecutive executions. The task

graph’s period is 500 ms in Fig. 1. Note that a system specifi-

cation may contain multiple task graphs with different periods.

A specification’s hyperperiod is the least common multiple of

the periods of its task graphs. A task graph may have a period

that is less than, greater than, or equal to the maximum deadline

within it. In addition, our model allows the representation of pre-

computation, postcomputation, streaming communication, and

pipelined execution. Precomputation is the execution of a por-

tion of a task before all of its input data have arrived. Postcom-

putation is the continued execution of a portion of a task after all

of its output data have been transferred. Streaming communica-

tion is the transmission of data between two tasks during their

execution.

B. PEs

A PE executes tasks. The PEs used within COWLS may

be used to model general-purpose processors, digital signal

processors (DSPs), application-specific integrated circuits

(ASICs), and static-configuration field-programmable gate

arrays (FPGAs). Note that the use of dynamically reconfig-

urable FPGAs in hardware–software cosynthesis has been

addressed in other work [31], [32]. A solution may contain

multiple instances of the same type of PE. COWLS models

two classes of PEs: client PEs and server PEs. Client PEs may

only exist within the client’s PE allocation. Server PEs may

only exist within the server’s PE allocation. In general, server

PEs have better performance than client PEs, but their power

consumptions are higher.

COWLS requires a database that describes the relationships

between tasks and PEs. Characterizing PEs in this manner re-

quires that the designer know the input sequences that elicit the

worst-case execution time for each task-PE pair. Alternatively,

one may use worst-case performance analysis tools to determine

an upper-bound on execution time, without requiring a specific

input sequence [33], [34]. In addition, the average power con-

sumption for each task-PE pair must be known or estimated. The

power consumption of general-purpose and application-specific

processors can be estimated by using models, simulation, and

explicit analysis [35]–[40].

The following information establishes the relationships be-

tween tasks and PEs:

• a two-dimensional array indicating the worst-case execu-

tion time of each task on each PE;

• a two-dimensional array indicating the average power con-

sumption of each task on each PE.

In addition to these arrays, each PE has a price, input/output

energy per communicated bit, and idle power consumption. PEs

may be buffered, in which case they can communicate and com-

pute at the same time, or unbuffered, in which case communi-

cation and computation may not overlap in time. In the case of

buffered communication, it is, of course, still necessary for a

task’s incoming data to arrive before it can begin execution.

C. Communication Resources

Each type of communication resource has a price per instance

(to represent bus controller price), a maximum number of con-

tacts, a price per contact (to represent bus bridge or interface

circuit price), packet size (that can be very small to model com-

munication that is not packet-based), energy consumption per

packet, and transmission time per packet. A communication re-

source’s number of contacts is the number of different PEs that it

may connect together, i.e., a communication resource with two

contacts is a point-to-point link and a communication resource

with more than two contacts is a bus. Primary communication

resources have four price values: the client and server have a

price per instance and a price per contact. For primary commu-

nication resources, each contact is associated with a PE, on the

client or server, that needs to be connected to the primary com-

munication resource. The bus is assigned an appropriate con-

troller price and a contact price equal to the price of a bus bridge.

The parameters of a communication bus can be determined

from the bus specifications, as well as the controller datasheets.

Each task graph edge must be assigned to a communication

resource. The worst-case communication time and average

power consumption of an edge are linearly dependent on the

integer number of packets transferred via its communication

resource. There may be more than one communication resource

connected to a PE instance. In previous distributed computing

work, it is commonly assumed that communication between

tasks that are assigned to the same PE consumes an insignificant

amount of time and power. We also make this assumption in

COWLS. If an architecture contains two communicating tasks

that execute on separate PEs, the architecture is invalid if there

are no communication resources connecting the PEs.

D. Memory Model

COWLS uses a memory model in which each PE has a dedi-

cated memory used by the tasks assigned to it. It might, at first,

seem desirable to allow shared external memories in order to

reduce the total quantity of memory, and number of packages,

required in the embedded system. Unfortunately, using shared

external memory requires that communication with memory be

scheduled in a way that avoids contention between memory ac-

cess requests by tasks assigned to different PEs. This would re-

quire detailed information about the exact times at which dif-

ferent tasks access memory. Gathering this information would

be difficult; it would be processor-dependent and data-set de-

pendent. In the absence of this information, in order to guarantee

that hard real-time deadlines are met, it would be necessary to

assume each task constantly accesses the shared memory during

its execution. This would prevent multiple tasks from executing

concurrently on different PEs, eliminating one of the major ad-

vantages of having multiple PEs. Therefore, COWLS associates

dedicated memory with each PE.

COWLS compute the quantity of memory associated with

each PE based upon code and data memory requirements. For

each PE, COWLS requires an entry in the PE database giving

the code size of each task type that may execute on that PE. The

code memory for a PE in a solution’s allocation is the sum of

the code memory requirements of the tasks assigned to that PE.

We do not currently have access to any benchmarks in which the

data memory requirements of each task are given. Therefore, we

make the assumption that each task requires an amount of data

memory equal to the sum of the data quantities of its incoming

DICK AND JHA: COSYNTHESIS OF WIRELESS LOW-POWER DISTRIBUTED EMBEDDED CLIENT–SERVER SYSTEMS 5

and outgoing communication events. Although this is a reason-

able assumption for many dataflow tasks, it should be noted that

this method of computing memory requirements could easily be

changed in the presence of more detailed information about task

data memory requirements. In order to compute the memory re-

quirements for a PE, COWLS takes the maximum of the data

memory requirements of all of the tasks assigned to it, and adds

the sum of the code memory requirements of the tasks assigned

to it. Note that task code could initially be stored in electrically

programmable read-only memories (EPROMs), and transferred

to PE local memories during system initialization. Memories

commonly have sizes that are integer powers of two. In order to

be conservative, COWLS ensures that each PE has a quantity of

memory that is an integer power of two.

III. DESCRIPTIVE EXAMPLE

In this section, we show the types of design options COWLS

explores during synthesis. Consider a system specification re-

quiring a battery-powered camera to transmit digital images to

a base station via a limited-bandwidth wireless link. If the de-

signer has decided that the video information should be com-

pressed, but has not yet decided what sort of processor should

be used to carry out this operation, or even whether it should be

done by the client or the server, COWLS will simultaneously

explore the different options.

Fig. 2(a) shows one of the task graphs in the consumer bench-

mark from the E3S benchmark suite described in Section V-A.

In this example, images must initially be generated on the client

camera. They are then filtered, on either the client or server, con-

verted to another image format, and compressed. Images must

be transferred to the sink task within 2.5 s and, ideally, within

0.1 s. Image capturing (represented by the src node) must be car-

ried out on the client. Data storage (represented by the sink node)

must be carried out on the server. Storage has a hard deadline of

2.5 s and a soft deadline of 0.1 s. Printing has a hard deadline

of 15 s and a soft deadline of 5 s. Display has a hard deadline

of 15 s and a soft deadline of 1 s. For the sake of simplicity, we

have ignored some tasks in the E3S Consumer benchmark while

presenting this explanatory example.

The task graph shown in Fig. 2(a) carries out image ac-

quisition (src), filtering (filt-x), conversion (rgb-yiq), data

compression (cjpeg), and storage (sink). Using the client–server

partitioning of this graph that is shown in Fig. 2(a), filtering,

conversion, and data compression are executed on the client.

The dotted rectangle containing the phrase forced to client

indicates that the contained tasks must be assigned to the client.

The dotted rectangle containing the phrase forced to server

similarly indicates that the contained tasks must be assigned to

the server. This partitioning reduces the load on the wireless

communication link to 1 MB per task graph execution and

allows an inexpensive primary communication resource to be

used between the client and server. However, carrying out data

compression on the client requires increased client price and

power consumption.

In another possible partitioning, shown in Fig. 2(b), image

acquisition (src) executes on the client and all other tasks exe-

cute on the server. In this partitioning, the client executes only

Fig. 2. Camera specification: (a) client–server assignment 1 and (b) client–
server assignment 2.

essential functions, shifting all other computational burdens to

the server. This decreases the client’s price and power consump-

tion. However, it increases the demands upon the communica-

tion link between the client and server, increasing its price and

power consumption. Although some of the tradeoffs facing the

designer of client–server systems are apparent even from this

simple example, COWLS is capable of solving problems that

are significantly larger and more complicated.

IV. PROBLEM FORMULATION

In this section, we present the client–server synthesis

problem formulation used for COWLS. In Sections IV-A and

B, we define the client–server system problem and briefly

describe the optimization infrastructure used by COWLS. In

Section IV-C, we describe the manner in which problem-spe-

cific information was incorporated within this optimization

infrastructure to allow good performance for client–server

hardware–software cosynthesis. Section IV-D describes the

initialization of solutions, i.e., candidate architectures. Sec-

tion IV-E describes a client–server pipelining scheduling

algorithm. We explain the manner in which a solution’s costs

are calculated in Section IV-F. Section IV-G presents our

method of accelerating optimization by caching solutions.

A. Optimization Problem Introduction

This subsection describes the three main decisions that a

wireless client–server system synthesis algorithm must make.

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

• Allocation: Determine the quantity of each type of re-

source, e.g., PEs or communication resources, to use. De-

termine which resources to use in the servers and which

resources to use in the clients.

• Assignment: Select a resource to execute each task and

communication event. In addition to assigning tasks to ei-

ther the client or the server, they are assigned to specific

PEs.

• Scheduling: Determine the time at which each task

and communication event occurs. As we will discuss in

Section IV-E, the complexity of scheduling is signifi-

cantly increased by the interactions between clients and

servers.

In addition to making these three decisions, COWLS must

evaluate embedded system performance. The costs of an archi-

tecture, e.g., price, speed, area, and power consumption, must

be computed.

Each of the three decisions, listed above, influences others.

Therefore, attempting to consider a decision in isolation,

or without feedback from subsequent decisions, is likely to

result in poor-quality solutions. COWLS takes advantage of

incremental feedback during optimization.

The independent synthesis of a client or server is similar to

the distributed, heterogeneous embedded system cosynthesis

problem. COWLS uses a parallel recombinative simulated

annealing (PRSA) optimization infrastructure [41]. PRSA

algorithms draw on the strengths of genetic algorithms and sim-

ulated annealing algorithms. PRSA algorithms are well suited to

solving low-power, heterogeneous distributed system synthesis

problems with soft and hard deadlines because they are resistant

to becoming trapped in local minima, they excel at solving

multiobjective problems, they can incorporate problem-specific

knowledge in a straightforward way, and their runtimes do not

increase rapidly with increases in problem instance size. PRSA

algorithms also have some disadvantages. They are difficult

to implement and they do not guarantee optimal solutions.

Despite the first disadvantage, we have already completely

implemented a software prototype of the COWLS algorithm.

The second disadvantage is not particularly important for

the class of problems targeted by COWLS. Heterogeneous

distributed embedded system synthesis contains, within it,

numerous problems, each of which is NP-hard. For example,

even the simplest heterogeneous scheduling problem solved

by COWLS, i.e., scheduling without client–server pipelining,

is NP-complete. The allocation-assignment problem is also

NP-complete [11]. Therefore, unless , any algorithm

guaranteeing optimal solutions to this class of algorithm will

require an amount of time that is, in the worst case, exponential

in the size of the problem instance. In practice, moderate-sized

and large problem instances are intractable to optimal solvers

for closely related problem domains [13]. Although COWLS

does not guarantee optimal solutions, when run on problem in-

stances for which other solvers have arrived at provably optimal

solutions, the optimization infrastructure used by COWLS

also produces these optimal solutions [23]. In addition, this

infrastructure produces results with better or equivalent quality

than competing algorithms when run on publicly available

problem instances for which the optimal results are not known.

A detailed explanation of optimization infrastructure used in

COWLS is well beyond the scope of this paper. However, a

description of this algorithm, and comparisons with the results

produced by optimization algorithms developed by other

researchers, have previously been published [23].

Although the synthesis of an isolated client or server is re-

lated to the heterogeneous distributed system synthesis problem,

COWLS targets the servers and clients simultaneously, and ex-

amines the consequences of allowing tasks to migrate between

clients and servers. A designer may specify the behavior and

timing constraints of a client–server system using a modified

version of the model presented in Section II-A. This version

also allows some tasks to have their assignment constrained to

PEs in the clients or PEs in the server, although many tasks will

be free to migrate between client and server during synthesis.

In addition, the scheduling problem is dramatically changed by

the existence of multiple identical clients per server.

During PRSA optimization, numerous solutions simultane-

ously exist in the algorithm’s solution pool. Randomized local

changes are made to individual solutions (mutation), and in-

formation is traded between solutions, in order to improve the

quality of solutions (crossover). The number of solutions in the

solution pool remains constant during optimization. It is, there-

fore, necessary to eliminate some solutions when new solutions

are created via mutation or crossover. In order to determine the

quality of each solution, solutions are ranked relative to the other

solutions in the solution pool. Note that each solution has mul-

tiple costs. In order to impose a weak order on solutions, we

use Pareto-ranking, i.e., a solution dominates another if all of

its costs are lower than or equal to the other solution and a so-

lution’s Pareto-rank is the number of other solutions that do not

dominate it (we used this somewhat counter-intuitive definition

to maintain a positive correlation between rank and solution

quality). In PRSA algorithms, solutions are selected for exis-

tence in the next generation by Boltzmann trials. A Boltzmann

trial is a probabilistic selection mechanism with temperature-de-

pendent behavior. At the start of the optimization algorithm’s

run, the temperature is high, and the higher-rank candidate loses

the trial as frequently as it wins. As time progresses, the tem-

perature is decreased until, at temperature zero, the higher-rank

candidate is always selected.

COWLS synthesizes embedded systems containing arbi-

trary-topology busses and point-to-point communication links,

as well as the primary communication resources that are used

to connect clients and servers. There may be multiple com-

munication resources within the client, and within the server.

Different primary communication resources may be available.

However, only one primary communication resource may be

present in a client–server pair, as multiple wireless transmitters

and receivers will typically result in unreasonably expensive

client–server systems.

An architecture’s costs are derived from the manner in which

resources are used in its construction. Therefore, by attempting

to meet real-time constraints, one ensures that high-speed PEs,

well-suited to tasks they execute, are used for tasks that lie along

critical paths in the task graphs. By attempting to minimize

price, one ensures the use of PEs that are capable of carrying

out the required tasks with minimal price. By attempting to min-

DICK AND JHA: COSYNTHESIS OF WIRELESS LOW-POWER DISTRIBUTED EMBEDDED CLIENT–SERVER SYSTEMS 7

TABLE I
VARIABLE DEFINITIONS

imize client power consumption, one minimizes the number of

power-intensive tasks run on power-hungry PEs located on the

client. Of course, some of these goals conflict with each other.

For this reason, a single run of COWLS generates multiple so-

lutions that explore the tradeoffs among different costs.

B. Optimization Algorithm Overview

In this section, we provide an overview of the optimization

algorithm used in COWLS.

This optimization algorithm used by COWLS maintains a

collection of solutions. These solutions are organized into clus-

ters. The solutions within a cluster all have the same alloca-

tion of PEs and communication resources. Solutions in different

clusters may have different PE and communication resource al-

locations. Mutation is the application of a randomized, although

not necessarily random, change to a data structure. Crossover

is the exchange of information between two data structures. In

COWLS, task assignment and communication resource con-

nectivity mutation are applied to solutions. Task assignment

and communication resource connectivity crossover occur be-

tween different solutions in the same cluster. PE and commu-

nication resource mutation and crossover are applied to clus-

ters. This constrained application of PRSA operators prevents

invalid solutions and clusters from being generated and speeds

optimization [22].

Table I contains the definitions of a number of variables that

are used in Figs. 3 and 4. Fig. 3 contains pseudocode for the

initialization and optimization algorithms used in COWLS.

Fig. 4 contains pseudocode for subroutines used within Fig. 3.

COWLS consists of 20 000 lines of dense C++ code. Therefore,

the pseudocode presented in these figures necessarily omits a

number of low-level details.

Our goal, in providing these figures, is to give the reader a

basic idea of the flow of the algorithm. To this end, we have

sometimes presented a simplified algorithm in the pseudocode

instead of showing the functionally equivalent but more compli-

cated algorithm used in COWLS. For example, in COWLS, the

for loop at the bottom of Fig. 3 and marked with an asterisk

Fig. 3. Optimization algorithm.

only conducts the necessary subset of comparisons. It does not

call dominates (,) for every , pair.

In Fig. 3, the subroutines clust-mutate and clust-crossover

are analogous to the soln-mutate and soln-crossover subrou-

tines shown in Fig. 4. Unlike soln-crossover and soln-mutate,

PE and communication resource allocation mutation and

crossover are conducted. The pseudocode for these subroutines

has been omitted for the sake of brevity.

In Fig. 4, note the line in the soln-crossover subroutine that

is marked with a dagger . This line describes the selection

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

Fig. 4. Optimization algorithm subroutines.

of related communication resources. These communication re-

sources are related in that the characteristics defining them, e.g.,

transmission rate, price, and power consumption, are similar. In

PRSA and genetic algorithms, it is important, for performance

reasons, to avoid breaking up related components of a solution

during crossover, i.e., it is important to preserve locality [42].

We have previously described some methods for keeping related

attributes together during crossover [23].

The dominates subroutine referred to in Fig. 3 takes solu-

tions or clusters as parameters. It returns true if each cost of its

first argument is lower than or equal to the corresponding cost

of its second argument and all costs are not equal. Using this

subroutine to define quality makes COWLS a Pareto-rank-

based optimization algorithm, i.e., a solution is defined to have

a higher quality than another if and only if all of its costs are

lower.

The Boltzmann trials described at the bottom of Fig. 3

are temperature-dependant probabilistic events [41] to which

two solutions or clusters are subjected. When COWLS starts

optimization, the results of these trials are random. However,

as optimization continues, it becomes increasingly likely that

the higher quality candidate is selected and the lower quality

candidate is eliminated. Using this type of trial makes it

unlikely that a search will become trapped in local minima.

Note that, although Boltzmann trials are conducted normally,

the use of Pareto-ranking requires intercluster and intersolution

comparisons that would make a parallel implementation more

difficult than initially envisioned by Mahfaud and Goldberg

[41]. However, we believe that the advantage of Pareto-ranking,

for the inherently multiobjective problem tackled by COWLS,

outweighs the potential advantage of easier parallel implemen-

tation resulting from tightly constrained solution and cluster

comparisons.

C. Guided-Task Assignment Mutation

Each solution contains an allocation of hardware resources

and an assignment of tasks and communication events to re-

sources, as described in Section IV-A. Changes are made to so-

lutions via mutation and crossover (see Section IV-A). Although

it would be possible to use simple crossover and mutation op-

erators, the quality of results for some classes of problems can

be improved by incorporating problem-specific information into

these operators. We describe a sophisticated crossover operator

in another publication [23]. A description of the task assignment

mutation operator used in COWLS follows.

A desire for improved performance when solving the wireless

client–server embedded system synthesis problem motivated us

to incorporate problem-specific knowledge within task assign-

ment mutation heuristic used by COWLS. This change also re-

sulted in improved performance for other problem domains. In

DICK AND JHA: COSYNTHESIS OF WIRELESS LOW-POWER DISTRIBUTED EMBEDDED CLIENT–SERVER SYSTEMS 9

this subsection, we describe this guided-task assignment muta-

tion algorithm.

As described in the previous subsection, mutation makes ran-

domized changes to task assignments. However, these changes

need not be entirely random; they may be guided by problem-

specific heuristics. We have developed a guided-task assignment

mutation algorithm that attempts to minimize PE overuse, task

execution time, and communication time. After randomly se-

lecting a task to be reassigned, this heuristic generates an array

of PEs capable of executing it. Three costs are associated with

each PE in the solution’s allocation: communication time, exe-

cution time, and loading.

Communication time is a metric that takes into account the

impact of a change to a task’s assignment upon the amount

of time required to transmit incoming and outgoing data. A

task’s neighbors are the tasks with which it communicates,

i.e., the tasks connected to it by arcs as shown in Fig. 1. Let

be the quantity of data, in bits, transferred along the edge

between a task, , and one of its neighbors, . Let function

give an estimate of the amount of time

required to transmit bits of data between the PE, , to which

task is assigned and the PE, , to which task is assigned.

In a distributed system, we approximate the amount of time

required to transmit information between a pair of PEs based

on the average data transmission rate of the communication

resources in that solution’s allocation. We previously computed

the set of communication resources between each pair of PEs to

more accurately approximate communication time. However,

the CPU time required for this operation was too costly to jus-

tify the potential for improved estimation. COWLS maintains

separate average data transmission rates for the communication

resources in the client, the communication resources in the

server, and the wireless communication resource. The commu-

nication time for each PE, , a task, , might potentially

be assigned to is the sum of the communication times for

communication between that task and all of its neighbors, set

, i.e.,

We attempted defining communication time as the maximum

communication time for any neighbor of the task under consid-

eration. However, using a sum instead of a maximum resulted

in better solution quality.

In addition to communication time , we use execution time

to prioritize PEs to which a task might potentially be assigned.

Execution time is the amount of time required to execute the task

on the PE under consideration. Our final prioritization metric is

loading, the proportion of a PE’s time, in the system hyperpe-

riod, that has already been occupied by the other tasks assigned

to it, i.e., if is the system hyperperiod, is the set of all

tasks assigned to PE , and function is the time

required to execute task on PE , then the execution time

for each PE, , a task, , might potentially be assigned

to is defined as follows:

Unless all PEs are overloaded, i.e., have a loading greater than

or equal to one, overloaded PEs are not considered legitimate

targets for task assignment.

Note that we have three metrics for the quality of PEs to

which a task’s assignment might potentially mutate. We rank

candidate PEs through Pareto-ranking. We considered using

only two costs in this Pareto-ranking: loading and the sum of

communication time and execution time. However, we found

that leaving communication time and execution time separate

until Pareto-ranking resulted in better solutions. After ranking,

PEs are sorted by their ranks. We empirically determined

that better results were produced when PEs of the same rank

were randomly ordered, i.e., COWLS does not allow solution

encoding to bias task assignment decisions. Once the PEs are

ordered, we select one by indexing into the array of PEs using

a random variable with a probability density function (PDF)

that favors PEs with the highest rank. We tried using a number

of different indexing functions but settled on a mathematically

elegant approach that produces good results [23]. We generate

a stream of pseudorandom values with a PDF that can be

smoothly scaled between a flat PDF and a triangular PDF

peaking at the PE with the highest rank.

In addition to guiding-task assignment mutation, we also

probabilistically constrain differences in task assignment

mutation between different copies of the same task in the

hyperperiod. We allow tasks in different copies of a task graph

to be assigned to different PEs. However, we have developed

a more flexible way of integrating control of these task as-

signment probabilities into the PRSA algorithm. We allow the

user to provide a parameter specifying the probability, per task

assignment mutation, that the mutation will affect all of a task’s

copies instead of only one task copy. This allows arbitrary

combinations of task assignments to be explored while making

it possible to focus the search on promising areas of the solution

space in which most copies of a task are assigned to the same

PE. The designer may specify the proportion (a value greater

than 0.9 works well in practice) of task assignment changes

that are made to all copies of a task, and the proportion of the

changes that are made to only a single copy. Note that this term

also used in task assignment crossover.

D. Initialization

At the start of the optimization algorithm’s run, the initial so-

lution pool must be populated. A user-defined number of solu-

tion clusters is created, each of which contains a user-defined

number of solutions. Solutions within the same cluster have the

same PE and communication resource allocations. This sim-

plifies and accelerates optimization, as described in past work

[22]. Constructive algorithms are used to initialize cluster allo-

cations, communication resource allocations, task assignments,

and communication resource connectivities.

In the first step of PE allocation initialization, it is ensured

that, for each type of task in the task set, there is at least one

PE capable of executing the task. This is accomplished by iter-

atively finding a task that cannot be executed by any of the PEs

in the allocation, and adding a randomly selected PE of a type

capable of executing the task. Note that, even after this step, it

is still possible that there are too few resources to execute all of

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

the tasks in the system before their hard deadlines. In the next

step, additional PEs are randomly added until there are sufficient

hardware resources to execute all tasks within an amount of time

equal to the hyperperiod multiplied by a scalar, . The value is

proportional to twice the ratio of the index of the cluster to the

total number of clusters, i.e., some clusters will have few PEs

in their allocation and others will have many. This allocation di-

versity in the initial solution pool improves optimization.

After a PE allocation has been decided, task assignments are

initialized by a two-stage algorithm. In the first stage, informa-

tion is not yet available about communication times. Therefore,

a modified version of the algorithm described in Section IV-C

is used to assign each task to a PE. This algorithm considers all

of the criteria of the guided-task mutation algorithm, with the

exception of communication times. After the first stage of task

assignment initialization is complete, the second stage reassigns

each task using the full guided-task assignment mutation algo-

rithm, i.e., it considers the communication times associated with

different potential task assignments. Communication resource

connectivity is initially random, i.e., each contact of a commu-

nication resource is attached to a randomly selected PE.

Task assignments are modified using the algorithm described

in Section IV-C. This algorithm was originally designed to im-

prove the performance of our optimization infrastructure when

synthesizing client–server systems containing low-bandwidth

communication resources. By considering the expected impact

upon bandwidth caused by each potential change in task assign-

ment, COWLS is able to avoid task assignments that result in

increased communication time without compensating improve-

ments in computation time or compensating reductions in PE

overloading.

E. Scheduling and Client–Server Pipelining

In this section, we describe the scheduling algorithm used in

COWLS.

In order to determine a solution’s client power consumption,

soft deadline violation, and hard deadline violation, it is nec-

essary to generate its complete schedule. COWLS uses a rapid

multirate list scheduler that is capable of handling task graphs

with periods that are greater than, equal to, or less than the

deadlines in the task graphs. The scheduler treats time as cir-

cular, i.e., an event that occurs at one point in time also oc-

curs at every integer multiple of the hyperperiod from that point

in time. This scheduler operates in two stages. During the first

stage, the scheduler determines a priority for each task. During

the second stage, communication events are assigned to com-

munication resources, communication events are scheduled, and

tasks are scheduled.

In order to prioritize tasks, the approximate earliest finish

time (EFT) and latest finish time (LFT) of every task are de-

termined by conducting a modified breadth-first search of each

task graph. At this point, task assignments are fixed. There-

fore, the execution time of each task is known. Communica-

tion event assignments are not fixed when EFT and LFT cal-

culations are carried out. Therefore, it is not possible to know

the exact amount of time required to carry out each commu-

nication event. A communication event’s time is approximated

by taking the maximum amount of time required by the event

on any of the communication resources that connect the PEs to

which the communication event’s parent and child tasks are as-

signed. Raw times are used for EFT and LFT computation, i.e.,

these time values are not multiplied by the number of clients

per server. A more detailed explanation of this decision requires

knowledge of the method of pipelining used in COWLS. We

explain this concept later in this section. Slack is the difference

between a task’s LFT and its EFT. The scheduler uses nega-

tive slack in order to prioritize task scheduling, i.e., low-slack

paths in the task graphs have high scheduling priorities. If the

schedule produced in this manner fails to meet all hard real-time

deadlines, COWLS retries scheduling using negative LFT and

negative earliest start time (EST) for prioritization.

Once tasks are prioritized, the second scheduling stage is en-

tered. During this stage, the contents of a continuously updated

prioritized list of tasks, whose data dependencies have been sat-

isfied, are iteratively scheduled. Recall that some task graphs

will be scheduled multiple times during the hyperperiod. Given

that is the offset of a task’s copy in the hyperperiod, is the

maximum copy number for a given task, then a task’s propor-

tional copy number, , is defined as follows:

Tasks are sorted in the following manner. If the slacks of the

tasks are unequal, the task with the lower slack is scheduled.

If slacks are equal, the task with the lower proportional copy

number is scheduled.

When a task is selected for scheduling, each of its incoming

communication events is first scheduled on one of the commu-

nication resources connecting the PEs to which the task and its

parent are assigned. The communication resource that allows

the communication event to finish at the earliest time is used. If

the tasks are assigned to the same PE, communication is treated

as instantaneous. If they are assigned to PEs separated into the

client and server, the communication event is scheduled on the

primary communication resource, i.e., the wireless link.

While scheduling, bus contention is explicitly simulated.

The scheduler is deterministic, i.e., given a particular resource

allocation and task assignment, it always produces the same

complete, static schedule. Therefore, after scheduling, the

worst-case completion times of each task and communication

event are known. This allows straightforward calculation of

soft and hard deadline violations. In addition, the scheduler

determines the communication resources upon which each

communication event occurs. This information allows the

calculation of power consumed by the client’s communication

resources. The energy consumption of each task that executes

on the client, as well as the energy consumed by the client PEs

while idle and communicating, are added to the energy con-

sumption of the client communication resources and divided

by the system hyperperiod to determine the total client power

consumption.

Recall that there may be multiple clients per server. It is nec-

essary to ensure that a server is capable of executing the tasks

associated with each client. The most straightforward way of ac-

complishing this is to multiply the execution times of the tasks

and communication events on the server, and the communica-

tion events between the server and clients, by the client–server

DICK AND JHA: COSYNTHESIS OF WIRELESS LOW-POWER DISTRIBUTED EMBEDDED CLIENT–SERVER SYSTEMS 11

Primary

commun.

resource

Idle

time

Idle

time

Idle

time

Time

Server

B

C

A

A

B

C

A

B

C

A

B

C

B C

Clients

A

Fig. 5. Part of a nonpipelined schedule.

ratio, i.e., the number of clients per server. However, in order to

ensure that this straightforward approach is correct, it is neces-

sary to delay the execution of the corresponding tasks on each

client until all of the tasks have received the data upon which

their execution depends, and provide buffers for the transmitted

data.

Consider the schedule portion shown in Fig. 5. Time increases

from the top of the figure to the bottom. The left column depicts

the schedule for the server. In the top rectangle of this column,

each of the three portions (, , and) corresponds to a task

associated with one of three clients. In this figure, a straightfor-

ward, nonpipelined method of scheduling is used. The commu-

nication events that transmit data from the server to the client do

not begin until the tasks associated with each client have com-

pleted execution. Similarly, none of the clients begins execution

until data have been transmitted to each client. This results in

the primary communication link and clients sitting idle when

they might otherwise be carrying out work. There are a number

of ways that this problem might be remedied.

One possible approach is to explicitly schedule each client

separately, thereby allowing every task to execute as soon

as its incoming data are ready. This approach has two dis-

advantages, one tolerable and one intolerable. Scheduling

each client separately would increase the average runtime of

the scheduler by a factor of the client–server ratio. However,

this synthesis-time cost might be tolerable if the increased

scheduling flexibility resulted in improved schedules. More

importantly, this approach would result in each client having

a different schedule. We considered the resulting increased

complexity of manufacturing, debugging, and maintaining such

a system sufficient to disqualify this approach. To give some

idea of the problems associated with such a scheme, note that

it would require the maintenance of a number of client designs

equal to the client–server ratio.

Fixed

client

offset

Primary

commun.

resource

Intentional

packing

delay

A

B

C

A

B

C

Idle

time

C

B

A

A

B

C

C

B

A

Server Clients

Time

Fig. 6. Part of a pipelined schedule with a large client offset.

The approach we selected gains a significant amount of

scheduling flexibility without sacrificing synthesis-time effi-

ciency or dramatically increasing the complexity of producing,

debugging, and maintaining the embedded system. We pipeline

the execution of tasks and communication events associated

with different client copies. However, we constrain each client

to the same schedule. Each client’s schedule is offset, in time,

by a fixed duration from every other client’s schedule. The

approach may be most directly illustrated with the aid of a dia-

gram. Fig. 6 is analogous to Fig. 5. However, it shows a portion

of a schedule produced using our pipelining approach. Note

that the first series of communication events (shown at the top

of the center column) may begin as soon as their parent tasks

have completed. Similarly, the client task may begin execution

as soon as their data have arrived, under the constraint that each

client task must be separated from its corresponding task in

other clients by a fixed amount of time, the client offset. As a

result of adhering to a fixed client offset, it is only necessary to

produce one client schedule explicitly. Each of the other client

schedules is equivalent to the explicit schedule offset in time

by an integer multiple of the client offset.

As described earlier in this section, the raw execution time

of tasks is used during EFT and LFT calculation. Pipelining

frequently allows tasks to be scheduled as soon as the cor-

responding incoming communication event has completed.

Therefore, using raw task and communication event durations

allows more accurate EFT and LFT estimates than using

task and communication event durations multiplied by the

client–server ratio.

Consider the second set of server tasks in Fig. 6. Note that

the task associated with client copy begins execution after its

incoming data are ready. This intentional packing delay is intro-

duced to ensure that the tasks are scheduled as one contiguous

event. We considered the alternative of allowing the tasks to be

separated by an arbitrary amount of time. However, this leads to

a dramatic increase in the time complexity of the scheduling al-

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

Fixed

client

offset

Primary

commun.

resource

A

B

C

Idle

time

C

A

B

Hard

to fill

idle

time

C

B

A

A

B

C

C

B

A

Server Clients

Time

Fig. 7. Part of a pipelined schedule without packing.

gorithm with little gain in scheduling flexibility. By allowing ar-

bitrary gaps between the scheduling events of the tasks and com-

munication events associated with different clients, one intro-

duces numerous (a number equal to the client–server ratio minus

one, in general) gaps into the schedule every time an event is

scheduled. Scheduling complexity is increased, not only by the

necessity of checking each of these gaps when every new event

is scheduled but, more importantly, by the necessity of finding

a location for new events, each of which consists of a pattern of

gaps and active periods. We avoid these problems by making a

set of tasks, associated with different clients, contiguous.

Even if allowing noncontiguous scheduling of the events as-

sociated with different clients did not grossly increase computa-

tional complexity, it would be of dubious benefit. Fig. 7 shows

a portion of a pipelined schedule without packing. Consider the

second server task set, to the lower left. By allowing arbitrary

delays between the tasks associated with different clients, we

have traded a moderate idle slot in a position where it can easily

be filled or masked by other tasks in practice, for numerous

(equal to the client–server ratio minus one) small idle slots that

increase the computational complexity of scheduling and are

difficult to fill or mask. These observations led us to use the

packing approach.

We initially considered the selection of the client offset to be

an important problem. Compare the client schedules of Figs. 6

and 8. In the first case, idle time is introduced between client

tasks by using a client offset that is larger than the ideal offset.

In the second case, the execution of the first client’s task is de-

layed in order to enforce the constraints imposed by a client

offset that is smaller than the ideal offset. Unfortunately, it is

necessary to use a single client offset for all tasks in order to en-

sure that all client schedules are identical. Therefore, the client

offset is likely to be too large for some tasks and too small for

others in any problem of moderate complexity. One must se-

lect a client offset that provides a good tradeoff between these

Primary

commun.

resource

Fixed

client

offset
A

B

C
A

B

C

Intentional

packing

delay

Idle

time

Time

A

B

C

C

B

A

Server Clients

C

A
B

Fig. 8. Part of a pipelined schedule with a small client offset.

two alternatives. We set the client offset to be equal to the av-

erage time required by the communication events assigned to

the primary communication resource. We experimentally deter-

mined that the qualities of the results produced by a synthesis

run are not strongly dependent upon the client offset, as long as

a few conditions hold. An explanation of this phenomenon and

a comparison between nonpipelined and pipelined scheduling

are presented in Section V.

F. Cost Calculation

In this section, we describe the process by which a solution’s

costs are calculated.

After making changes to solutions, it is necessary to deter-

mine whether or not those changes resulted in improved costs.

Thus, after modifying a solution, COWLS carries out cost cal-

culation to determine its aggregate price, the client’s power con-

sumption, and the degree to which soft deadlines are violated.

In addition to these visible costs, there are a number of hidden

costs that need never be displayed to the designer. Hard deadline

violation is an example of such a cost. All solutions in which the

hard deadline violation is nonzero are eliminated before results

are presented to the designer. However, during optimization, so-

lutions with hard real-time deadline violations are allowed to

exist, for they have the capacity to evolve into high-quality, valid

solutions during optimization. Soft deadline violation propor-

tion is the sum of the soft deadline violation times in every copy

of each task graph, divided by the hyperperiod.

Once a schedule is computed for a solution, that solution’s

client power consumption and soft deadline violation informa-

tion is stored in a cache (see the next section) and used for any

equivalent solutions that subsequently arise during optimiza-

tion. Aggregate price is computed by taking the sum of the

prices of the PEs, task execution memory, communication buffer

memory, communication resources, and the primary communi-

cation resource associated with the client, multiplying this by

the expected number of clients, and adding to this the sum of the

prices of the resources used in the server multiplied by the ex-

pected number of servers. This gives a total client–server system

price.

DICK AND JHA: COSYNTHESIS OF WIRELESS LOW-POWER DISTRIBUTED EMBEDDED CLIENT–SERVER SYSTEMS 13

G. Solution Cache

Every time a solution is changed, it is necessary to deter-

mine its new cost. Carrying out cost evaluation every time a

solution changes would be the most straightforward approach.

However, solution evaluation, which requires scheduling as well

as other time-consuming components of cost calculation, is the

most time-consuming operation undertaken by our algorithms.

In order to avoid needless solution evaluations, COWLS main-

tains a cache of solution cost sets to prevent the reevaluation

of solutions after every modification. In our algorithms, sched-

uling, floorplanning, and bus topology generation are determin-

istic. Therefore, for any PE allocation, task assignment, link al-

location, and link connectivity, there exists exactly one system

cost set. Thus, any solution is characterized by a small amount

of information, relative to the amount of information computed

during cost evaluation.

Sometimes, solution mutation and crossover produces a solu-

tion identical to one for which cost calculation was previously

done. In these cases, the solution’s cost set is retrieved from a

cache, making it unnecessary to carry out cost evaluation. We

use a least-recently used (LRU) replacement policy. The cache

size is dynamically controlled based on total memory usage,

i.e., we allow more entries to exist if the entries consume little

memory. Our experimental results indicate that the cache is usu-

ally hit 50% of the time. Its use generally cuts synthesis time in

half.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results and discuss

their implications. These results provide a reference point for

other researchers, suggest the superiority of certain synthesis

tool design decisions, and allow a deeper understanding of the

client–server synthesis problem. COWLS targets a new problem

domain. Note that, in Section IV-A, we discussed the suitability

of the optimization infrastructure used by COWLS, and referred

readers to a comparison of its performance with that of past

work.

A. E3S

We have developed an embedded system synthesis bench-

mark suite, called E3S, based on data from EEMBC [43]. The

first release of E3S contains 17 processors, e.g., the AMD

ElanSC520, Analog Devices 21 065L, Motorola MPC555,

and Texas Instruments TMS320C6203. These processors are

characterized based on the measured execution times of 47

tasks, power numbers derived from processor datasheets, and

additional information, e.g., die sizes, some of which were

necessarily estimated, and prices gathered by e-mailing and

calling numerous processor vendors. In addition, E3S contains

communication resources modeling a number of different

busses, e.g., CAN, IEEE1394, PCI, USB 2.0, and VME. As

well as containing models for a number of conventional busses,

these benchmarks contain models for IEEE 802.11, Bluetooth,

and GSM wireless links. These task sets follow the organization

of the EEMBC benchmarks. There is one task set for each of

TABLE II
MULTIOBJECTIVE OPTIMIZATION

the five application suites: automotive/industrial, consumer,

networking, office automation, and telecommunications. This

benchmark suite has been publicly released and is available via

HTTP [10].

B. Multiobjective Optimization for the E3S Benchmarks

This section presents the result of using COWLS to conduct

multiobjective optimization on the E3S benchmarks described

in Section V-A. We used a publicly available version of these

benchmarks in which at least one task in each task graph has its

assignment locked to the client and at least one has its assign-

ment locked to the server, e.g., the Consumer benchmark dis-

cussed in Section III. A fully functional prototype of COWLS

has been implemented in approximately 20 000 lines of C++

code with heavy use of the standard template library (STL).

Three Linux machines were used to synthesize architectures

for these benchmarks: a Pentium III running at 900 MHz, an

Athlon Thunderbird running at 1.4 GHz, and an Athlon running

at 650 MHz.

Table II shows the sets of solutions produced for the five

task sets in the E3S benchmark suite. There are five clients

for each server. For these benchmarks, COWLS was used to

explore the tradeoffs among different system costs, instead of

attempting to minimize a single cost. Given a similar amount of

CPU runtime, it would be possible to better optimize a single

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

cost by ignoring all other costs. However, this approach would

ignore the fundamentally multiobjective nature of embedded

system design. COWLS took between 13 and 80 CPU min

when run on each of these benchmarks. We rounded the prices

and power consumptions of the solutions up to the nearest

dollar and milliwatt. For most of the benchmarks, COWLS

found numerous solutions that trade off price, average power

consumption, and soft deadline violation proportion. Note that

COWLS produced multiple solutions for each benchmark. In

particular, let us revisit the camera (E3S Consumer) example

we described in Section III. COWLS produced three wireless

client–server architectures for this example. These architectures

had prices ranging from $610 to $2,890, power consumptions

ranging from 126 to 167 mW, and soft deadline violation

proportions ranging from 0.61 to 0.98. The first solution to the

camera example contains an IBM PowerPC 405GP running

at 266 MHz on the client, an ST Microelectronics ST20C2

running at 50 MHz on the server, and an IEEE 802.11b Lucent

WaveLAN card. COWLS found that the requirements placed

on the wireless communication resource could be significantly

reduced by assigning all tasks, prior to compression, to the

client, as shown in Fig. 2(a). The other two solutions have

relatively more PEs and communication resources and use

these resources to reduce soft deadline violation. Note that

the E3S Consumer benchmark contains another, printing and

display, graph in addition to the data acquisition graph shown

in Fig. 2(a) and (b).

C. Evaluation of Client–Server Pipelining

In the interest of evaluating the performance of the

client–server pipelining algorithm described in the previous

section, we did a number of experiments in which we compared

different versions of pipelining scheduler with each other, and

with a straightforward nonpipelining scheduler. Multiobjective

optimization significantly complicates presentation of, and

comparison between, the results of different optimization runs

because each run produces numerous examples. For these

comparative examples, we had COWLS ignore soft deadline

violation and power, concentrating only on price optimization.

As a result, each run produces only one result. We rounded the

prices of the solutions up to the nearest dollar.

Table III shows the result of running COWLS on 50 examples

in which the processors come from the E3S benchmark suite

and the task sets are randomly generated using parametric pseu-

dorandom task graph software [44]. Clients were offset from

each other by the average amount of time taken per communica-

tion event assigned to the primary (wireless) communication re-

source. Quality improved 2.6 times as frequently as it degraded.

For each processor, we generated a server version and a client

version. The server version is identical to the E3S processor. The

client version has one-fifth the power consumption of the E3S

processor and five times the execution time for each task, but is

otherwise identical. Our task sets each contains 12 tasks. Each

task type is randomly selected from the networking and telecom

E3S benchmarks. Each communication event has a quantity of

bits (1 kb). Approximately one third of the tasks must

TABLE III
PRICE-ONLY PIPELINING COMPARISON EXPERIMENTS

be assigned to a client, one third must be assigned to the server,

and one third may be assigned to either client or server. There are

five clients for each server. There is no guarantee that every ex-

ample generated in this manner will have a valid solution. In this

table, an entry of n.a. indicates that no solution was found for the

problem and parameters associated with the entry. For cases in

which no solutions were found by either the client communica-

tion pipelining or client communication nonpipelining version

of COWLS, we omitted the example from the table.

We found that pipelining schedules usually results in an im-

provement to solution quality. As shown in Table III, solution

quality improved approximately two and a half times as fre-

quently as it degraded. Although there were some cases when

using a nonpipelining scheduler allowed the production of a su-

perior solution, one should not draw the conclusion that it would

be wise to run the scheduler in pipelining and nonpipelining

mode for every cost evaluation and take the best cost. By dou-

bling the amount of time required for each solution evaluation,

one would halve the number of solutions that may be evaluated.

One could, instead, use the scheduling method that is gener-

ally superior, i.e., the pipelining scheduler, and allow a more

thorough exploration of the solution space, guided by the evo-

lutionary algorithm, in the same amount of time.

As discussed in Section IV-E, we had initially considered the

selection of a client offset value to be an important problem.

However, in practice, solution quality is highly resistant to

degradation. Let us define the client offset factor as a scalar by

which the average primary communication event duration is

multiplied to calculate the client offset value. Varying this factor

DICK AND JHA: COSYNTHESIS OF WIRELESS LOW-POWER DISTRIBUTED EMBEDDED CLIENT–SERVER SYSTEMS 15

from zero to two results in only small changes to the number

of cases for which pipelining resulted in an improvement to

solution quality. Solution quality remains mostly independent

of the client offset factor until it approaches the ratio of primary

link communication time to computation time. Examining the

schedules with a simple graphing tool revealed that, up until

this point, the task delays required due to dependency on data

transmitted via the primary communication link mask the idle

slots that result from having a large client offset value.

VI. CONCLUSION

Despite the previous work dealing with embedded client–

server systems and hardware–software cosynthesis, we know of

no previous work that automatically synthesizes such systems.

COWLS automatically synthesizes embedded client–server sys-

tems. It uses a multiobjective PRSA algorithm to simultane-

ously produce multiple solutions that trade off different costs.

It optimizes price, client power consumption, and soft dead-

line violations under hard real-time constraints and constrained

client–server communication bandwidth. COWLS incorporates

a novel and tractable scheduling algorithm that pipelines the ex-

ecution of tasks associated with different clients while main-

taining identical client schedules. This form of pipelining has

been found to improve solution quality in the majority of cases.

REFERENCES

[1] D. Halchin and M. Golio, “Trends for portable wireless applications,”
Microwave J., vol. 40, pp. 62–78, 1997.

[2] S. Komaki and E. Ogawa, “Trends of fiber-optic microcellular radio
communication networks,” IEICE Trans. Electron., vol. E79-C, pp.
98–103, 1996.

[3] G. Comparetto and R. Ramirez, “Trends in mobile satellite technology,”
IEEE Comput., vol. 30, pp. 44–52, Feb. 1997.

[4] F. Ananasso and F. D. Priscoli, “Issues on the evolution toward satel-
lite personal communication networks,” in Proc. Global Telecommun.

Conf., Nov. 1995, pp. 541–545.
[5] R. E. Barry and J. P. Jones, “Rapid world modeling from a mobile plat-

form,” in Proc. Int. Conf. Robotics & Automation, Apr. 1997, pp. 72–78.
[6] D. W. Gage, “Telerobotic requirements for sensing, navigation, and

communications,” in Proc. Nat. Telesyst. Conf., May 1994, pp. 145–148.
[7] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and De-

sign of Embedded Systems. Englewood Cliffs, NJ: Prentice-Hall, 1994.
[8] G. De Micheli and R. K. Gupta, “Hardware/software co-design,” Proc.

IEEE, vol. 85, pp. 349–365, Mar. 1997.
[9] S. Malik, M. Martonosi, and Y.-T. S. Li, “Static timing analysis of em-

bedded software,” in Proc. Design Automation Conf., June 1997, pp.
147–152.

[10] E3S: The Embedded System Synthesis Benchmarks Suite. [Online]
Available: http://www.ee.princeton.edu/cad/projects.html.

[11] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. New York: Freeman, 1979.
[12] A. Bender, “Design of an optimal loosely coupled heterogeneous mul-

tiprocessor system,” in Proc. Eur. Design Test Conf., Mar. 1996, pp.
275–281.

[13] S. Prakash and A. Parker, “SOS: Synthesis of application-specific het-
erogeneous multiprocessor systems,” J. Parallel Distributed Comput.,
vol. 16, pp. 338–351, Dec. 1992.

[14] M. Schwiegershausen and P. Pirsch, “Formal approach for the optimiza-
tion of heterogeneous multiprocessors for complex image processing
schemes,” in Proc. Eur. Design Automation Conf., Sept. 1995, pp. 8–13.

[15] K. Kuchcinski, “Embedded system synthesis by timing constraints
solving,” in Proc. Int. Symp. Syst. Synthesis, Sept. 1997, pp. 50–57.

[16] C. Lee, M. Potkonjak, and W. Wolf, “Synthesis of hard real-time appli-
cation specific systems,” Design Automation Embedded Syst., vol. 4, no.
4, pp. 215–242, 1999.

[17] J. Axelsson, “Architecture synthesis and partitioning of real-time sys-
tems: A comparison of three heuristic search strategies,” in Proc. Int.

Workshop Hardware/Software Co-Design, Mar. 1997, pp. 161–165.
[18] W. H. Wolf, “An architectural co-synthesis algorithm for distributed,

embedded computing systems,” IEEE Trans. VLSI Syst., vol. 5, pp.
218–229, June 1997.

[19] B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hard-
ware–software co-synthesis of heterogeneous distributed embedded
systems,” IEEE Trans. VLSI Syst., vol. 7, pp. 92–104, Mar. 1999.

[20] T. Benner and R. Ernst, “An approach to mixed systems co-synthesis,”
in Proc. Int. Workshop Hardware/Software Co-Design, Mar. 1997, pp.
9–14.

[21] J. Teich, T. Blickle, and L. Thiele, “An evolutionary approach to system-
level synthesis,” in Proc. Int. Workshop Hardware/Software Co-Design,
Mar. 1997, pp. 167–171.

[22] R. P. Dick and N. K. Jha, “MOGAC: A multiobjective genetic algorithm
for hardware–software co-synthesis of distributed embedded systems,”
IEEE Trans. Computer-Aided Design, vol. 17, pp. 920–935, Oct. 1998.

[23] R. P. Dick, “Multiobjective synthesis of low-power real-time distributed
embedded systems,” Ph.D. dissertation, Dept. Elect. Eng., Princeton
Univ., Princeton, NJ, July 2002.

[24] J. K. Adams and D. E. Thomas, “The design of mixed hardware/software
systems,” in Proc. Design Automation Conf., June 1996, pp. 515–520.

[25] R. Ernst, “Codesign of embedded systems: Status and trends,” IEEE

Design Test Comput., vol. 12, pp. 45–54, Apr. 1998.
[26] L. Garber and D. Sims, “In pursuit of hardware–software codesign,”

IEEE Comput., vol. 31, pp. 12–14, June 1998.
[27] G. Goossens, J. V. Praet, D. Lanneer, W. Geurts, A. Kifli, C. Liem, and P.

G. Paulin, “Embedded software in real-time signal processing systems:
Design technologies,” Proc. IEEE, vol. 85, pp. 436–454, Mar. 1997.

[28] K. G. Shin and P. Ramanathan, “Real-time computing: A new discipline
of computer science and engineering,” Proc. IEEE, vol. 82, pp. 6–23,
Jan. 1994.

[29] W. H. Wolf, “Hardware–software co-design of embedded systems,”
Proc. IEEE, vol. 82, pp. 967–989, July 1994.

[30] C. M. Fonseca and P. J. Fleming, “Multiobjective genetic algorithms
made easy: Selection, sharing, and mating restrictions,” in Proc. Genetic

Algorithms Eng. Syst.: Innovations Applicat., Sept. 1995, pp. 45–52.
[31] R. P. Dick and N. K. Jha, “CORDS: Hardware–software co-synthesis

of reconfigurable real-time distributed embedded systems,” in Proc. Int.

Conf. Computer-Aided Design, Nov. 1998, pp. 62–68.
[32] L. Shang and N. K. Jha, “Hardware–software co-synthesis of low

power real-time distributed embedded systems with dynamically
reconfigurable FPGAs,” in Proc. Int. Conf. VLSI Design, Jan. 2002, pp.
345–352.

[33] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” in Proc. Design Automation Conf.,
June 1995, pp. 456–461.

[34] B.-D. Rhee, S. L. Min, S.-S. Lim, H. Shin, C. S. Kim, and C. Y. Park, “Is-
sues of advanced architectural features in the design of a timing tool,” in
Proc. Workshop Real-Time Oper. Syst. Software, May 1994, pp. 59–62.

[35] Z. Chen and K. Roy, “A power macromodeling technique based on
power sensitivity,” in Proc. Design Automation Conf., June 1998, pp.
678–683.

[36] M. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power analysis and min-
imization techniques for embedded DSP software,” IEEE Trans. VLSI

Syst., vol. 5, pp. 123–135, Mar. 1997.
[37] V. Tiwari, S. Malik, A. Wolfe, and M. T.-C. Lee, “Instruction level power

analysis and optimization of software,” J. VLSI Signal Process., vol. 13,
no. 2–3, pp. 223–238, 1996.

[38] Xilinx, Inc. (1997, June). A Simple Method of Estimating Power in

XC4000XL/EX/E FPGAs [Online] Available: http://www.xilinx.com.
[39] A. Raghunathan, N. K. Jha, and S. Dey, High-level Power Analysis and

Optimization. Boston, MA: Kluwer, 1997.
[40] R. Y. Chen, R. M. Owens, M. J. Irwin, and R. S. Bajwa, “Validation of an

architectural level power analysis technique,” in Proc. Design Automa-

tion Conf., June 1998, pp. 242–245.
[41] S. W. Mahfoud and D. E. Goldberg, “Parallel recombinative simulated

annealing: A genetic algorithm,” Parallel Comput., vol. 21, pp. 1–28,
Jan. 1995.

[42] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-

chine Learning. Reading, MA: Addison-Wesley, 1989.
[43] Embedded Microprocessor Benchmark Consortium [Online] Available:

http://www.eembc.org.
[44] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for free,”

in Proc. Int. Workshop Hardware/Software Co-Design, Mar. 1998, pp.
97–101.

16 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

Robert P. Dick (S’95–M’02) received the B.S.
degree in computer engineering from Clarkson
University, completing this four-year degree in three
years with the highest possible grade in every class,
Potsdam, NY, and the Ph.D. degree in electrical
engineering from Princeton University, Princeton,
NJ, in 2002.

He is currently an Assistant Professor of Electrical
and Computer Engineering, Northwestern Univer-
sity, Evanston, IL. He was a Visiting Professor in
the Department of Electronic Engineering, Tsinghua

University, Beijing, China from 2002 to 2003. He was a Visiting Researcher at
NEC Computers and Communication Research Laboratories, Princeton, NJ,
in 1999. His publications have focused on the multiobjective optimization and
synthesis of embedded systems. In addition, he has published in the areas of
real-time operating system power consumption analysis and wireless ad-hoc
network protocols. His interests are in the automatic design and dynamic
adaptation of computers.

Prof. Dick received the George Van Ness Lothrop Honorific Fellowship
from Princeton University. Fellowships in this category are granted to the top
17 fourth-year graduate students at Princeton University. He received the Best
Paper Award at PDCS’02 for a paper he coauthored.

Niraj K. Jha (S’85–M’85–SM’93–F’98) received
the B.Tech. degree in electronics and electrical
communication engineering from the Indian Institute
of Technology, Kharagpur, India, in 1981, the M.S.
degree in electrical engineering from the State
University of New York, Stony Brook, in 1982, and
the Ph.D. degree in electrical engineering from the
University of Illinois, Urbana, IL, in 1985.

He is a Professor of Electrical Engineering at
Princeton University, Princeton, NJ. He is the Di-
rector of the Center for Embedded System-on-a-Chip

Design funded by the New Jersey Commission on Science and Technology.
He has coauthored three books, entitled Testing and Reliable Design of CMOS

Circuits (Norwell, MA: Kluwer, 1990), High-Level Power Analysis and

Optimization (Norwell, MA: Kluwer, 1998), and Testing of Digital Systems
(Cambridge, U.K.: Cambridge Univ. Press, 2003). He has also authored three
book chapters. He has authored or coauthored more than 230 technical papers.
A paper of his was chosen for inclusion in “The Best of ICCAD: A Collection
of the Best IEEE International Conference on Computer-Aided Design Papers
of the Past 20 Years.” He holds 11 U.S. patents. His research interests include
low-power hardware and software design, computer-aided design of integrated
circuits and systems, digital system testing, and distributed computing.

Dr. Jha is a Fellow of the ACM. He has served as an Associate Editor
of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: ANALOG AND

DIGITAL SIGNAL PROCEESSING. He is currently serving as an Editor of the
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS

AND SYSTEMS, the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION

(VLSI) SYSTEMS, the Journal of Electronic Testing: Theory and Applications

(JETTA), and the Journal of Embedded Computing. He has served as the
Guest Editor for the JETTA special issue on high-level test synthesis. He has
also served as the Program Chairman of the 1992 Workshop on Fault-Tolerant
Parallel and Distributed Systems. He is the recipient of the AT&T Foundation
Award, the NEC Preceptorship Award for research excellence, and the NCR
Award for teaching excellence. He has coauthored six papers which have
won the Best Paper Award at ICCD’93, FTCS’97, ICVLSID’98, DAC’99,
PDCS’02, and ICVLSID’03.

