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Abstract— In this paper, we present a hardware—software for each PE and communication link such that all real-time
cosynthesis system, called MOGAC, that partitions and schedules constraints are met [5], [6]. Cosynthesis systems generate

embedded system specifications consisting of multiple periodic ; _ ; ot ; ;
task graphs. MOGAC synthesizes real-time heterogeneous dis- :cr?f:asrl\?eli,ticl)?lw cost architecture descriptions without designer

tributed architectures using an adaptive multiobjective genetic ) ]
algorithm that can escape local minima. Price and power con-  Most real-life embedded systems are composed of multiple

sumption are optimized while hard real-time constraints are general-purpose processors and application-specific integrated
met. MOGAC places no limit on the number of hardware or cjrcuits (ASIC's), i.e., they are distributed heterogeneous ar-
software processing elements in the architectures it Symhes'zes'chitectures [1], [7]. Related work in cosynthesis typically

Our general model for bus and point-to-point communication .
links allows a number of link types to be used in an architec- aSSumes a one CPU-one ASIC architecture [7]-[9]. However,

ture. Application-specific integrated circuits consisting of multiple many specifications can more efficiently be met by distributed
processing elements are modeled. Heuristics are used to tacklearchitectures. A practical cosynthesis system cannot limit its
multirate systems, as well as systems containing task graphsdesign space to one CPU-one ASIC architectures.

whose hyperperiods are large relative to their periods. The s . .
application of a multiobjective optimization strategy allows a Power consumption is often a concern during the design of
single cosynthesis run to produce multiple designs that trade €mbedded systems. The demand for portable battery-powered

off different architectural features. Experimental results indicate  devices is high and likely to increase. It is important to reduce
that MOGAC has advantages over previous work in terms of the average power consumption of such systems, thereby

solution quality and running time. increasing battery lifespan [10]. Although early work in low-
Index Terms—Genetic algorithm, hardware—software cosynthe- power electronics focused on changes to fabrication technol-
sis, low-power synthesis, multiobjective optimization. ogy and logic design, it has been shown that larger gains can

be obtained by considering power during the earlier phases of
the design process [11].

] ) In most related work, communication is assumed to have
H ARDWARE-SOFTWARE codesign is the process Of\ one associated cost: time. However, communication
| 1 concurrently defining the hardware and software pofnys consume power as well as time. A cosynthesis system
tions of an embedded system_whlle cons@enng_depend_enctirqzét targets low-power applications must take both PE and
bgtween the two [1]-4]. De_S|gn_ers rely on their EXPENeNt& mmunication link power requirements into account. Many
with past systems when estimating th(_e resource r?qu'_remegﬁ§ynthesis systems unrealistically simplify or omit commu-
of a new system. Smce ad_hoc design exploration IS Uineation link synthesis altogether. This stems from the one
consuming, an engineer typically selects a conservative pu-one AsIC assumption. Many real distributed embedded
chitecture after little experimentation, resulting in an uns'y?tems are composed of numerous PE’s, and there are several

EZ?;;Z?QZ;;(VSZP;ZE d?s/isfrr?ésl\ggisreejeoirzgsli?l t?ﬁearfo %s of communication links available for connecting them.
9 9 P ¥ a given system, a low-price and low-power feasible

of design ex[?-lorznon.lAutofmatmg tt:]"s P roge_ss falls W'thl')n (tjh ommunication network may be composed of multiple busses
more specialized reaim ot cosyninesis. Liven an embedog point-to-point links. A practical cosynthesis system must

f}i‘:’;ivrgr?;encéﬁggg\?vgrea fgcsg:;i?]essle?;in (Ig E:[Se)rrrr]lg;edse ecapable of automatically generating a low-price, low-power,
P 9 rogeneous communication network.

well as the communication links to be used. In addition, thegrhere are four tasks that must be carried out by a cosynthesis

system assigns each task to a PE and determines the PE’g Qem

which each link is connected. Last, a schedule is providée ) ) )
« Allocation: Determine the quantity of each type of PE

and communication link to use.
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» Performance evaluationCompute the price, speed, and27]. A number of simplifying assumptions are made in Saha'’s
power consumption of the solution. system, however. Only one software processor is allowed,

Optimal cosynthesis is an intractable problem. Allothere are no provisions for synthesizing systems with multirate
cation/assignment and scheduling are each known to Bgviodic task graphs, and a limited communication link model
NP-complete for distributed systems [12]. It is therefore ndt used. Their genetic algorithm only optimizes one variable:
surprising that all cosynthesis systems that rely on optim@lice. Axelsson’s system, similarly, optimizes only price and
mixed integer linear programming [13], [14] and exhaustivé0€s not carry out communication link synthesis [19].
exploration [15] can only be applied to small instances of Teichet al.applied amultiobjective genetic algorithm to the
the cosynthesis problem. Heuristics have seen some sucd¥ggrogeneous distributed system cosynthesis problem [28].
with larger instances of the distributed system cosynthedigeir approach does not target systems with hard real-time
problem. These are discussed next. constraints. Power consumption is ignored. Multirate systems,

lterative improvement algorithms start with a completéind systems containing task graphs with periods less than their
but suboptimal, solution and make local changes to it whif¢eadlines, are not handled. They use a method of crossover
monitoring the solution’s cost. Algorithms in this class aréhat randomly selects bits to swap and does not attempt to
prone to becoming trapped in local minima. Although thereserve sequences of bits describing related attributes. This
have reasonable run times, the results produced for systetRgroach does not preserve locality (see Section II-A for
of high complexity tend to be suboptimal [5], [16], [17].information on the importance of locality). In general, this
Tabu search is a form of iterative improvement in which paggsults in anO(n?) slowdown in the rate at which solutions
changes are remembered by the algorithm and used to gudd@ implicitly evaluated when compared to an optimal locality-
future changes. This type of algorithm has been applied to theeserving crossover [29]. In this work, solutions that are not
hardware—software partitioning problem [18] and architectuMglid and that cannot be made valid by the application of
synthesis problem [19]. a repair operator are immediately terminated. Multiobjective

Constructive algorithms build a system by incrementallgptimization is not performed. Their experimental results
adding components. To be computationally tractable, a cd¥nsist of one small example, and no comparisons are made
structive algorithm must make changes with global impa¥fith other cosynthesis systems.
while inspecting only the local effects of these changes. MOGAC synthesizes distributed heterogeneous embedded
This often leads to an accumulation of suboptimal decisiory/stems. Price and power consumption are optimized under a
especially when large systems are constructed. Despite tH@inber of hard constraints. MOGAC uses a communication
susceptibility to becoming trapped in local minima, connodel that is capable of synthesizing systems with multi-
structive algorithms are capable of producing high-qualififé busses and point-to-point communication links. ASIC'’s
results [20], [21]. However, in Srinivasan's work, powegonsisting of multiple PE's are modeled. MOGAC applies
consumption is not taken into account, the communicatid¥guristics that allow multirate systems to be scheduled in
model is simplistic, and multirate systems are not efficientfgasonable time even when the least common multiple (LCM)
handled [20]. COSYN was the first cosynthesis system to takeheduling method [30] would otherwise require a large num-
power consumption into account [21]. Communication linkBer of task graph copies to be made. MOGAC's use of a
are modeled and heuristics are used to tackle multirate systefgltiobjective genetic algorithm allows it to provide a designer
Although fast, COSYN suffers from an inability to do truewith multiple solutions that trade off different system costs.
multiobjective optimization. This paper is organized as follows. In Section Il, we present

Two types of probabilistic optimization algorithms havdreliminary concepts and definitions. In Section Ill, we de-
been applied to the cosynthesis problem: simulated annegitibe the algorithms employed by MOGAC. We give the ex-
ing a|gorithms and genetic a|gorithms_ Simulated annea"@@rimental results in Section 1V. We conclude with Section V.
algorithms are capable of escaping local minima of arbitrary
depth [22]. These algorithms are a strict superset of greedy
iterative improvement algorithms; randomized improvement Il. PRELIMINARIES

nealing algorithms have been successfully used to partitigBnetic algorithms and cosynthesis algorithms.
hardware—software systems [18], [19], [23].

In general, genetic algorithms share simulated annealing . ,
algorithms’ ability to escape local minima, but they offefr- Genetic Algorithms
other advantages as well. Genetic algorithms allow solutionsGenetic algorithms maintain a pool of solutions that evolve
to cooperatively share information with each other. Then parallel over time. Genetic operators are applied to the solu-
are capable of true multiobjective optimization, exploring thgons in the current pool to improve the solutions. The lowest
set of solutions that can only be improved in one way bguality solutions are then removed from the pool [29]. A cost
being degraded in another (tfRareto-optimalset) instead of is a variable that a genetic algorithm attempts to minimize,
collapsing all costs into one with a weighted sum, as is the cas@., price and power consumption. Genetic algorithms excel
for most other probabilistic optimization algorithms [24]-[26]at simultaneously optimizing multiple conflicting costs. They
Saha’s exploratory work demonstrates that genetic algorithimsve the ability to escape local minima and communicate
can be applied to the hardware—software partitioning problanformation among solutions.
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Fig. 2. String locality.

It is important that the string encoding used to represent
| 1: 0| 0:0:0:1:1 | 1: 0|StringL+ a solution maintain locality [29]. Features of a solution that
depend closely on each other should be located near each other
String M+ in a string, and relatively independent features should be far
apart. The reason for this requirement is most easily illustrated
with an example.
In Fig. 2, A, B, and C represent variables associated with
Next, we define some basic terms used to discuss genelifferent features of a solution. As strings cross over with each
algorithms. In a conventional genetic algorithm, every solutiasther, they are cut into sections. The encoding of each feature
is represented by an array, string, of values. Although we is spread across the bottom string; information about a feature
discuss the genetic algorithm used by MOGAC in conventional likely to be split into separate solutions when crossover
terms, each solution is represented by a collection of stringscurs. The feature encoding in the top string, however, is
and no primitive strings are ever computed. As discussedlatalized; information about a feature will probably remain in
Section II-C, the strings used in MOGAC are more intricatene string when crossover occurs. If a solution has discovered
than those used in conventional genetic algorithms. Geneaticgood way of optimizing some feature of a problem, it is
operators are applied directly to the complex data structuriesportant for the encoding of that feature to remain intact.
that represent a solution. Such algorithms are sometimBse practical effect of using a string encoding method and
called evolutionary algorithms. Although operating on urnsrossover method that maintain locality is that the genetic
conventional strings increases the complexity of a genetitgorithm takes advantage whplicit parallelism,i.e., » func-
algorithm, sometimes this is the least complicated optidion evaluations implicitly examine approximateh? string
available. MOGAC needs to maintain and modify a great deadnfigurations [29].
of hierarchical information about its solutions. It is simpler,
and faster, to operate on the information directly than . Multiobjective Optimization

carry out conversion into a conventional string each time it The cosynthesis problem is inherently one of multiobjective
is necessary to modify a string. optimization. There are numerous costs, and improving
In conventional genetic algorithms, as well as in MOGAGyne cost of a system often results in the degradation of
all changes to strings are brought about by three operatoffother. Most past cosynthesis systems have dealt with this
Reproductiormakes a copy of a solutioMutationrandomly  gptimization problem by using a linear weighted sum to
changes part of a solution’s descriptioBrossoverswaps collapse all the system costs into one variable and optimizing
portions of different solutions. Fig. 1 shows an example @his variable. For this method to be successful, the weighting
string crossover. In this illustration, crossover occurs betwegfray used must be appropriate for the problem instance as
string L and stringl/. Two cuts are made and the portionslof well as the designer's desired solution. Unfortunately, the
and M between these cuts are swapped, producing the strir@synthesis problem is too complicated for an instance’s
L+ and M+. Crossover is the operator that gives genetigest weighting array to be known without first exploring
algorithms their strength; it allows different solutions to shai@at instance’s Pareto-optimal set of solutions, i.e., those
information with each other. solutions that can only be improved in one area by being
Some genetic algorithms are capable of varying the proflegraded in another. It is impossible, however, to explore the
ability of allowing a solution to be replaced by one of lowepareto-optimal set of solutions if an arbitrary weighting array
quality. Such an algorithm can be viewed as a generdlas been used to collapse all costs into a single value.
ized simulated annealing algorithm [31]. However, unlike a Assume a designer is trying to optimize two conflicting fea-
classical simulated annealing algorithm, this sort of genetigres of a system: price and power consumption. If the designer
algorithm simultaneously operates on multiple solutions thases a conventional optimization algorithm that can only deal
share information with each other. The genetic algorithmith one cost function, it is necessary to collapse the two costs
employed by MOGAC shares the strengths of classical gendtito one value. Although an apparently reasonable weighting
algorithms and simulated annealing algorithms and is capableay can be selected, the designer has no way of knowing
of running as a simulated annealing algorithm or an iteréhe shape of the Pareto-optimal curve ahead of time. In Fig. 3,
tive improvement algorithm, as well as a genetic algorithnr®& marks the designer’s preferred solution. For a minuscule
MOGAC has produced its highest quality results in the leagbwer-consumption penalty, the price of the system can be
amount of time when run in the genetic algorithm mode. Thagnificantly decreased. Unfortunately, the designer will never
other modes were implemented for experimental purposesknow that a valid solution exists & because the weighting

[1:1]/171°0:1:0][0i0

Fig. 1. Crossover.



DICK AND JHA: MULTIOBJECTIVE GENETIC ALGORITHM 923

“ \“ ) Solution “ \@
K . Pareto-optimal K
v B v
B ¢ set B
| O
v .
. ) . o
A P O e L Q
CE— X ;e
‘(\‘ . .
.00;0.' K €2 Solution K O
o K , R
g ) ‘sg\% 0 ' o » Pareto-optimal .
2 b v 2 \
= : =
Price - Price Lt
Fig. 3. Weighted sum cost function. Fig. 5. True multiobjective optimization.

Al @ +Peri0d=39
...... @ °
| @ &) (©

et : : Deadline = 10
) : ; 2 3
2 ® 6
) — @)
: " —
Price - Deadline = 15
Fig. 4. Pareto-rank. @
Deadline = 23

array prevents this portion of the Pareto-optimal curve frop_qg_ 6. Task graph.

being explored. Although the limitations of single-objective

optimization can be seen from this simple example, the prob-

lem of Se'ecting an appropriate We|ght|ng array becomes e\@fnresources that can be used to fulfill those requirements.
more severe as the number of costs in a system increasesln this subsection, we provide high-level descriptions of the

A solutiondominatesanother if all of its features are better specifications MOGAC accepts.

A solution’s Pareto-rankis the number of other solutions, in 1) Task Graph: Task graphs specify some of the require-
the solution pool, that do not dominate it. Calculating Paretéients a designer places upon an embedded system. A task
rank is an O(solutionpoolsize&) operation; each solution graph, as shown in Fig. 6, is a directed acyclic graph in which
must be compared with every other solution. In Fig. 4, eag®ach node is associated with a task and each edge is associated
circle represents a solution. Each solution’s price and powsith a scalar describing the amount of data that must be
consumption are indicated by the position of its circle in thisansferred between the two connected tasks. Each task may
graph. The number in each circle indicates the Pareto-rankasfly begin executing after all of its data dependencies have
the associated solution. been satisfied. Thus, in Fig. 6, tagkmay only begin execu-

At the end of a multiobjective genetic algorithm’s runtion after tasksB and E have each completed execution and
the designer is presented with a number of noninferior spansferred two and three units of data, respectively, to fask
lutions (see Fig. 5). These solutions are not dominated byMOGAC places no restrictions on the granularity of task
any other solutions. This approach yields Fig. 3's solutlon graphs. However, cosynthesis research generally assumes
Although the noninferior solutions are not guaranteed to k®arse-grained tasks, i.e., each task is complicated enough to
the Pareto-optimal set of solutions for the problem inStamE@quire numerous microprocessor instructions. pheod of
(the heterogeneous distributed system cosynthesis problgrask graph is the amount of time between the earliest start
contains multiple NP-complete problems, each of which woulfines of its consecutive executions. A node with no outgoing
require multiple solutions), they do form an upper bound on thgjges is called aink node. A deadline,the time by which
Pareto-optimal set, giving the designer insight into the shapgs task associated with the node must complete its execution,
of the problem’s Pareto-optimal solution set. The tradeoffisyisis for every sink node. However, other nodes may also
available between solution costs in these noninferior solutioR§ye deadlines associated with them. The deadline of a task

are made clear. graph is the maximum of all the deadlines specified in it.
An embedded system specification may contain multiple task
C. Embedded System Model graphs, each of which may have a different period.

MOGAC operates on an embedded system specification thaR) Processing ElementA PE executes tasks. Two sorts of
defines a set of requirements that must be met and a B&'s are modeledcoresand processorsProcessors represent
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meet the peak power-dissipation requirements of the tasks

assigned to the cores implemented on it. Tasks do not have pin-

A \ count, device-count, or peak power-dissipation requirements.
Isa Isa’ Is hosted by an . .

/ \ / However, tasks may be carried out by cores, which place such

|Processor| Corel requirements on their host IC’s.

Fig. 7. PE-IC hierarchy. _ The_worst case execgtion time for a task a;sigqed to_a_ core
is equivalent to its relative worst case execution time divided
by the speed of the IC on which the core is implemented.
general-purpose processors that can only execute one t#gK task’s average power consumption is its relative average
at a time. Multiple cores may be located on the same IGgwer consumption divided by the power efficiency of the
upon which multiple tasks may execute simultaneously. Thig on which the task’s core is implemented. Thus, in the
provides a model for ASIC's that are capable of carryingyrrent implementation of the algorithm, it is assumed that
out different tasks at the same time. The relationship amogigre is a linear relationship between core worst case execution
processors, cores, and IC's is shown in Fig. 7. PE's can bephe and core relative worst case execution time. Similarly,
various types, e.g., an MC68000 is a PE type. A solution M@yere is a linear relationship between core average power
contain more than one instance of a given type of resourggnsumption and core relative average power consumption.
e.g., a solution may contain more than one PE instance of tigis model could trivially be generalized to use a full lookup-
type MC68000. table approach (this is how the task execution time of a task
MOGAC accepts a data base that specifies the performa@q;pany given PE is determined).
of each task on each available PE type and provides otheB) communication Link:Communication links have the
information about the PE’s available, e.g., a list of tasks thﬁillowing attributes: packet size, average power consumption
are incompatible with each type of PE, the price of eacrgbr packet, worst case communication time per packet,
resource, and the number of devices provided by IC's a%ce, number of contacts, pin requirement, and idle power
consumed by cores. Worst case execution time and POWESnsumption. Each task graph edge must be assigned to a
consumption values for tasks on a given PE type can Bgmmunication link. The worst case communication time and
obtained by direct measurement or simulation. Characteriziggerage power consumption of an edge are linearly dependent
a PE data base in this manner requires that the designer kngywhe number of packets of data transferred through its link.
the input vectors that elicit worst case execution time arghe number of contacts a link supports is the number of IC’s
power consumption for each task-PE pair. Another option §scan connect, i.e., a link with two contacts is a point-to-point
to use worst case performance analysis tools to determine|i@@ A link with more than two contacts is a bus. There
upper bound on execution time or power consumption withoH{ay be more than one communication link connected to a

requiring a specific input vector [32]-{34]. PE instance. Pin requirement is the number of pins on an
The following information establishes the relationships bgc required to support the use of the communication link. In
tween tasks and processors: previous distributed computing work, it is commonly assumed

+ atwo-dimensional array indicating the worst case execthat communication between tasks that are assigned to the
tion time of each task on each processor; same IC consumes an insignificant amount of time and power.

« a two-dimensional array indicating the average pow&¥e also make this assumption. If an architecture contains

consumption of each task on each processor. two communicating tasks that execute on separate IC’s, the

In addition to these arrays, processors have price aﬂg:hitecture is invalid if there are no communication links

idle power-consumption values. The following informatioffonnecting the IC's.
establishes the relationship between tasks and cores:
+ atwo-dimensional array indicating the relative worst case lll. ALGORITHM DESCRIPTION
execution time of each task on each core; In this section, we give a description of the algorithms used
- a two-dimensional array indicating the relative average MOGAC. We begin, in Section llI-A, with an overview
power consumption of each task on each core; of the algorithm. This is followed, in Section IlI-B, by an
« a two-dimensional array indicating the peak power COIA?_xplanatlon of solution clus_ters. Sec_tlon 1-C de_scrlbes MO-
sumption of each task on each core. GAC's performance evaluation algorithms. Solution reproduc-
. . tion, mutation, and crossover are described in Sections IlI-D
Cores do not have an inherent price. However, each COrE II-E
is assigned to an IC that does have a price. The following '
variables are associated with IC’s: price, device count, pins )
available, idle power consumption, peak power dissipatioft; Overview of MOGAC
speed, and power efficiency. Each core places a device-courih this subsection, we give an overview of MOGAC's
requirement, e.g., number of transistors or configurable logicimary algorithm. MOGAC maintains a pool of solutions that
blocks, on the IC to which it is assigned. For an architectusyolve in parallel. Fig. 8 illustrates MOGAC's core algorithm.
to be valid, each IC must meet device-count requirements After initializing each solution with simple randomized algo-
the cores assigned to it and the pin-count requirements of titams, MOGAC enters a loop that repeats until the halting
communication links attached to it. In addition, each IC musbndition, the passage of a number of generations without
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(Crossover / mutate)

(Reproduce / terminate) =<

Task assignment crossover

( Report J«—{(Prune)

Fig. 8. MOGAC overview.

improvement in the solution pool, is met. Each time the loop
completes, gyenerationhas passed.

After initialization, MOGAC evaluates each of its solutions. S A
During evaluation, a solution’s costs, e.g., price and power Dot D R
consumption, are determined. The costs are then compared TRTITRTTIRI. PP PPPPRT. :
to the designer-supplied constraints to determine how se- Prorrrrtarnr i
verely the constraints are violated. At this point, the solutions Tnvalid task assignment
are ranked using the multiobjective criterion described in
Section II-B. If the halting conditions have not yet been
reached, low-rank solutions are terminated and high-rank
solutions reproduce to take their places. The newly born
solutions are then modified via crossover and mutation. At
this point, the generation has completed and another begins.
Eventually, enough generations pass without improvement
in the solution pool to trigger the halting condition. Befor%ig. 9 Bad crossover.
halting, MOGAC prunes any invalid and inferior solutions

from its solution pool and presents the remaining solutions o o
to the designer. of type PE2 exist in .J. Similar problems are caused by the

indiscriminate crossover of other types of strings.
It would be possible to detect structurally incorrect solutions
B. Clusters and repair, or immediately terminate, them. However, examin-

In this subsection, we introduce the six strings that descrilig) €very solution and modifying or terminating those that are
solutions in MOGAC and explain how clusters of solutionstructurally incorrect would be costly in terms of computation
are used to prevent crossover from producitgicturally in- time. More important, the postprocessing would destroy the
correctsolutions, i.e., solutions that are physically impossibléocality of the crossover operator, i.e., this step would disrupt
Every solution in MOGAC is defined by a collection of sixthe partial solutions that were swapped during crossover.
strings. ThePE-allocation string, IC-allocation stringand ~ MOGAC uses the concept of solution clusters to prevent
link-allocation string record the number and types of PE'ssStructurally incorrect solutions from being created in the first
IC’s, and communication links present in a solution. Task- Place. As shown in Fig. 10, solutions are grouped into clusters.
assignment stringecords the PE instances used to carry oolutions within a cluster all share the same PE-allocation,
each task. Theore-assignment stringecords the IC used to IC-allocation, and link-allocation strings. Thus, each solution
host each core. Thénk connectivity stringrecords the PE in the single cluster has the same PE and communication
instances to which each link is connected. Formal definitiofisk resources available to it. However, the task-assignment,
of these strings are given in Section IlI-E. core-assignment, and link-connectivity strings of solutions

If it were possible for solutions to indiscriminately crosgn the same cluster may differ. Crossover of assignment
over with each other, structurally incorrect solutions wouldnd link connectivity strings occurs between solutions in the
sometimes be produced. Assume the existence of two sod@me cluster. Mutation of these strings can be applied to
tions: J and K. As illustrated in Fig. 9,J’s PE allocation individual solutions. Solutions resulting from these opera-
contains only one PE instance, of typé-1. K’s PE allocation tions are guaranteed to be structurally correct. Crossover of
contains only one PE instance, of tygek2. Therefore, all allocation strings occurs between entire clusters, destroying
tasks inJ are assigned to the PE of tygeF1, and all tasks the solutions within the clusters. Similarly, when one of
in K are assigned to the PE of typ@E2. If a crossover a cluster’s allocation strings mutates, each of the solutions
were to occur between the task-assignment strings in the twithin the cluster is updated so that it shares the cluster’s
solutions, the result would be the existence of some tasksrniew allocation string. Intercluster crossover and mutation
J that are assigned to a PE of typ&~2. However, no PE’'s of allocation strings occurs less frequently than intracluster
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Fig. 10. Solution clusters. e

. . . Real task graph copies
crossover and mutation. Every time crossover or mutation

is applied to clusters, instead of individual solutions, th@9-11. Task graph copies.
information contained in the assignment and link connectivity
strings of the involved solutions is no longer valid. Thesgeriods and deadlines of the different graphs. The scheduler
strings are, therefore, reinitialized. is capable of dealing with embedded system specifications in
There are three advantages to the use of solution clygich task graphs have periods less than their deadlines.
ters. The overall algorithm is simplified because it is not The hyperperiodis the LCM of all the task graph periods
necessary to detect or repair structurally incorrect solution§. a multirate system specification. Cosynthesis systems that
The algorithm’s execution time is decreased because it jse 3 straightforward application of the LCM scheduling
not necessary to deal with structurally incorrect solutions apgkthod [30] are forced to repeatedly schedule each task
because locality is not destroyed by repair operations, thié&ph until the hyperperiod of the system has elapsed. This
allowing more implicit parallelism in the genetic algorithmegn pe computationally expensive for systems in which the
(see Section II-A). Last, using clusters makes MOGAC gyperperiod is large, relative to the periods of individual task
parallel algorithm. There is no need for solutions in differefraphs. MOGAC uses heuristics to tackle system specifications
clusters to communicate with each other except during thgin a large hyperperiod. One of these is an extension of

infrequent application of intercluster crossover. a method used in real-time computing [37]. The problem
caused by a large hyperperiod can be reduced by tightening
C. Solution Evaluation the periods of some task graphs. Consider a system consisting

Performance evaluation consists of calculating a solutior®§ two periodic task graphs, where the first has a period of
costs and determining how severely they violate the constraif# and the second has a period of 13. The hyperperiod is,
imposed by the designer. If one of the system’s costs is higiBerefore, 156. If we tighten the period of the second task
than itshard constraintthe system is invalid. For example, thedraph to 12, however, the system’s hyperperiod reduces to
schedule length of a task graph cannot exceed its hard real-tik¥e The designer has full control over the aggressiveness
constraint. Valid systems may have costs that are higher thaith which the hyperperiod contraction heuristic is applied.
their soft constraintsalthough it is desirable to reduce a cosMOGAC allows the designer to specify the maximum and
until it is lower than its soft constraint. In this subsection, wglinimum acceptable periods for each task graph in the system.
will explain how MOGAC does performance evaluation angubject to these constraints, a period for each task graph is
then describe the process by which raw performance metri@culated such that the number of task graph copies needed
are converted into hard and soft constraint violation valuesfor LCM scheduling is minimized.

1) Scheduling:The PE allocations, IC allocations, link We have developed a method in which some of the task
allocations, task assignment, core assignment, and link c@faph copies in the hyperperiod aneplicit and some areeal
nectivities of MOGAC's solutions are derived from theifsee Fig. 11). Each implicit copy has a remdrent Implicit
strings. Scheduling, however, is carried out by a conventiork@pies are not entered in a solution’s task-assignment string;
algorithm before each solution evaluation. MOGAC uses they share the assignment strings of their parents. Although it
slack-based list scheduling algorithm to generate static REnecessary to schedule implicit task graph copies, there is no
and communication link schedules. Static scheduling makeged to prioritize the nodes of these copies; the implicit task
it possible to guarantee that hard real-time constraints wgjfaph node priorities are equivalent to the parent task graph
be met [35]. In the current implementation, a nonpreempode priorities. Additionally, the absence of implicit copies
tive schedule is generated. Although there are advantagedresn a solution’s task-assignment string reduces the size of the
allowing preemption in coarse-grained scheduling problenggnetic algorithm’s solution space, thus speeding optimization.
a nonpreemptive scheduler was sufficient to allow MOGAGelecting a ratio of the number of real task graph copies to the
to meet or beat results from the literature (see Section IMptal number of task graph copies involves making a tradeoff
The advantages of preemptive scheduling are partially offdemttween potential solution quality and MOGAC's run time.
by a practical weakness. In general, preemption results This decision is left to the designer. For the examples in
context-switching penalties that are costly in terms of pow&ection IV, a low ratio €0.2) rapidly produced high-quality
consumption [36]. MOGAC's scheduling algorithm assigns @sults.
priority to a task based upon the difference between its lates?) Cost Calculation: System price, task graph completion
possible start time and its earliest possible start time. Thime, and system power consumption are computed during cost
relative priorities of tasks in different task graphs, as wedlalculation. System price is determined by taking the sum of
as different copies of the same task graph, are based on tthe prices of all IC’s, processors, and links in the allocation
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strings. The completion time of each node in a task graph is  g4uss is a Gaussian random variable.
recorded during scheduling. Therefore, the completion times  gawuss’s mean = 0 and variance = 1.
of all nodes with deadlines are available for inspection. All
schedules span the system’s hyperperiod. System power con- new.solutions is the number of solutions to be
sumption is computed by stepping through each PE and link's ~ replaced via reproduction.
hyperperiod schedule, obtaining the system energy required
(this includes the idle PE/link energy), and dividing the energy
by the hyperperiod [21].

3) Constraint Violation: A system’s constraint violations
are derived from its costs and the constraints imposed by

Sort solutions in the order of increasing Pareto-rank.

For index := 0 to new_solutions — 1:
Select a random instance, g, from gauss.

the designer. Solutions have a number of hard constraints. Set offset := mazimum.indez—
Although solutions in which one or more hard constraints g/ solution_selection elitism.

have been violated are invalid, MOGAC treats them no

differently than other solutions during its run. Solutions that Set solution[indez] := solutionoffset].

violate their hard constraints are removed only at the eRg}. 12. Solution reproduction algorithm.
of a cosynthesis run. It may seem counterintuitive to allow
invalid solutions to survive. However, doing so is benefi- . )
cial when solving constrained problems [38], for there afg- Ranking and Reproduction
significant disadvantages associated with the alternatives. Hn this subsection, we explain the manner in which solutions
one terminates invalid solutions immediately, one wastesaad clusters are selected for reproduction. The number of
significant amount of computation time in identifying suckelusters and solutions maintained by MOGAC is conserved
solutions. The solutions most likely eventually to evolve intduring one run of the algorithm. For each cluster or solution
high-quality valid solutions are those that are near the bourzteated via reproduction, another is terminated. The number of
ary between valid and invalid. By immediately terminatingolutions and clusters maintained during a run can be chosen
all invalid solutions in each generation, one destroys maamy the start of the run. We typically use 20 clusters, each of
solutions that are likely ultimately to evolve into high-qualitywhich contains 20 solutions.
valid solutions. One could instead attempt to repair invalid 1) Solution Ranking and ReproductioBolutions within a
solutions. However, it is in general difficult to formulate aluster are ranked using the method presented in Section II-
repair operation that is guaranteed to repair all solutions [28. In each generation, a prespecified number of solutions
Thus, one will often be forced to terminate solutions even afteithin each cluster are eliminated to make space for the
expending computation time attempting to repair them. Moreproduction of other solutions. MOGAC maintains a variable
important, a repair operation applied to a solution that waalledsolutionselectionelitism,which controls the probability
made invalid by crossover disrupts a portion of that solutioof high-rank solutions’ being selected for reproduction. This
effectively changing the crossover operator such that it mariable increases during the run of the algorithm. The practi-
longer preserves locality. These problems are analogousctd effect of this feature is to allow MOGAC to easily escape
the problem with terminating or repairing invalid solutionsocal minima during the start of a run. Near the end of a
discussed in Section IlI-B. run, however, MOGAC becomes greedier in order to allow its
Each system specification has price and average powsstutions to converge on local minima. Solutions are selected
consumption soft constraints. Typically, the desired price fsr reproduction by indexing inward from the highest ranking
set to zero. Thus solution with a Gaussian random variable whose variance is
the inverse of thesolution-selectionelitism The pseudocode
for MOGAC's reproduction algorithm is shown in Fig. 12.
priceviolation = max (0, price — desired_price). After reproduction, crossover and mutation are carried out
on the solutions that were copied. The number of crossovers
and mutations per generation, for each type of string, are
A system’s average power violation is calculated in a similgjpecified by user-defined parameters. Crossover is applied
manner. to randomly selected solution pairs that are selected from
Every task graph has one or more nodes with specifigée solutions created by reproduction. Mutation is applied to
deadlines. A system’s hard real-time constraint violation is t'?ﬁndomly selected solutions that are also selected from the
sum of the time-constraint violations of all such nodes in all they|utions created by reproduction.
real and implicit task graph copies in the system. For every IC, 2) Cluster Ranking and ReproductiofRanking clusters is
the peak power-dissipation and device-count requirementsigbre complicated than ranking solutions. Each solution has
all the cores assigned to that IC are summed. Similarly, the phe set of costs. Thus, determining whether it dominates
count requirement placed on an IC by all of the communicatigfhother solution is straightforward. Clusters, however, contain
links attached to it are summed. When an IC is not capatd@merous solutions; each cluster is associated with many
of meeting the requirements of the cores assigned to it &dts of costs. We extend the concept of domination, in a
communication links connected to it, the appropriate hakgraightforward way, to take partial domination into account.
constraint violations in the solution are increased. Cluster domination is represented by a scalar instead of a
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.............. PEtypes Start from an empty PE allocation.
: : : : For each task ¢:
PE1: PE2: PE3: PE4§ If there exist no PEs capable of executing £:
PE allocation string R'andomly selfect a PE type, pe, which
5 | 201 is capable of executing ¢.

Number of PE instances Add an instance of pe to the solution’s

Fig. 13. Example PE-allocation string. PE allocation string.

Fig. 14. PE-allocation-string initialization.
Boolean value. The definition of rank must also be adjusted

when it is applied to clusters. Letandy be clustersnis(x)
is the set of noninferior solutions in. dom(a, b) is 1 if a is
not dominated by> and 0 otherwise. Then

max

by taking a sum of each array’s entries and weighting each
entry with the number of tasks, of the type corresponding
to that entry’s position, that exist in the embedded system
] Z dom(a, b) specification. After this step, each PE is described by
a € nis() bCnis(y) a collection of scalars, i.e., a vector. Imposing a linear
locality-preserving cycle on a set eafdimensional vectors is

cust_domination(x, y) =

and equivalent to the traveling salesman problem. This problem is
ranz] = Z clust_domination(z, y). NP-complete. An approximation algorithm is used to impose
uC It Ayt an order on these vectors that, in general, places vectors,

_ which are close to each other in thedimensional space,
Once cluster ranks have been determined, cluster repg@sqe together in the PE-allocation string. Tiwk-allocation

duction is analogou; to solution reproduction. A pre;pemfl%qring andIC-allocation stringare similar to the PE-allocation
number of clusters is removed to make room for h'gh'r,argiring, and they are ordered using similar algorithms.
clusters to reproduce. Clus_ters are selected for reprOdUCt'on_"TDE-allocation strings are initialized with the simple con-
the same manner as solutions. Cluster crossover and mutaligfictive algorithm shown in Fig. 14. If the solution contains
are also analogous to solution crossover and mutation. 5y cores, its IC-allocation string is initialized to contain a
single, randomly chosen IC. Otherwise, the IC-allocation string
is initially empty. Initially, a solution’s link-allocation string is

In this subsection, we formally define the six strings thampty, i.e., the solution contains no links. Links are introduced
describe each solution. These strings were introduced by subsequent mutations. The intention of these initialization
Section IlI-B. In addition, we explain how these strings aralgorithms is to set up minimal valid solutions that will be
modified to allow solutions to evolve. improved via mutation and crossover.

1) Allocation Strings: The PE-allocation string, IC- An allocation string’s mutation operator selects a PE, IC,
allocation string, and link-allocation string are arrays abr link type at random; each has the same probability of
integers. Each integer represents the number of instanbeing selected. The number of instances of the selected PE,
of a single type of PE, IC, or link present in a solutionlC, or link type is either incremented or decremented, with
An example PE-allocation string is shown in Fig. 13. Thisqual probability. When the crossover operator is applied to
example string indicates that there are five instances tefo allocation strings, the strings are cut at the same two
type PFE1, two instances of typePE2, zero instances of random offsets and the portions between the cuts are swapped.
type PE3, and one instance of typ@F4 in the solution. After the crossover or mutation of a PE-allocation string, the
As mentioned before, for a genetic algorithm to functiononstructive algorithm shown in Fig. 14 is applied to the par-
properly, it is important for its strings to preserve localityticipating string. This enforces the condition that for each task,
i.e., related entries must be located closer to each othertliere exists at least one PE capable of executing it. Usually,
a string than disparate entries [29]. The allocation stririgis not necessary for this postprocessing step to make any
ordering algorithm places PE’s such that those with similahanges to the PE-allocation string. Similarly, if a crossover
characteristics, e.g., price, have a higher probability of beilmg mutation causes a solution that contains one or more cores to
located close together in the string than those with dispardte without IC’s, a single, randomly selected IC is introduced.
characteristics. The order of PE types in the PE-allocation2) Assignment StringsThe task-assignment string is an
string is determined in the following way. array of PE instance references specifying the PE to which

As mentioned in Section II-C, the relationship betweeeach task is assigned. An example task-assignment string
tasks and PE’s is defined by a collection of two-dimensiona shown in Fig. 15 (see Section II-C for more information
arrays. For the purpose of characterizing a PE type, thbout task graphs). In this example, the task-assignment string
one-dimensional arrays corresponding to that PE type anelicates that taskd is assigned to PE instande, B to P,
selected from these two-dimensional arrays. Thus, each PBo R, and D to Q. Task-assignment strings are ordered by
can be characterized by a collection of one-dimensionabnducting a depth-first traversal of all the task graphs in the
arrays and some scalars. The first step in determining thestem specification and concatenating the results. This order-
order of PE types in the PE-allocation string is to collapgag algorithm makes it probable that tasks that are located close
each PE type's arrays into scalars. This conversion is domgether, along paths through task graphs, will be located close

E. Evolution
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operator selects a location in the string at random and applies
’m the inner loop of the initialization algorithm shown in Fig. 18
T;s"|aszgn|me;' si""g < to it. In other words, it connects a link to PE’s randomly.

The link-connectivity string’s crossover operator cuts the

participating strings at the same random offset and swaps
the portions following the cut. The two participating strings

always come from solutions that have the same link allocations
because link-connectivity-string crossover is an intracluster
genetic operator.

PE instances
Fig. 15. Example task-assignment string.
IV. EXPERIMENTAL RESULTS

together in the task-assignment string. The core-assignmenij0GAC is a prototype consisting of approximately 18 000
string is an ordered string of IC instance references specifyifi§es of G++ and Bison code. Our results were obtained on a
the IC to which each core is assigned. It is ordered using 8§0-MHz Pentium Pro system with 96 MB of main memory
algorithm similar to that applied to the PE-allocation string.running the Linux operating system. We compare our results
Initially, each task is randomly assigned to a PE instanggth those of Yen [5], Hou [17], and COSYN [21], which were
in the PE-allocation string that is capable of executing ipptained on a SPARCstation 20, as well as those of SOS [13],
The constructive algorithm used to initialize a solution’s PEghich were obtained on a Solbourne Series5e/900 (similar to
allocation string guarantees that there is at least one PE capaPplépARC 4/490). The CPU times are given in seconds.
of executing each task (see Fig. 14). Similarly, each core in\JOGAC's input consists of two ASCII files. The first file
the core-assignment string is randomly assigned to an IC. gpecifies the attributes of each PE, IC, and link type that
The task-assignment string mutation operator selects a tagky be used to implement an architecture. In addition, this
at random and changes the PE type used to carry out th@! specifies the relationships between PE’s and tasks, i.e.,
task (see Fig. 16). An analogous algorithm is used for thg; each PE, it contains arrays specifying the worst case
mutation of core-assignment strings. MOGAC maintains gecution times, average power consumptions, and peak power
variable called®E aggressivenessvhich decreases during theconsumptions of each task on that PE. The second file specifies
run of the algorithm. If the value of this variable is small, gne topologies, periods, deadlines, tasks, and communication
nearby PE type will probably be used to carry out the tasffg\s associated with all the task graphs composing the system
If PE.aggressivenesss large, it is likely that p& will be far  gpecification. MOGAC runs without designer intervention and,
from pe in the PE-allocation string. The PE-allocation string igpon halting, outputs one or more solutions. Each solution is a
ordered in a locality-preserving way. Hence, there is an inversgstem architecture consisting of a price, power consumption,
correlation between distance on the PE-allocation string apg |iocation, IC allocation, link allocation, core assignments,
PE type similarity. DecreasingE aggressivenessuring arun task assignments, link connectivities, task schedules for each

a”OWS MOGAC to |n|t|a”y mutate taSk-aSSignment StringS "p)E, and communication event schedules for each link.
a way that is likely to cause large jumps across the solution

space. As a run nears its end, task-assignment mutation makes_ o
only small changes to the task-assignment string, fine-tuning/i, Price Optimization
When the crossover operator is applied to two task- MOGAC has a slew of parameters that can be modified
assignment strings, the strings are cut at the same randiommune its performance. Although every problem has its own
offset and the portions following the cut are swapped. Thaptimal parameter settings, it would be inappropriate to report
two participating strings always come from solutions thainly the CPU time necessary to achieve a given solution
have the same PE allocations because task-assignment-stfirgignificantly more time was spent finding a good set of
crossover is an intracluster genetic operator. The mutatiparameters. We therefore use the same set of parameters for all
operation for core-assignment strings is analogous. the examples presented in this subsection. In addition, the same
3) Link-Connectivity Strings:The link-connectivity string value is used to seed MOGAC's random number generator
is an array of IC and processor instance references specifyfog every result presented in this paper, with the exception of
the IC's and processors to which each communication lirfkable IV.
is connected. An example link-connectivity string is shown in It was necessary to trade off run time against solution quality
Fig. 17. In this illustration, link3’s two contacts are connectedwhen selecting a general parameter set for the examples in
to PE instances” and ). Link H connectsP, @}, and R. this subsection. Using a smaller solution pool and cluster pool
More than one link may be connected to the same PE instanaeuld allow MOGAC to produce low-cost solutions for simple
In Fig. 17, PE instance) is an example of a PE connectecexamples more rapidly. However, the solution quality for more
to two communication links. The order of link types in thecomplicated examples would suffer. For illustrative purposes,
link-connectivity string is equivalent to their order in theun times achieved by tuning MOGAC’s parameters to an
link-allocation string. individual problem’s complexity, as well as the run times that
Initially, each link is randomly connected to PE’s in the PEresulted from using the general parameter set, are shown in
allocation string (see Fig. 18). The link-connectivity mutatiothe price-optimization tables.
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Randomly select a task instance, t, in the task assignment string.

pe is the position, in the allocation string, of the PE to which ¢ is assigned.
g is a Gaussian random variable with mean = 0 and variance = 1.

Set pet := [g- PE_aggressiveness + pe].

If there are no PEs of type pe™ allocated or t may not execute on pe™:
Select the nearest neighbor of pe™ for which PEs exist and upon which t may execute.

Fig. 16. Task-assignment string mutation.

TABLE |
Hou's EXAMPLES
No. of Yen’s system COSYN MOGAC
Example Ta..sks Price CcpPU Price CcpPU Price CPU Tuned
time (s) time (s) time (s) | time (s)
Hou 1 & 2 (unclustered) 20 170 10,205 N. A, N. A. 170 5.7 2.8
Hou 3 & 4 (unclustered) 20 210 11,550 N. A, N. A. 170 8.0 1.6
Hou 1 & 2 (clustered) 8 170 16.0 170 5.1 170 5.1 0.7
Hou 3 & 4 (clustered) 6 170 3.3 N. A. N. A, 170 2.2 0.6
Link instances Generate an array, pe, of PE locations.

conmect is the number of PEs to which link may connect.

Set each PE location in pe to a unique location in the PE allocation string.
For each array, link, of PE references in the link connectivity string:
Contacts| 2 3 Randomize the order of the entries in pe.
\ \

Link cm:necﬁvity For indez := 0 to min(connect — 1,length|pe]):

string Set link[indez] := pelindez).

Al

Fig. 18. Link-connectivity-string initialization.

time increases slightly when it solves the unclustered ver-

sions of Hou's examples instead of the clustered versions. In
P Q l R I contrast, Yen’'s system takes approximately 190Gk long to
PE instances produce solutions. Despite consuming significantly less CPU

time, in one case MOGAC produces a lower price architecture
than Yen’s system. The difference in solution quality between
Yen's system and MOGAC is likely to be a result of the

Table I compares MOGAC'’s performance with that ofeneral class of algorithm used by each system. The run time
COSYN [21] and Yen's system [5] when each is run oef Yen's system is significantly influenced by the method used
the clustered and unclustered versions of Hou's task grapBgjuarantee schedule validity. Yen uses an algorithm in which
[17]. Task clustering is the process of using a prepass 40single solution is iteratively improved. Although the search
collapse multiple tasks into a cluster of tasks. This clustgs not blind, only a single stage of look-ahead is used. For each
is treated like a single task during assignment, i.e., all theal evaluation, only a single solution is implicitly evaluated.
tasks in a cluster are executed on the same PE. Clusteningalid solutions are terminated instantly instead of being
reduces the complexity of the cosynthesis problem bmproved upon. The use of a locality-preserving crossover
decreasing the number of tasks that must be assigned. H@erator allows MOGAC's genetic algorithm to implicitly
ran Yen's system on the clustered and unclustered versigwluate more than one solution for each explicit evaluation
of his graphs. We use the same clusters as Hou wh@ee Section II-A). Instead of maintaining a single solution
comparing our results with his and those of COSYN. For thtaat moves across the solution space, MOGAC maintains
example upon which it was possible to make a comparisefultiple solutions that spread out across the solution space.
between MOGAC and COSYN, COSYN's performance wabhese solutions share information with each other. MOGAC
similar to that of MOGAC. Unfortunately, this was a smalkttempts to improve invalid solutions, which are otherwise of
example, containing only eight tasks. The only existingigh quality, instead of terminating them immediately. We
implementation of COSYN is solely owned by Lucent. Wéelieve that these features allow MOGAC to tackle large
relied on results reported in the literature to compare witiroblem instances without a prohibitive increase in execution
COSYN. time.

It is interesting to observe the impact of increased problemThe hyperperiod contraction heuristic described in
complexity upon MOGAC and Yen's system. MOGAC’s CPWsection IlI-C was applied to the clustered and unclustered

Fig. 17. Example link-connectivity string.
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TABLE 11
PRAKASH AND PARKER'S EXAMPLES
Example No. of S0OS COSYN MOGAC
(Performr;nce) Ta:sks Price CPU Price CPU Price CPU Tuned
time (s) time (s) time (s) | time (s)
Prakash & Parker 1 (4) 4 7 28 N. A. N. A. 7 3.3 0.2
Prakash & Parker 1 (7) 4 5 37 5 0.2 5 2.1 0.1
Prakash & Parker 2 (8) 9 7 4,511 N. A. N. A. 7 2.1 0.2
Prakash & Parker 2 (15) 9 5 385,012 5 0.4 5 2.3 0.1
TABLE I
YEN'S LARGE RANDOM EXAMPLES
No. of Yen’s system MOGAC
Example : - - -
Tasks || Price | CPU Time (s) || Price | CPU Time (s) | Tuned (s)
Yen’s Random 1 50 281 10,252 75 6.4 0.2
Yen’s Random 2 60 637 21,979 81 7.8 0.2

versions of the task graphs called Hou 3 and 4. The periodThe task graph periods in these systems are coprime.
of one of the task graphs in these examples was contracliéterefore, the hyperperiod contraction heuristic presented in
by 5%. We were able to decrease MOGAC’s CPU timBection III-C significantly reduces the number of task graph
without decreasing solution quality by tuning the size afopies that MOGAC is required to schedule. The heuristic
MOGAC's solution pool and making its halting conditionsvas prevented from specifying task graph periods to be less
less tolerant. than the corresponding deadlines or greater than the periods
Table Il compares MOGAC's performance with that of SOSpecified in [5].
[13] and COSYN when they are applied to Prakash and MOGAC'’s performance depends on the seed given to its
Parker’s task graphs. The performance number shown by epsleudorandom number generator. Each problem instance has
task graph is the worst case finish time for the task grapddifferent random seed for which MOGAC produces the best
For instance, “Prakash and Parker(4)” refers to Prakash results most rapidly. However, MOGAC is able to arrive at
and Parker’s first task graph with a worst case finish tinge high-quality solution given suboptimal seeds if its solution
of four time units. In these graphs, an unconventional modebol size or cluster pool size are increased or its halting
for communication is used [13]. A task may begin executingonditions are made more lenient. Table 1V shows the average
before all of its input data have arrived. We converted theiesults of optimizing each of the price-optimization examples
specifications into graphs that conform to the conventionad times, given random seeds ranging from one to 30. In
communication model, i.e., a task can only begin executidhis table, reported priceis the price reported for a single
when all of its input data have arrived. Their model impliesun of MOGAC with a fixed seed (see Tables |-lIBffort
that part of each task is independent of the task’s input datarresponds to the computing resources MOGAC is allowed
This is expressed by splitting each task into a portion thtt dedicate to the problem. The meaning of each effort value is
depends on input data and a portion that is independent ofdisen in Table V. Theaverage pricecolumn shows the average
input data. We assure that each task’s subtasks are assignautitee of the solutions. MOGAC was run in single-objective
the same PE. It is not surprising that SOS requires significantdptimization mode for these experiments. Therefore, each run
more CPU time than MOGAC. The mixed-integer linearproduces only one nondominated solution. When MOGAC is
programming algorithm used in SOS is exhaustive, evaluatigiyen the same parameters as were used in the previous tables
all solutions that have the potential to be optimal, while this section, there are a small number of example-random
MOGAC makes no guarantee of optimality. However, foseed combinations for which it does not arrive at valid solu-
each of these examples, we can see that MOGAC also obtainss. Slightly more liberal parameters were used for Table IV
optimal results. than for the preceding tables. This ensures tvatrage price
Table 1l compares MOGAC's performance with that ofs meaningful. Note that when allowed a modest increase in
Yen's system when each system is applied to Yen's largen time, MOGAC robustly deals with varying random seeds.
random task graphs [5]. Yen’s Random 1 consists of six taskTable V shows the parameter settings corresponding to each
graphs, each of which contains approximately eight tasksffort setting in Table IV.Solutionsis the total number of
There are eight PE types available in this example. Yerselutions per cluster andgiew solutionsis the number of
Random 2 consists of eight task graphs, each of whisllution reproductions that occur per generation, per cluster.
contains approximately eight tasks. There are 12 PE typ®snilarly, clustersand new clustersare the total number of
available in this example. Neither of these examples contaicisisters and the number of cluster reproductions per genera-
communication links; all communication costs are zero. Thi®n. Generations before halting the number of generations
observations comparing MOGAC to Yen's system, in th#at must pass without improvement in MOGAC'’s solution
discussion of Table I, apply to these examples as well. pool before MOGAC halts.
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TABLE IV
EFFECT OF VARYING RANDOM SEED
Problem | Reported Price ][ Effort [ Average Price [ Average CPU Time (s)

1 183.3 23.1

Houl & 2 170 2 175.0 56.2
(unclustered) 3 176.7 89.4
4 171.7 156.8

1 176.0 41.8

Hou 3 & 4 170 2 177.7 80.9
(unclustered) 3 171.0 125.5
4 171.7 226.0

1 176.3 11.9

Hou 1 & 2 170 2 176.7 26.3
(clustered) 3 170.7 39.7
4 170.7 73.3

1 162.3 10.3

Hou 3 & 4 170 2 156.7 26.9
(clustered) 3 154.7 37.9
4 151.7 70.4

1 7.0 11.4

Prakash & Parker 1 7 2 7.0 31.7
(4) 3 7.0 190

4 7.0 89.6

1 5.0 8.0

Prakash & Parker 1 5 2 5.0 24.8
(7) 3 5.0 0.1

4 5.0 73.3

1 7.3 10.1

Prakash & Parker 2 7 2 7.1 27.2
(8) 3 7.0 423

4 7.0 72.1

1 5.0 6.0

Prakash & Parker 2 5 2 5.0 18.0
{15) 3 5.0 29.5

4 5.0 54.1

1 75.0 18.7

Yen’s 75 2 73.7 80.1
Random 1 3 74.4 125.2
4 74.4 225.6

1 81.0 32.1

Yen’s 81 2 81.0 91.1
Random 2 3 81.0 148.0
4 81.0 266.4

TABLE V
EFFORT DEFINITIONS

Effort ][ Solutions | New Solutions | Clusters | New Clusters | Generations Before Halting

1 26 10 33 17 5
2 34 14 40 20 10
3 36 14 a4 22 14
7] 44 18 45 23 20
B. Multiobjective Power and Price Optimization although the parameter set used for price optimization in
ection IV-A differs from the parameter set used in this

Table VI displays the results of simultaneously optimizin

the price and power consumption of system architectures ba Y sectiort D N
: he advantage of multiobjective optimization over the use
on examples presented in past work. The data base for the . . .
0l a linear weighted sum can clearly be seen in Table VI.

:axample ctalled Yen Zdlj'and?mtr? contains twct> IC types _af_n hen MOGAC simultaneously optimizes power and price, it
WO core types in addition {0 the processor types Spec ',Sgovides a designer with its entire set of noninferior solutions.
by Yen, for a total of 14 PE types. The values shown if,. each system specification, only a single cosynthesis run

the “Ignoring Power” column indicate the results of runningy,s necessary to produce all the corresponding architectures
MOGAC, in single-objective price-optimization mode, on the

same embedded system specifications. MOGAC_ was glven_ theThe data base files used for these examples are available via anonymous
same parameters for all of the examples in this subsecti@p,at ftp://ftp.ee.princeton.edu/pub/dickrp/Trans/Mogac.
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TABLE VI
PowEeR-CONSUMPTION EXAMPLES

No. of MOGAC Ignoring Power MOGAC Optimizing Power
Example Tasks Price | Power .CPU Price | Power .CPU
time (s) time (s)
Hou 1 & 2 (unclustered) 20 170 60.6 16.9 170 51.8 89.6
Hou 3 & 4 (unclustered) 20 170 62.4 30.7 170 48.6 26.3
Hou 1 & 2 (clustered) 8 170 75.3 7.8 170 62.5 9.5
Hou 3 & 4 (clustered) 6 150 71.9 7.5 150 71.9
170 68.7
220 37.6 21.6
270 34.9
Prakash & Parker 1 (4) 4 7 75.4 10.1 7 75.4 20.1
15 64.2 ’
Prakash & Parker 1 (7) 1 5 144 85 5 114
7 35.1 16.9
10 21.5
Prakash & Parker 2 (8) 9 7 49.8 8.4 7 49.8 17.2
12 40.0 )
Prakash & Parker 2 (15) 9 5 48.0 6.32 5 48.0
7 26.8 22.4
12 21.8
Yen’s Random 1 50 75 25.6 43.1 75 17.7
151 8.2
225 6.8 453.1
301 3.3
Yen’s Random 2 60 81 39.8 59.2 81 34.4
153 25.4
158 15.7 268.8
214 9.9
338 7.0
35 — . . . — i
26
30 ] 1
price =153
/power=25.4 25
_ 25 g
) o 24
2 o
o 20 1
o 23 | ~_
15 1 T
price =158 29t \\~~\\
power = 15.7 L L L L L i
10 ¢ — N 1 40 60 80 100 120 140
) ) ) ) - —u Price
100 150 200 250 300 Fig. 20. Very Large Random 1 example.
Price

Fig. 19. Yen's Random 2 example.

whose costs are listed in Table VI.
and 4 (clustered) example, MOGAC produces a lower co¥P

noninferior solution curve. Although all of MOGAC's solu-

Note that for the Hou téons for Yen's Random 2 example are noninferior, a designer
uld rarely select the solution with a price of 153 and a power

when conducting price and power optimization than whefPSumption of 25.4 when, for a price penalty of only five, a

optimizing only price in Section IV-A. This is a result of the

solution with a power consumption of 15.7 can be obtained.

more lenient halting conditions and larger solution pool siZerésenting a noninferior solution set shows the designer the
used in this section. It is necessary to trade off CPU time f6PSt tradeoff's available between different solutions.

solution quality, and we focused on quality during price and Figs- 20 and 21 show the results of optimizing very large
multirate examples that require communication link synthesis.

power optimization.

MOGAC provides an upper bound on a problem’s Paretdhese pseudorandom examples were generated with the Task
optimal solution set instead of merely producing a singleraphs for Free (TGFF) system [39]. They are available via
solution. This approach allows a designer to see the relati@nonymous ftp. The first very large example contains eight
ship between the costs of different architectures that satig@sk graphs, each of which has approximately 63 tasks. There
the same system specification. Fig. 19 illustrates the dangeaoé eight PE types and five link types available. MOGAC took
selecting a solution without knowing the shape of a system49.9 CPU min to arrive at the noninferior solution curve shown
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Price

Fig. 21. Very Large Random 2 example.

[14]

in Fig. 20. The second very large example contains ten tagk
graphs, each of which has approximately 100 tasks. There
are 20 PE types and ten link types available. MOGAC to
203.5 CPU min to arrive at the noninferior solution curv
shown in Fig. 21. The primary purpose of these examples is

to demonstrate that MOGAC can rapidly solve extremely lard&’!
problem instances. We hope that others will use these examples
for comparative purposes. [18]

16]

V. CONCLUSIONS [19]

In this paper, we have presented a method for the cosyn-
thesis of low-power, real-time, multirate heterogeneous harde]
ware—software distributed embedded systems. A novel mul-
tiobjective genetic algorithm, which allows exploration 0{21
the Pareto-optimal set of architectures instead of providing
a designer with a single solution, has been practically applied
to a number of examples found in the literature. MOGA([ZZZ]
has been shown to rapidly synthesize architectures with costs
that are lower than or equal to those presented in previoldl
work. For large examples upon which comparisons with other
systems are possible, MOGAC produces significantly lowers
cost solutions, despite requiring orders of magnitude less run
time. It has been demonstrated that adaptive multiobjective
genetic algorithms are well suited to solving the cosynthegis)
problem.

[26]
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