CORDS: Hardware-Software Co-Synthesis of Reconfigurable
Real-Time Distributed Embedded Systems

Robert P Dick and Nirgj K. Jha

Department of Electrical Engineering
Princeton University
Princeton, New Jersey 08544

dickrp/jha@ee.princeton.edu

Abstract

Field programmable gate arrays (FPGAs) are commonly
used in embedded systems. Although it is possible to re-
configure some FPGAs while an embedded system is op-
erational, this feature is seldom exploited. Recent im-
provements in the flexibility and reconfiguration speed of
FPGAs have made it practical to reconfigure them dynam-
ically, reducing the amount of hardware required in an
embedded system. We have developed a system, called
CORDS, which synthesizes multi-rate, real-time, periodic
distributed embedded systems containing dynamically re-
configurable FPGAs. Executing different tasks on the
same FPGA requires that potentially time-consuming re-
configuration be carried out between tasks. CORDS uses
a novel preemptive, dynamic priority, multi-rate schedul-
ing algorithm to deal with this problem. To the best of
our knowledge, dynamically reconfigured FPGAs have not
previously been used in hardware-software co-synthesis of
embedded systems. Experimental results indicate that us-
ing dynamically reconfigured FPGAs in distributed real-
time embedded systems has the potential to reduce their
price and allow the synthesis of architectures which meet
system specifications that would otherwise be infeasible.

1 Introduction

Until recently, dynamic reconfiguration of FPGAs in hard
real-time embedded systems was impractical. FPGA re-
configuration times have conventionally been on the or-
der of 100 ms. However, recently a number of companies
have released products which improve upon the reconfigu-
ration times of existing FPGAs by an order of magnitude
or more [1],[2]. In particular, the largest member of the
Xilinx XC6200 family, XC6264, can be completely recon-
figured in under 200 us. However, a price is paid for this
speed. Rapid reconfiguration FPGAs cost approximately
ten times as much as FPGAs using conventional architec-
tures. Rapid reconfiguration FPGAs are a new product
and production has been limited. Therefore, their price
is likely to decrease in the future. Nonetheless, if price is
a concern, it is important to consider more conventional
FPGAs, which have large reconfiguration times. If one de-
rives a schedule which locates different instances of the
same task type adjacent to each other, the number of re-

This work was supported in part by an NSF Graduate Fellowship and in
part by NSF under Grant No. MIP-9423574.

configurations an FPGA needs to undergo will be reduced,
resulting in significant time savings.

Hardware-software co-synthesis is the process of au-
tomatically synthesizing the hardware and software por-
tions of an embedded system. Given an embedded sys-
tem specification, a hardware-software co-synthesis sys-
tem must select general-purpose processors, application-
specific processing elements, and communication re-
sources to use in the embedded system (allocation), deter-
mine which resource will be used to carry out each por-
tion of the specification’s computation and communication
(assignment), and produce a schedule for all of the speci-
fication’s computations and communications (scheduling).
Thus, given an embedded system specification, a co-
synthesis system produces a detailed description of an ar-
chitecture which will meet the specification.

FPGAs fit naturally into the hardware-software co-
synthesis design flow. The holy grail of configurable com-
puting research is a system which will accept a problem
description in a general-purpose programming language,
automatically partition it between hardware (FPGAs) and
software (general-purpose processors), synthesize the re-
quired hardware, and manage communication between
the two domains. This problem closely mirrors the co-
synthesis problem. By using FPGAs in co-synthesis, de-
signers can take advantage of research in the recon-
figurable computing field. There are already systems
which accept algorithm descriptions in general-purpose
languages, like ANSI-C, and automatically produce FPGA
configurations [3].

Other work has been carried out in hardware-software
co-synthesis [4]-[8]. However, CORDS is the first co-
synthesis system to deal with dynamically reconfigured
FPGAs. It automatically selects an allocation from a set of
FPGAs, general-purpose processors, and communication
resources. It assigns tasks to FPGAs and general-purpose
processors, and determines the connectivity of communica-
tion resources. Finally, it derives schedules for tasks and
communication events. It allows preemption on general-
purpose processors. It optimizes the sequence of tasks on
FPGAs to reduce the total reconfiguration time required
while considering the priorities of individual tasks.

The paper is organized as follows. In Section 2, we de-
fine terms which will be used in the discussion of CORDS.
Section 3 describes the scheduling algorithm used by
CORDS. Section 4 explains the evolutionary framework
CORDS uses for optimization. In Section 5, we give exper-
imental results. We conclude with Section 6.

2 Preliminary Definitions

In this section, we present concepts which will be used
while describing the algorithms comprising CORDS.

Task graph: A task is a portion of the computation an
embedded system is required to carry out. Correlation
and convolution are examples of task types. Multiplica-
tion is also a task type, although past work typically as-

period = 16

5 14

deadline = 12

deadline = 23
Figure 1: Task graph

sumes coarse-grained tasks, i.e., each task is assumed to
be something that would require multiple instructions on
a general-purpose processor. An embedded system specifi-
cation may contain more than one task of the same type.

A task graph is a directed, acyclic, connected graph con-
sisting of a collection of tasks, each of which is associated
with a task type, and a collection of directed edges, each of
which is associated with a scalar denoting the amount of
data which must be transferred between the tasks it con-
nects. Edges represent communication events. In Fig. 1,
each circular node, denoting a task, is labeled with its task
type and each directed edge is labeled with the amount of
data which flows along it. Each edge points away from its
parent task and toward its child task. A task’s parents are
the tasks to which it is connected by incoming edges. A
task’s children are the tasks to which it is connected by
outgoing edges. A directed edge may begin executing only
after its parent task has completed executing. A task may
begin executing only after all its incoming edges have com-
pleted executing. All tasks without outgoing edges have
deadlines. However, any other task may also have a dead-
line (indicated by dashed lines in Fig. 1). The task with
no incoming edges is the start task. If a task does not
complete its execution before its deadline is reached, hard
real-time constraints are violated. A task graph’s period
is the interval at which it repeats execution. It is possi-
ble for a task graph’s period to be less than some of the
deadlines of tasks within it. In embedded system specifi-
cations which contain such task graphs, the execution of
multiple instances of the same task graph overlap in time.
An embedded system specification may contain multiple
task graphs, each of which may contain different tasks and
deadlines. In addition, different task graphs may have dif-
ferent periods.

Processor: A processing element (PE) is a device that
executes tasks. CORDS models two types of PEs: proces-
sors and FPGAs. A processor is a general-purpose proces-
sor used to carry out tasks. Each processor has a price
and a variable indicating whether or not it has a commu-
nication buffer. Processors without communication buffers
may not concurrently execute a task and communicate
data with another PE. For each pair of tasks and proces-
sors, there is an execution time, a preemption time, and a
memory load. Execution time is the amount of time a pro-
cessor requires to carry out a task. Preemption time is the
amount of time required to save a task’s state before inter-
rupting it with another task. Memory load is the amount
of memory required by a task when executed on a proces-
sor. This variable accounts for instruction and data space.

FPGA: An FPGA is a PE which must be reconfigured
between the execution of different types of tasks. FPGAs
are divided into configurable logic blocks (CLBs), each of
which is capable of being configured to compute a num-
ber of combinational and sequential logic functions. Each
FPGA is described by its price, the number of CLBs it pro-
vides, and the amount of memory required to configure an
individual CLB. For each pair of tasks and FPGAs, there
is an execution time and a CLB requirement. The CLB re-
quirement is the number of CLBs filled by a configuration
which is capable of carrying out a given task.

Communication resource: Communication resources
connect different PEs to each other. Each communication
resource is described by a price, a unit transmission time,
and a contact count. Unit transmission time is the amount
of time required to transmit a unit of data. Contact count
is the number of PEs a communication resource is capable
of connecting together.

Optimization terms: CORDS optimizes the following
components of an architecture in attempts to meet an em-
bedded system specification while minimizing price: PE al-
location, communication resource allocation, task assign-
ments, communication resource connectivities, communi-
cation event assignments, and event schedules. A PE al-
location lists the number of each type of general-purpose
processor and FPGA in an architecture. A communication
resource allocation lists the number of each type of commu-
nication resource present in an architecture. Task assign-
ments denote the PE upon each task is executed. Commu-
nication resource connectivities denote the PEs to which
each communication resource is connected. Communica-
tion event assignments denote the communication resource
through which each communication event is transmitted.
In addition, CORDS generates a schedule for the tasks as-
signed to each PE and the communication events assigned
to each communication resource.

When tasks are carried out on general-purpose proces-
sors, memory is required for instructions and data. Sim-
ilarly, FPGAs require memory to store configurations and
data. CORDS accounts for these requirements when com-
puting an architecture’s price.

An architecture’s cost set characterizes the quality of
the architecture. A cost set contains the number of tasks
which could not be scheduled at any time, the number of
communication events which could not be scheduled at any
time, the degree to which the specification’s task deadlines
were violated, the degree to which CLBs were over-used in
FPGAs , and the price of the architecture.

CORDS uses an evolutionary algorithm to optimize re-
source allocations, task assignments, and communication
resource connectivities. This evolutionary framework is
described in Section 4. The scheduling algorithm used by
CORDS is described in Section 3.

3 Scheduling

In this section, we describe the scheduling algorithm used
in CORDS. When the scheduling algorithm is invoked,
CORDS has already determined PE allocations, commu-
nication link allocations, task assignments, and communi-
cation link connectivities. Thus, it is only necessary to de-
termine the time at which each task is executed, the com-
munication resource to which each communication event
is assigned, and the time at which each communication
event occurs. This problem is NP-complete for distributed
systems [9], and is further complicated by consideration
of reconfiguration, i.e., on FPGAs, the amount of time a
task requires depends on the previous and next task in
the FPGA’s schedule. We, therefore, resort to a heuristic
scheduling algorithm. CORDS uses a preemptive static
critical path scheduling algorithm with dynamic task re-
ordering based on FPGA reconfiguration time. Reordering
is dynamic but the resulting schedule is static, i.e., the
time at which each event is carried out is computed by

" period = 4

deadline=8 O

period=4 i [, =97-==

hyperperiod = 4

_deadline=8

‘N

Figure 2: Period less than deadline

CORDS to determine whether or not hard deadlines are
met by the schedule. Such guarantees are not possible,
in general, when priorities are allowed to vary during the
operation of the synthesized architecture.

CORDS targets multi-rate embedded systems. Such
systems consist of multiple periodic task graphs which
may have different periods. The Ayperperiod of a system
is the least common multiple of the periods of the task
graphs in the system. A multi-rate schedule is valid if and
only if all deadlines are met and each task graph is re-
peatedly executed until the hyperperiod has elapsed [10].
CORDS ensures validity of schedules by scheduling copies
of task graphs until the hyperperiod has been reached.
It is, therefore, possible to have multiple task copies in
the schedule for a single task specified in the input task
graphs.

Task graphs may have periods which are less than the
maximum deadline in the task graph. This makes it pos-
sible for the execution of multiple instances of the same
task graph to overlap in time. Handling this case compli-
cates scheduling. Fig. 2 shows a system containing one
task graph which has a period of four although the high-
est deadline within it is eight. As indicated by the bold ar-
row in Fig. 2, it is possible for tasks to be scheduled across
the boundary between the system hyperperiod and time
zero. In CORDS, all schedules are implicitly cyclic. Sup-
pose t1 and ¢, are times. From a resource’s point of view,
if t1 mod hyperperiod = t2 mod hyperperiod, then t1 = ts.
Actual times are used when comparing task finish times
with task deadlines, however.

CORDS uses a static, critical path based metric, called
slack, to produce a preliminary order for tasks. Assum-
ing worst-case communication and reconfiguration times,
a task’s slack is the amount of time its execution can be
delayed, from its earliest possible execution time, without
causing any other tasks to miss their deadlines. Slack is
computed by finding the difference between the latest fin-
ish time and earliest finish time for each task. Earliest fin-
ish times are computed by conducting a topological search
of the task graph, starting from the node with no incom-
ing edges, and assuming worst-case reconfiguration times
for all tasks which are assigned to FPGAs. Each commu-
nication event duration is assumed to be the duration re-
quired by the slowest communication resource connecting
the PEs to which the communicating tasks are assigned. It
is commonly assumed, in distributed computing research,
that communication between tasks assigned to the same

PE is effectively instantaneous, relative to inter-PE com-
munication. We also make this assumption. Latest finish
times are computed by conducting a backward topological
search of the task graph, starting from the nodes which
have deadlines, and assuming worst-case reconfiguration
times for all tasks which are assigned to FPGAs. Slack is
static, i.e., it is computed before scheduling begins and is
not adjusted during scheduling. Slack computation, there-
fore, takes O (edges + tasks) time.

When the scheduling algorithm begins, all start tasks,
i.e., those tasks with no incoming edges, are entered into
a pending list which is sorted in order of decreasing slack.
Ties are broken by ordering the equivalent-slack tasks by
increasing task graph copy number. Tasks are sequen-
tially removed from the end of the pending list and sched-
uled. After a task is scheduled, its children are checked
to determine whether all of their parents have been sched-
uled, satisfying data dependencies. Children which sat-
isfy this test are entered into the pending list, reconfigura-
tion delays are recalculated, and the pending list is sorted
again before scheduling the next task.

Reconfiguration delay is the amount of reconfiguration
time an FPGA would require to change from the configura-
tion capable of executing the task most recently scheduled
on the FPGA, to a configuration capable of executing an-
other task. Suppose two tasks, f and g, are both assigned
to the same FPGA. If f was the task most recently sched-
uled to the FPGA, then the FPGA is configured to execute
a task of f’s type. If g is the same type of task as f, then
the FPGA need not be reconfigured between their execu-
tion, otherwise the FPGA needs to be reconfigured. Some
FPGAs are capable of partial reconfiguration. For such
FPGAs, the reconfiguration time for a pair of configura-
tions depends on the number of CLBs used by each config-
uration, in addition to the similarity between the configu-
rations.

There is a reconfiguration delay associated with every
task which is assigned to an FPGA. The reconfiguration
delay for a task of type h, assigned to an FPGA whose
most recently scheduled task was also of type h, is zero.
Reconfiguration delay is dynamically adjusted during the
execution of the scheduling algorithm. Every time a task
is removed from the pending list, a dynamic check is first
made to determine whether or not executing another task
first would be likely to reduce total FPGA reconfiguration
time without causing deadlines to be missed. Dynamic pri-
ority is defined to be the sum of a task’s negative slack
and its negative reconfiguration delay, i.e., (dynamic pri-
ority) = —(slack) — (reconfiguration delay). It may seem
counter-intuitive to increase the dynamic priority of tasks
with low reconfiguration times. However, this encourages
similar tasks to be scheduled on an FPGA consecutively,
reducing the amount of reconfiguration necessary. If the
task, u, which was just removed from the pending list is
assigned to an FPGA, then the dynamic priorities of all
the other tasks in the pending list which are assigned to
the same FPGA as u are compared with «’s dynamic prior-
ity. If another task has a higher dynamic priority than u,
it is removed from the pending list and scheduled imme-
diately, after which time u is again considered for schedul-
ing. When two tasks have equal dynamic priorities, the
task belonging to the earlier copy of a task graph is sched-
uled first.

Suppose there are two tasks, [and m, in the pending list
and assigned to the same FPGA. Suppose [has a slack of
4 ms and a reconfiguration delay of 5 ms, and task m has
a slack of 8 ms. Suppose the task most recently scheduled
to m’s FPGA was of the same type as m. Therefore, m’s re-
configuration delay is 0 ms. Task [has a dynamic priority
of —(4 ms) —(5 ms) = —(9 ms). Task m has a dynamic pri-
ority of —(8 ms) —(0 ms) = —(8 ms). Thus, although task [
has less slack than task m, i.e., it lies along a more critical
path, task m will be scheduled first. Scheduling m before

another task is scheduled to its FPGA is likely to reduce
the reconfiguration time required. Consider, next, a com-
parison between task m and task n, which has a slack of
1 ms, a reconfiguration delay of 5 ms, and a resulting dy-
namic priority of —(1 ms) —(5 ms) = —(6 ms). Although
scheduling m first has the potential to reduce the reconfig-
uration time of m’s FPGA, n’s extremely low slack makes
it inadvisable to take a chance on delaying n. Therefore, n
will be scheduled before m.

The first step of scheduling an individual task, ¢, is
to schedule all of its incoming edges, i.e., communication
events. Each edge is scheduled on a communication re-
source connecting the PE to which ¢ is assigned and the
PE to which t’s parent is assigned. When multiple commu-
nication resources are available, CORDS selects the com-
munication resource upon which the communication event
will complete at the earliest time. If either of the commu-
nicating PEs do not have communication buffers, CORDS
schedules the communication event to the unbuffered PEs,
as well. If there are no communication resources connect-
ing the PEs involved, CORDS notes this in the architec-
ture’s cost set (see Section 2).

Every time a task is scheduled on a processor, CORDS
determines whether or not preemption is likely to result in
an improved schedule. CORDS first tentatively schedules
a task, t, to the earliest time slot on its processor, which
starts after its incoming edges have completed execution
and has a long enough duration to accommodate the task.
CORDS then checks to see whether preempting the task,
p, which is scheduled to the same processor as t, previ-
ous and adjacent to t, would result in a net improvement,
where net improvement is defined as the (increase in fin-
ish time for p) + (decrease in finish time for ¢) — (¢ slack)
+ (p slack). If preemption results in a net improvement,
there is enough time available on the general-purpose pro-
cessor before the next scheduled task, and preempting p
does not change the times at which it communicates with
tasks on other PEs, then the preemption is carried out.

4 Evolutionary Algorithm

In this section, we describe the evolutionary algorithm
used by CORDS to optimize PE allocations, communica-
tion resource allocations, task assignments, and commu-
nication resource connectivities. This algorithm shares
some properties with parallel recombinative simulated an-
nealing algorithms [11], and multiobjective genetic algo-
rithms [12]. CORDS maintains a pool of architectures. A
generation is a discrete unit of time. In every generation,
architectures reproduce. The new architectures mutate
and trade information with each other. The architectures
are then ranked, relative to each other. Poor-quality ar-
chitectures are eliminated until the number of remaining
architectures is the same as the number of architectures
at the beginning of the generation. When a user-specified
number of generations has passed without improvement
to its architectures, CORDS halts and displays the best
architecture it has ever encountered.

CORDS maintains a global temperature which de-
creases every time a user-specified number of generations
passes without improvement to its architectures. As de-
scribed in remainder of this section, CORDS uses the
global temperature to control the greediness of its opti-
mization algorithm.

Architecture clusters: If CORDS allowed architec-
tures with different PE allocations to trade task assign-
ments or communication resource connectivity informa-
tion, invalid architectures might result. Consider what
would happen if an architecture which contains FPGAs
traded part of its task assignment with an architecture
which has no FPGAs. After the trade, some of the tasks
in the architecture with no FPGAs might be assigned to
FPGAs. CORDS prevents this problem from occurring by
clustering together architectures with equivalent PE and

communication resource allocations. When task assign-
ment or communication resource connectivity information
is traded, the trade occurs between architectures in the
same cluster. When PE allocation and communication re-
source allocation information are traded, the trade occurs
between entire clusters, modifying every architecture in
the involved clusters.

In every generation, architectures are randomly se-
lected and copied until the number of architectures has
been doubled. Cluster reproduction is similar. However,
it occurs less frequently than architecture reproduction.
The newly produced architectures are all modified by, al-
ternately, mutation and information trading.

Mutation: Mutation makes randomized changes to an
architecture or cluster. When an architecture mutates,
CORDS first determines whether the task assignment or
communication resource connectivity will mutate. A ran-
dom variable, w, between zero and the average number
of contacts on a communication resource, is selected. If
w is greater than one, the task assignment mutates, oth-
erwise the communication resource connectivity mutates.
Letting t_count be the number of tasks in the embedded
system specification multiplied by the global temperature,
task assignment mutation causes a randomly selected set
of t_count tasks to be reassigned to randomly selected
PEs. Letting c_count be the number of communication re-
sources in the architecture multiplied by the global tem-
perature, communication resource connectivity mutation
causes c_count communication resources to disconnect all
of their contacts and randomly reconnect them to PEs.

When a cluster mutates, CORDS first determines
whether the PE allocation or communication resource al-
location will mutate. A random variable, x, between zero
and the average number of contacts on a communication
resource, is selected. If z is greater than one, the PE allo-
cation mutates, otherwise the communication resource al-
location mutates. Cluster mutation may cause an instance
of a randomly selected PE type to be added to all the archi-
tectures in the cluster or it may cause a randomly selected
PE to be removed from all the architectures in the clus-
ter. The probability of an additive mutation is equivalent
to the global temperature maintained by CORDS, which
ranges from one to zero. Thus, early in an optimization
run, when the global temperature is high, the number of
PEs allocated is more likely to increase than to decrease.
Later in the run, the number of PEs is more likely to de-
crease. We have empirically determined that associating
PE addition probability with global temperature results in
the production of better solutions than using a fixed PE
addition probability. All of the architectures in the clus-
ter randomly change the parts of their task assignments
and communication resource connectivities which depend
on the lost PE such that none of the tasks or communi-
cation resources depend on the lost PE. Communication
resource allocation mutation is analogous to PE allocation
mutation.

Information trading: CORDS uses an evolutionary al-
gorithm which is based on two types of genetic algorithm
[11],[12]. However, each of these algorithms has problems
dealing with the optimization of multi-dimensional infor-
mation. Below, we describe these problems and explain
how CORDS avoids them.

In a genetic algorithm, each architecture is represented
by a string, i.e., a linear array, of values. Genetic al-
gorithms trade information by conducting cross-over be-
tween strings, i.e., two strings are cut at the same random
offset from their first values and the portions following the
cut are swapped. Unfortunately, many real problems can-
not be cleanly represented by a string of values. Conven-
tionally, researchers who use genetic algorithms impose
a linear order on the information they optimize. How-
ever, there are problems with this approach. For evolu-
tionary algorithms to operate efficiently, it is necessary for

@ Swapped
% Not Swapped

® Feature

Figure 3: Feature trade selection

their information trading operation to preserve locality,
i.e., information trading should separate information de-
scribing closely related features of an architecture less fre-
quently than it separates information describing disparate
features [13].

Imposing a linear order on multi-dimensional informa-
tion is guaranteed to disrupt locality. Consider the prob-
lem of representing n-dimensional vectors in a system
where locality is inversely proportional to Euclidean dis-
tance. Imposing a linear optimal locality order on this
information is equivalent to the n-dimensional Euclidean
traveling salesman problem, which is NP-complete. Thus,
one is generally forced to resort to approximation algo-
rithms. Even if it were possible to get an optimal solu-
tion to this problem, in general, reducing the dimensional-
ity of the information from n to one results is a distortion
of space and the disruption of locality. Although CORDS
preserves locality when trading information between ar-
chitectures and clusters, it does not disrupt the locality of
n-dimensional features. CORDS never imposes a linear
order on its information.

CORDS represents each feature as a vector within a
hyper-sphere. Fig. 3 illustrates the selection of features
to trade. Each feature is represented by a dot and lies
within a hyper-sphere (a circle in this two-dimensional ex-
ample). When architectures trade information, CORDS
determines which portions of the information to trade by
dividing the hyper-space with a randomly oriented and
randomly located hyper-plane (a line in this example). The
features associated with vectors on one side of the plane
are traded (those to the upper-right in Fig. 3). Features on
the other side of the hyper-plane remain unchanged. Al-
though no linear order is ever imposed, the probability of a
pair of features being separated by an information trade is
ir}llversely proportional to the Euclidean distance between
them.

A PE’s hyper-space vector is determined by its price,
execution time, and configuration time (zero for general-
purpose processors). A communication resource’s hyper-
space vector is determined by its price, unit transmission
time, and number of contacts. A task graph’s hyper-space
vector is determined by its period and the maximum dead-
line in the task graph. Each set of vectors is pre-processed
such that the set is incident on and centered in a unit n-
dimensional sphere. Thus, determining the features to be
traded between architectures during information sharing
is reduced to selecting a randomly oriented hyper-plane
with a random offset between the most distant features
along the normal to the hyper-plane, and determining
which side of the hyper-plane each feature lies on.

When architectures trade information, CORDS first de-
termines whether task assignment or communication re-
source connectivity information will be traded. A ran-
dom variable, y, between zero and the average number
of contacts on a communication resource, is selected. If

y is greater than one, task assignments trade information,
otherwise communication resource connectivities trade in-
formation. Task assignment information trading causes
a randomized but locality-preserving set of task assign-
ments (selected as described above) to be traded between
two architectures. Communication resource connectivity
information trading is analogous to task assignment infor-
mation trading.

When clusters trade information, CORDS first deter-
mines whether task allocation or communication resource
allocation information will be traded. A random variable,
z, between zero and the average number of contacts on a
communication resource, is selected. If z is greater than
one, task allocations trade information, otherwise commu-
nication resource allocations trade information. Task al-
location information trading and communication resource
allocation information trading are analogous to task as-
signment information trading.

Architecture cache: Every time an architecture is
changed, it is necessary to determine its new cost.
Rescheduling an architecture each time it changes would
be the most straightforward approach. Scheduling, how-
ever, is the most time-consuming operation undertaken by
CORDS. CORDS maintains a least-recently used cache of
architecture cost sets to prevent the re-evaluation of archi-
tectures after every modification. In CORDS, scheduling
is deterministic. Therefore, for any PE allocation, commu-
nication resource allocation, task assignment, and commu-
nication resource connectivity, there exists exactly one set
of system cost set. Thus, any architecture is characterized
by a small amount of information, relative to the amount
of information contained in a full schedule.

Sometimes, architecture mutation and inter-
architecture communication produce an architecture
which was previously scheduled. In these cases, the archi-
tecture’s cost set is retrieved from CORDS’s cache, making
it unnecessary to carry out scheduling. We use a cache
containing seven times as many entries as the number
of architectures CORDS operates on. Our experimental
results indicate that the cache is hit approximately 60 %
of the time. Its use consistently cuts run-time in half.

Ranking: After architecture reproduction, mutation,
and information trading, CORDS ranks the architectures
in each cluster relative to each other. Architecture p dom-
inates architecture g if all the members of p’s cost set (de-
fined in Section 2) are less than or equal to the corre-
sponding members in ¢’s cost set and the two cost sets are
not equal. An architecture’s rank is the number of other
architectures that do not dominate it. Fig. 4 illustrates
ranking of a set of architectures whose cost sets contain
only two costs, price and deadline violation. Each oval
contains a letter associated with an architecture, and a
number indicating the architecture’s rank. Thus, archi-
tecture B has a rank of two because there are two other
architectures which do not dominate it, i.e., there are two
architectures which are not to the lower-left of architec-
ture B. This method of ranking is called Pareto-ranking
and it has a number of interesting properties elaborated
on in the literature [12],[14].

After cluster reproduction, mutation, and information

trading, CORDS ranks all clusters relative to each other.
Every architecture in the system is ranked relative to ev-
ery other architecture, as described above. Each cluster’s
rank is the sum of the ranks of the architectures contained
within it.
Boltzmann trials: Given two ranks, J and K, and
the global temperature, T, a Boltzmann trial preserves
the architecture associated with J and eliminates the
architecture associated with K with probability

(1+eU=0/my ™!

Price

Deadline violation

Figure 4: Architecture ranking

After ranking architectures, CORDS conducts inter-
architecture Boltzmann trials between randomly selected
pairs of architectures within a cluster, eliminating the
loser, until the cluster contains the same number of archi-
tectures as it did before reproduction. Inter-cluster Boltz-
mann trials are analogous to inter-architecture Boltzmann
trials. The use of a global temperature-dependent crite-
ria for eliminating solutions allows CORDS to escape local
minima early in its run, while the global temperature is
still high. As the global temperature decreases, CORDS
becomes increasingly greedy.

5 Experimental Results

We use a set of task graphs, processors, and communica-
tion resources produced by TGFF [15] based on informa-
tion found in trade journals [16], data sheets [2], and dis-
cussions with a representative of Xilinx Corporation. The
same optimization parameters, e.g., solution pool size, are
used by CORDS for all of the examples within each of the
following tables. Each of our 35 examples contains five
task graphs. Each task graph contains an average of 20
tasks. There are 15 types of tasks, five types of proces-
sors, ten types of FPGAs, and five types of communication
resources. The tightness of the deadlines differs from ex-
ample to example. The depth of a task is the number of
tasks on the longest path between it and the start task.
The tasks in Example A1l which have deadlines, have an
average deadline of 70 ms times the depth of the task. In
each subsequent example, the average task deadline in-
creases by 450 ms, multiplied by the depth of the task.
Thus, the average task deadline in Example A5 is 1.87 s
times the depth of the task. The seed given to TGFF’s ran-
dom number generator for each example is equivalent to
that example’s number, e.g., TGFF is seeded with three for
Example A3 and Example C3. The processors have an av-
erage price of $20, with a variability of $10, i.e., processor
prices range from $10 to $30. Tasks have an average ex-
ecution time of 300 ms, with a variability of 285 ms, on
the processors. Preemption time has an average of 150 us
with a variability of 140 us. Execution time and preemp-
tion time are both inversely correlated to processor cost.
Tasks executed on processors require an average of 40 kilo-
bytes of memory, with a variability of 28 kilobytes. 9.7 %
of processors lack communication buffers. Communication
resources have an average price of $20 with a variability
of $10. Communication time is 50 us per kilobyte, with
a variability of 40 us per kilobyte. Communication events
have an average size of 42 kilobytes with a variability of 40
kilobytes. Memory has a price $3.17 per megabyte, with a
minimum unit size of 256 kilobytes.

For FPGAs, average task execution time is 20 ms with
a variability of 19 ms. The average task execution time
on FPGAs, relative to the average task execution time on

Table 1: Resource modification experiments

Price or Price or Price or
(deadline (deadline (deadline
Example viol.) w. viol.) w. viol.) w.
processors processors processors
only and XC4000s | and XC6200s
Al (unsched.) $ 162 $ 360
A2 (65.32 %) $32 $175
A3 (1.47 %) $ 45 $ 226
A4 (3.48 %) $ 66 $ 346
A5 (0.15 %) $61 $503
A6 $ 89 $ 39 $ 65
A7 $ 108 $43 $91
A8 $60 $ 23 $ 32
A9 $116 $ 20 $117
Al10 $38 $29 $38
ATl $ 54 $ 54 $ 62
Al12 $16 $16 $16
Al3 $ 63 $54 §70
Al4 $34 $ 36 $ 34
Al5 $ 52 $31 $ 52

processors, is approximately % as high, a conservative es-

timate based upon the literature, in which speedups of 20-
100 times are frequently reported. The average memory
load of a task executed on an FPGA is 42 kilobytes with
a variability of 28 kilobytes, in addition to the memory
required to hold the CLB contents for the task. XC6200

family parts have price ranging from $200 to $400 *. The
average number of CLBs required by a task implemented
on a 6200 family FPGA is 2000, with a variability of 1970.
Task reconfiguration time for the 6200 family is 5 ns per
CLB. The XC6216 provides 4096 CLBs. The XC6264 pro-
vides 16386 CLBs.

Eight XC4000 series parts are used in the examples.
Their price ranges from approximately $30 to $400. Their
CLB counts range from 100 to 1024. XC4000 series mem-
bers do not support partial reconfiguration, i.e., each re-
configuration requires the entire FPGA to be programmed.
Therefore, task CLB counts only affect the total memory
requirements of the tasks, not their XC4000 series FPGA’s
reconfiguration time.

The examples are available via anonymous FTP at
ftp://ftp.ee.princeton.edu/pub/dickrp/CORDS. For each ex-
ample, CORDS required less than 15 CPU minutes on a
200 MHz Pentium Pro processor. Deadline violation is the
amount by which an architecture overran its deadlines, as
a percentage of the sum of the maximum deadlines in each
copy of the task graph. When forced to use processors only,
CORDS was unable to produce a solution for Example Al
in which all tasks were scheduled within the hyperperiod,
even when deadline violations were allowed. The second
column in Table 1 shows the best architectures produced
by CORDS when it uses only processors. For high example
numbers, in which deadlines are lax, processors alone are
sufficient to produce valid architectures. For the examples
with tighter deadlines, CORDS is able to synthesize valid
architectures by using a combination of processors and
FPGAs. The third column shows the best architectures
produced by CORDS when using processors and XC4000
series FPGAs. The fourth column shows the best architec-
tures produced when using processors and XC6200 family
FPGAs.

In general, by using XC4000 series and XC6200 fam-

!The XC6200 family is a low-volume and high-cost part used primarily
for research. Xilinx Corporation is, however, integrating many of the fea-
tures present in the XC6200 family into a high-volume part. The prices
given here are rounded to the nearest $100 at the request of a representa-
tive of Xilinx Corporation.

Table 2: Conventional vs. rapid reconfiguration FPGAs

Price or Price or
(deadline (deadline
Example viol.) w. viol.) w.
processors processors
and XC4000s | and XC6200s
B1 $72 $ 589
B2 (1.05 %) $178
B3 $ 27 $ 228
B4 (6.80 %) $ 647
B5 $ 62 $ 504

Table 3: Dynamic priority experiments for XC4000 series

Price or Price or
Example (deadline viol.) | (deadline viol.) Price
w.0. dynamic w. dynamic decrease
priority priority
C1 $48 $49 -2.08 %
C2 $78 $64 17.95 %
C3 $ 56 $ 25 55.36 %
C4 (0.02 %) $ 133 n.a.
C5 $90 $ 56 37.78 %
Cé $ 32 $33 -3.12 %
C7 $ 81 $77 4.94 %
C8 $ 27 $10 62.96 %
C9 $90 $51 43.33 %
C10 $61 $ 55 9.84 %
C11 $62 $67 -8.06 %
C12 $25 $10 60.00 %
C13 $70 $47 32.86 %
C14 $72 $34 52.78 %
C15 $ 69 $24 65.22 %

ily parts, CORDS was able to produce valid architectures
for a number of examples that could not be solved using
only processors. Using XC4000 series FPGAs typically re-
sulted in a reduction of price, when compared to architec-
tures using only processors. As a result of the high price
of 6200 family parts, architectures containing processors
and 6200 family parts are generally more expensive than
architectures containing processors and 4000 series parts.
However, in some cases the more rapid reconfiguration of
6200 family parts allows the satisfaction of specifications
which are not met using only processors and 4000 series
parts. This is especially true for examples in which re-
configuration time is similar to computation time. The ex-
amples shown in Table 2 differ from those in Table 1 in
three ways: the amount of time spent executing tasks and
communicating data are reduced such that reconfiguration
time and execution time for tasks associated with a 4000
series part are similar, there are five task types instead
of fifteen, and tasks with deadlines have an average dead-
line of 32 ms times the depth of the task. In general, when
CORDS produces a valid architecture using either proces-
sors and 4000 series parts, or processors and 6200 family
parts, the architecture composed of processors and 4000
series parts is less expensive. However, a design using
processors and 6200 family parts are sometimes capable
of meeting specifications which are not met using proces-
sors and 4000 series parts.

The examples shown in Table 3 are different from those
shown in Table 1 in one way: the tasks in examples in Ta-
ble 3, which have deadlines, have an average deadline of
310 ms times the depth of the task. Table 3 compares the
quality of the architectures produced by CORDS running
in two different modes. The second column shows archi-
tectures produced when CORDS only considers static task

slack during scheduling. The third column shows the ar-
chitectures produced when CORDS reorders tasks based
on their dynamic priorities. In one out of the fifteen exam-
ples, reordering based on dynamic task priorities allowed
CORDS to produce a valid architecture when scheduling
based on static priorities alone produced no architectures
which met their deadlines. Reordering based on dynamic
priority improved architecture price in 11 of the exam-
ples. For three examples, reordering resulted in a slight
increase in price. However, for the 14 examples for which
reordering resulted in a change in price, the average price
reduction was approximately 30 %.

6 Conclusions

CORDS is the first co-synthesis system to consider the ef-
fects of dynamically reconfiguring FPGAs during the op-
eration of an embedded system, and reduce the amount
of FPGA reconfiguration time. Experimental results indi-
cate that time multiplexing tasks on dynamically reconfig-
urable FPGAs has the potential to decrease system price
and allow otherwise infeasible specifications to be met.

References

[1] “Altera ARC-PCI reconfigurable computing platform.”
http:/www.altera.com/html/new/pressrel/pr_-arc-pci.html.

[2] “Xilinx part information.” http:/www.xilinx.com/partinfo/.

[3] D. Galloway, “The transmogrifier C hardware description
language and compiler for FPGAs,” in Proc. IEEE Symp. on
FPGAs for Custom Computing Machines, pp. 136-144, Apr.
1995.

[4] S. Prakash and A. Parker, “SOS: Synthesis of application-
specific heterogeneous multiprocessor systems,” J. Parallel
& Distributed Computers, vol. 16, pp. 338-351, Dec. 1992.

[5] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specifica-
tion and Design of Embedded Systems. Prentice-Hall, En-
glewood Cliffs, NdJ, 1994.

[6] R. Ernst, J. Henkel, and T. Benner, “Hardware/software
cosynthesis for microcontrollers,” IEEE Design & Test of
Computers, vol. 12, pp. 64-75, Dec. 1993.

[7]1 B. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN:
Hardware-software co-synthesis of embedded systems,” in
Proc. Design Automation Conf., pp. 703-708, June 1997.

[8] W. H. Wolf, “An architectural co-synthesis algorithm for dis-
tributed, embedded computing systems,” IEEE Trans. VLSI
Systems, vol. 5, pp. 218-229, June 1997.

[9] M. R. Garey and D. S. Johnson, Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Free-
man and Company, NY, 1979.

[10] E. L. Lawler and C. U. Martel, “Scheduling periodically oc-
curring tasks on multiple processors,” Information Process-
ing Letters, vol. 7, pp. 9-12, Feb. 1981.

[11] S. W. Mahfoud and D. E. Goldberg, “Parallel recombinative
simulated annealing: A genetic algorithm,” Parallel Com-
puting, vol. 21, pp. 1-28, Jan. 1995.

[12] C. M. Fonseca and P. J. Fleming, “Multiobjective genetic al-
gorithms made easy: Selection, sharing and mating restric-
tions,” in Proc. Genetic Algorithms in Engineering Systems:
Innovations and Applications, pp. 45-52, Sept. 1995.

[13] D. E. Goldberg, Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley, Reading, MA,
1989.

[14] R. P. Dick and N. K. Jha, “MOGAC: A multiobjective ge-
netic algorithm for the co-synthesis of hardware-software
embedded systems,” in Proc. Int. Conf. Computer-Aided De-
sign, pp. 522-529, Nov. 1997.

[15] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs
for free,” in Proc. Int. Workshop Hardware /| Software Code-
sign, Mar. 1998.

[16] “Computer design.” Product trends sections of vol. 35: n. 2,
6, 8,9, vol. 36: n. 1,9, and vol. 37: n. 1-3.

