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Abstract— In this paper, we present a hardware–software
cosynthesis system, called MOGAC, that partitions and schedules
embedded system specifications consisting of multiple periodic
task graphs. MOGAC synthesizes real-time heterogeneous dis-
tributed architectures using an adaptive multiobjective genetic
algorithm that can escape local minima. Price and power con-
sumption are optimized while hard real-time constraints are
met. MOGAC places no limit on the number of hardware or
software processing elements in the architectures it synthesizes.
Our general model for bus and point-to-point communication
links allows a number of link types to be used in an architec-
ture. Application-specific integrated circuits consisting of multiple
processing elements are modeled. Heuristics are used to tackle
multirate systems, as well as systems containing task graphs
whose hyperperiods are large relative to their periods. The
application of a multiobjective optimization strategy allows a
single cosynthesis run to produce multiple designs that trade
off different architectural features. Experimental results indicate
that MOGAC has advantages over previous work in terms of
solution quality and running time.

Index Terms—Genetic algorithm, hardware–software cosynthe-
sis, low-power synthesis, multiobjective optimization.

I. INTRODUCTION

H ARDWARE–SOFTWARE codesign is the process of
concurrently defining the hardware and software por-

tions of an embedded system while considering dependencies
between the two [1]–[4]. Designers rely on their experience
with past systems when estimating the resource requirements
of a new system. Since ad hoc design exploration is time
consuming, an engineer typically selects a conservative ar-
chitecture after little experimentation, resulting in an un-
necessarily expensive system. Most research in the area of
hardware–software codesign has focused on easing the process
of design exploration. Automating this process falls within the
more specialized realm of cosynthesis. Given an embedded
system specification, a cosynthesis system determines the
hardware and software processing elements (PE’s) needed as
well as the communication links to be used. In addition, the
system assigns each task to a PE and determines the PE’s to
which each link is connected. Last, a schedule is provided
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for each PE and communication link such that all real-time
constraints are met [5], [6]. Cosynthesis systems generate
feasible, low-cost architecture descriptions without designer
intervention.

Most real-life embedded systems are composed of multiple
general-purpose processors and application-specific integrated
circuits (ASIC’s), i.e., they are distributed heterogeneous ar-
chitectures [1], [7]. Related work in cosynthesis typically
assumes a one CPU-one ASIC architecture [7]–[9]. However,
many specifications can more efficiently be met by distributed
architectures. A practical cosynthesis system cannot limit its
design space to one CPU-one ASIC architectures.

Power consumption is often a concern during the design of
embedded systems. The demand for portable battery-powered
devices is high and likely to increase. It is important to reduce
the average power consumption of such systems, thereby
increasing battery lifespan [10]. Although early work in low-
power electronics focused on changes to fabrication technol-
ogy and logic design, it has been shown that larger gains can
be obtained by considering power during the earlier phases of
the design process [11].

In most related work, communication is assumed to have
only one associated cost: time. However, communication
links consume power as well as time. A cosynthesis system
that targets low-power applications must take both PE and
communication link power requirements into account. Many
cosynthesis systems unrealistically simplify or omit commu-
nication link synthesis altogether. This stems from the one
CPU-one ASIC assumption. Many real distributed embedded
systems are composed of numerous PE’s, and there are several
types of communication links available for connecting them.
For a given system, a low-price and low-power feasible
communication network may be composed of multiple busses
and point-to-point links. A practical cosynthesis system must
be capable of automatically generating a low-price, low-power,
heterogeneous communication network.

There are four tasks that must be carried out by a cosynthesis
system.

• Allocation: Determine the quantity of each type of PE
and communication link to use.

• Assignment:Select a PE to execute each task upon.
Choose a link to use for each communication event.

• Scheduling:Determine the time at which each task and
communication event occurs.
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• Performance evaluation:Compute the price, speed, and
power consumption of the solution.

Optimal cosynthesis is an intractable problem. Allo-
cation/assignment and scheduling are each known to be
NP-complete for distributed systems [12]. It is therefore not
surprising that all cosynthesis systems that rely on optimal
mixed integer linear programming [13], [14] and exhaustive
exploration [15] can only be applied to small instances of
the cosynthesis problem. Heuristics have seen some success
with larger instances of the distributed system cosynthesis
problem. These are discussed next.

Iterative improvement algorithms start with a complete,
but suboptimal, solution and make local changes to it while
monitoring the solution’s cost. Algorithms in this class are
prone to becoming trapped in local minima. Although they
have reasonable run times, the results produced for systems
of high complexity tend to be suboptimal [5], [16], [17].
Tabu search is a form of iterative improvement in which past
changes are remembered by the algorithm and used to guide
future changes. This type of algorithm has been applied to the
hardware–software partitioning problem [18] and architecture
synthesis problem [19].

Constructive algorithms build a system by incrementally
adding components. To be computationally tractable, a con-
structive algorithm must make changes with global impact
while inspecting only the local effects of these changes.
This often leads to an accumulation of suboptimal decisions,
especially when large systems are constructed. Despite their
susceptibility to becoming trapped in local minima, con-
structive algorithms are capable of producing high-quality
results [20], [21]. However, in Srinivasan’s work, power
consumption is not taken into account, the communication
model is simplistic, and multirate systems are not efficiently
handled [20]. COSYN was the first cosynthesis system to take
power consumption into account [21]. Communication links
are modeled and heuristics are used to tackle multirate systems.
Although fast, COSYN suffers from an inability to do true
multiobjective optimization.

Two types of probabilistic optimization algorithms have
been applied to the cosynthesis problem: simulated anneal-
ing algorithms and genetic algorithms. Simulated annealing
algorithms are capable of escaping local minima of arbitrary
depth [22]. These algorithms are a strict superset of greedy
iterative improvement algorithms; randomized improvement
is not necessarily directionless improvement. Simulated an-
nealing algorithms have been successfully used to partition
hardware–software systems [18], [19], [23].

In general, genetic algorithms share simulated annealing
algorithms’ ability to escape local minima, but they offer
other advantages as well. Genetic algorithms allow solutions
to cooperatively share information with each other. They
are capable of true multiobjective optimization, exploring the
set of solutions that can only be improved in one way by
being degraded in another (thePareto-optimalset) instead of
collapsing all costs into one with a weighted sum, as is the case
for most other probabilistic optimization algorithms [24]–[26].
Saha’s exploratory work demonstrates that genetic algorithms
can be applied to the hardware–software partitioning problem

[27]. A number of simplifying assumptions are made in Saha’s
system, however. Only one software processor is allowed,
there are no provisions for synthesizing systems with multirate
periodic task graphs, and a limited communication link model
is used. Their genetic algorithm only optimizes one variable:
price. Axelsson’s system, similarly, optimizes only price and
does not carry out communication link synthesis [19].

Teichet al.applied a multiobjective genetic algorithm to the
heterogeneous distributed system cosynthesis problem [28].
Their approach does not target systems with hard real-time
constraints. Power consumption is ignored. Multirate systems,
and systems containing task graphs with periods less than their
deadlines, are not handled. They use a method of crossover
that randomly selects bits to swap and does not attempt to
preserve sequences of bits describing related attributes. This
approach does not preserve locality (see Section II-A for
information on the importance of locality). In general, this
results in an slowdown in the rate at which solutions
are implicitly evaluated when compared to an optimal locality-
preserving crossover [29]. In this work, solutions that are not
valid and that cannot be made valid by the application of
a repair operator are immediately terminated. Multiobjective
optimization is not performed. Their experimental results
consist of one small example, and no comparisons are made
with other cosynthesis systems.

MOGAC synthesizes distributed heterogeneous embedded
systems. Price and power consumption are optimized under a
number of hard constraints. MOGAC uses a communication
model that is capable of synthesizing systems with multi-
ple busses and point-to-point communication links. ASIC’s
consisting of multiple PE’s are modeled. MOGAC applies
heuristics that allow multirate systems to be scheduled in
reasonable time even when the least common multiple (LCM)
scheduling method [30] would otherwise require a large num-
ber of task graph copies to be made. MOGAC’s use of a
multiobjective genetic algorithm allows it to provide a designer
with multiple solutions that trade off different system costs.

This paper is organized as follows. In Section II, we present
preliminary concepts and definitions. In Section III, we de-
scribe the algorithms employed by MOGAC. We give the ex-
perimental results in Section IV. We conclude with Section V.

II. PRELIMINARIES

In this section, we present preliminary concepts used in
genetic algorithms and cosynthesis algorithms.

A. Genetic Algorithms

Genetic algorithms maintain a pool of solutions that evolve
in parallel over time. Genetic operators are applied to the solu-
tions in the current pool to improve the solutions. The lowest
quality solutions are then removed from the pool [29]. A cost
is a variable that a genetic algorithm attempts to minimize,
e.g., price and power consumption. Genetic algorithms excel
at simultaneously optimizing multiple conflicting costs. They
have the ability to escape local minima and communicate
information among solutions.



922 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 10, OCTOBER 1998

Fig. 1. Crossover.

Next, we define some basic terms used to discuss genetic
algorithms. In a conventional genetic algorithm, every solution
is represented by an array, orstring, of values. Although we
discuss the genetic algorithm used by MOGAC in conventional
terms, each solution is represented by a collection of strings
and no primitive strings are ever computed. As discussed in
Section II-C, the strings used in MOGAC are more intricate
than those used in conventional genetic algorithms. Genetic
operators are applied directly to the complex data structures
that represent a solution. Such algorithms are sometimes
called evolutionary algorithms. Although operating on un-
conventional strings increases the complexity of a genetic
algorithm, sometimes this is the least complicated option
available. MOGAC needs to maintain and modify a great deal
of hierarchical information about its solutions. It is simpler,
and faster, to operate on the information directly than to
carry out conversion into a conventional string each time it
is necessary to modify a string.

In conventional genetic algorithms, as well as in MOGAC,
all changes to strings are brought about by three operators.
Reproductionmakes a copy of a solution.Mutation randomly
changes part of a solution’s description.Crossoverswaps
portions of different solutions. Fig. 1 shows an example of
string crossover. In this illustration, crossover occurs between
string and string . Two cuts are made and the portions of
and between these cuts are swapped, producing the strings

and . Crossover is the operator that gives genetic
algorithms their strength; it allows different solutions to share
information with each other.

Some genetic algorithms are capable of varying the prob-
ability of allowing a solution to be replaced by one of lower
quality. Such an algorithm can be viewed as a general-
ized simulated annealing algorithm [31]. However, unlike a
classical simulated annealing algorithm, this sort of genetic
algorithm simultaneously operates on multiple solutions that
share information with each other. The genetic algorithm
employed by MOGAC shares the strengths of classical genetic
algorithms and simulated annealing algorithms and is capable
of running as a simulated annealing algorithm or an itera-
tive improvement algorithm, as well as a genetic algorithm.
MOGAC has produced its highest quality results in the least
amount of time when run in the genetic algorithm mode. The
other modes were implemented for experimental purposes.

Fig. 2. String locality.

It is important that the string encoding used to represent
a solution maintain locality [29]. Features of a solution that
depend closely on each other should be located near each other
in a string, and relatively independent features should be far
apart. The reason for this requirement is most easily illustrated
with an example.

In Fig. 2, and represent variables associated with
different features of a solution. As strings cross over with each
other, they are cut into sections. The encoding of each feature
is spread across the bottom string; information about a feature
is likely to be split into separate solutions when crossover
occurs. The feature encoding in the top string, however, is
localized; information about a feature will probably remain in
one string when crossover occurs. If a solution has discovered
a good way of optimizing some feature of a problem, it is
important for the encoding of that feature to remain intact.
The practical effect of using a string encoding method and
crossover method that maintain locality is that the genetic
algorithm takes advantage ofimplicit parallelism,i.e., func-
tion evaluations implicitly examine approximately string
configurations [29].

B. Multiobjective Optimization

The cosynthesis problem is inherently one of multiobjective
optimization. There are numerous costs, and improving
one cost of a system often results in the degradation of
another. Most past cosynthesis systems have dealt with this
optimization problem by using a linear weighted sum to
collapse all the system costs into one variable and optimizing
this variable. For this method to be successful, the weighting
array used must be appropriate for the problem instance as
well as the designer’s desired solution. Unfortunately, the
cosynthesis problem is too complicated for an instance’s
best weighting array to be known without first exploring
that instance’s Pareto-optimal set of solutions, i.e., those
solutions that can only be improved in one area by being
degraded in another. It is impossible, however, to explore the
Pareto-optimal set of solutions if an arbitrary weighting array
has been used to collapse all costs into a single value.

Assume a designer is trying to optimize two conflicting fea-
tures of a system: price and power consumption. If the designer
uses a conventional optimization algorithm that can only deal
with one cost function, it is necessary to collapse the two costs
into one value. Although an apparently reasonable weighting
array can be selected, the designer has no way of knowing
the shape of the Pareto-optimal curve ahead of time. In Fig. 3,

marks the designer’s preferred solution. For a minuscule
power-consumption penalty, the price of the system can be
significantly decreased. Unfortunately, the designer will never
know that a valid solution exists at because the weighting
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Fig. 3. Weighted sum cost function.

Fig. 4. Pareto-rank.

array prevents this portion of the Pareto-optimal curve from
being explored. Although the limitations of single-objective
optimization can be seen from this simple example, the prob-
lem of selecting an appropriate weighting array becomes even
more severe as the number of costs in a system increases.

A solutiondominatesanother if all of its features are better.
A solution’s Pareto-rankis the number of other solutions, in
the solution pool, that do not dominate it. Calculating Pareto-
rank is an (solutionpool size ) operation; each solution
must be compared with every other solution. In Fig. 4, each
circle represents a solution. Each solution’s price and power
consumption are indicated by the position of its circle in the
graph. The number in each circle indicates the Pareto-rank of
the associated solution.

At the end of a multiobjective genetic algorithm’s run,
the designer is presented with a number of noninferior so-
lutions (see Fig. 5). These solutions are not dominated by
any other solutions. This approach yields Fig. 3’s solution.
Although the noninferior solutions are not guaranteed to be
the Pareto-optimal set of solutions for the problem instance
(the heterogeneous distributed system cosynthesis problem
contains multiple NP-complete problems, each of which would
require multiple solutions), they do form an upper bound on the
Pareto-optimal set, giving the designer insight into the shape
of the problem’s Pareto-optimal solution set. The tradeoff’s
available between solution costs in these noninferior solutions
are made clear.

C. Embedded System Model

MOGAC operates on an embedded system specification that
defines a set of requirements that must be met and a set

Fig. 5. True multiobjective optimization.

Fig. 6. Task graph.

of resources that can be used to fulfill those requirements.
In this subsection, we provide high-level descriptions of the
specifications MOGAC accepts.

1) Task Graph: Task graphs specify some of the require-
ments a designer places upon an embedded system. A task
graph, as shown in Fig. 6, is a directed acyclic graph in which
each node is associated with a task and each edge is associated
with a scalar describing the amount of data that must be
transferred between the two connected tasks. Each task may
only begin executing after all of its data dependencies have
been satisfied. Thus, in Fig. 6, taskmay only begin execu-
tion after tasks and have each completed execution and
transferred two and three units of data, respectively, to task.

MOGAC places no restrictions on the granularity of task
graphs. However, cosynthesis research generally assumes
coarse-grained tasks, i.e., each task is complicated enough to
require numerous microprocessor instructions. Theperiod of
a task graph is the amount of time between the earliest start
times of its consecutive executions. A node with no outgoing
edges is called asink node. A deadline,the time by which
the task associated with the node must complete its execution,
exists for every sink node. However, other nodes may also
have deadlines associated with them. The deadline of a task
graph is the maximum of all the deadlines specified in it.
An embedded system specification may contain multiple task
graphs, each of which may have a different period.

2) Processing Element:A PE executes tasks. Two sorts of
PE’s are modeled:coresandprocessors.Processors represent
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Fig. 7. PE-IC hierarchy.

general-purpose processors that can only execute one task
at a time. Multiple cores may be located on the same IC,
upon which multiple tasks may execute simultaneously. This
provides a model for ASIC’s that are capable of carrying
out different tasks at the same time. The relationship among
processors, cores, and IC’s is shown in Fig. 7. PE’s can be of
various types, e.g., an MC68000 is a PE type. A solution may
contain more than one instance of a given type of resource,
e.g., a solution may contain more than one PE instance of the
type MC68000.

MOGAC accepts a data base that specifies the performance
of each task on each available PE type and provides other
information about the PE’s available, e.g., a list of tasks that
are incompatible with each type of PE, the price of each
resource, and the number of devices provided by IC’s and
consumed by cores. Worst case execution time and power-
consumption values for tasks on a given PE type can be
obtained by direct measurement or simulation. Characterizing
a PE data base in this manner requires that the designer know
the input vectors that elicit worst case execution time and
power consumption for each task-PE pair. Another option is
to use worst case performance analysis tools to determine an
upper bound on execution time or power consumption without
requiring a specific input vector [32]–[34].

The following information establishes the relationships be-
tween tasks and processors:

• a two-dimensional array indicating the worst case execu-
tion time of each task on each processor;

• a two-dimensional array indicating the average power
consumption of each task on each processor.

In addition to these arrays, processors have price and
idle power-consumption values. The following information
establishes the relationship between tasks and cores:

• a two-dimensional array indicating the relative worst case
execution time of each task on each core;

• a two-dimensional array indicating the relative average
power consumption of each task on each core;

• a two-dimensional array indicating the peak power con-
sumption of each task on each core.

Cores do not have an inherent price. However, each core
is assigned to an IC that does have a price. The following
variables are associated with IC’s: price, device count, pins
available, idle power consumption, peak power dissipation,
speed, and power efficiency. Each core places a device-count
requirement, e.g., number of transistors or configurable logic
blocks, on the IC to which it is assigned. For an architecture
to be valid, each IC must meet device-count requirements of
the cores assigned to it and the pin-count requirements of the
communication links attached to it. In addition, each IC must

meet the peak power-dissipation requirements of the tasks
assigned to the cores implemented on it. Tasks do not have pin-
count, device-count, or peak power-dissipation requirements.
However, tasks may be carried out by cores, which place such
requirements on their host IC’s.

The worst case execution time for a task assigned to a core
is equivalent to its relative worst case execution time divided
by the speed of the IC on which the core is implemented.
The task’s average power consumption is its relative average
power consumption divided by the power efficiency of the
IC on which the task’s core is implemented. Thus, in the
current implementation of the algorithm, it is assumed that
there is a linear relationship between core worst case execution
time and core relative worst case execution time. Similarly,
there is a linear relationship between core average power
consumption and core relative average power consumption.
This model could trivially be generalized to use a full lookup-
table approach (this is how the task execution time of a task
on any given PE is determined).

3) Communication Link:Communication links have the
following attributes: packet size, average power consumption
per packet, worst case communication time per packet,
price, number of contacts, pin requirement, and idle power
consumption. Each task graph edge must be assigned to a
communication link. The worst case communication time and
average power consumption of an edge are linearly dependent
on the number of packets of data transferred through its link.
The number of contacts a link supports is the number of IC’s
it can connect, i.e., a link with two contacts is a point-to-point
link. A link with more than two contacts is a bus. There
may be more than one communication link connected to a
PE instance. Pin requirement is the number of pins on an
IC required to support the use of the communication link. In
previous distributed computing work, it is commonly assumed
that communication between tasks that are assigned to the
same IC consumes an insignificant amount of time and power.
We also make this assumption. If an architecture contains
two communicating tasks that execute on separate IC’s, the
architecture is invalid if there are no communication links
connecting the IC’s.

III. A LGORITHM DESCRIPTION

In this section, we give a description of the algorithms used
in MOGAC. We begin, in Section III-A, with an overview
of the algorithm. This is followed, in Section III-B, by an
explanation of solution clusters. Section III-C describes MO-
GAC’s performance evaluation algorithms. Solution reproduc-
tion, mutation, and crossover are described in Sections III-D
and III-E.

A. Overview of MOGAC

In this subsection, we give an overview of MOGAC’s
primary algorithm. MOGAC maintains a pool of solutions that
evolve in parallel. Fig. 8 illustrates MOGAC’s core algorithm.
After initializing each solution with simple randomized algo-
rithms, MOGAC enters a loop that repeats until the halting
condition, the passage of a number of generations without
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Fig. 8. MOGAC overview.

improvement in the solution pool, is met. Each time the loop
completes, agenerationhas passed.

After initialization, MOGAC evaluates each of its solutions.
During evaluation, a solution’s costs, e.g., price and power
consumption, are determined. The costs are then compared
to the designer-supplied constraints to determine how se-
verely the constraints are violated. At this point, the solutions
are ranked using the multiobjective criterion described in
Section II-B. If the halting conditions have not yet been
reached, low-rank solutions are terminated and high-rank
solutions reproduce to take their places. The newly born
solutions are then modified via crossover and mutation. At
this point, the generation has completed and another begins.
Eventually, enough generations pass without improvement
in the solution pool to trigger the halting condition. Before
halting, MOGAC prunes any invalid and inferior solutions
from its solution pool and presents the remaining solutions
to the designer.

B. Clusters

In this subsection, we introduce the six strings that describe
solutions in MOGAC and explain how clusters of solutions
are used to prevent crossover from producingstructurally in-
correctsolutions, i.e., solutions that are physically impossible.
Every solution in MOGAC is defined by a collection of six
strings. ThePE-allocation string, IC-allocation string,and
link-allocation string record the number and types of PE’s,
IC’s, and communication links present in a solution. Thetask-
assignment stringrecords the PE instances used to carry out
each task. Thecore-assignment stringrecords the IC used to
host each core. Thelink connectivity stringrecords the PE
instances to which each link is connected. Formal definitions
of these strings are given in Section III-E.

If it were possible for solutions to indiscriminately cross
over with each other, structurally incorrect solutions would
sometimes be produced. Assume the existence of two solu-
tions: and . As illustrated in Fig. 9, ’s PE allocation
contains only one PE instance, of type . ’s PE allocation
contains only one PE instance, of type . Therefore, all
tasks in are assigned to the PE of type , and all tasks
in are assigned to the PE of type . If a crossover
were to occur between the task-assignment strings in the two
solutions, the result would be the existence of some tasks in

that are assigned to a PE of type . However, no PE’s

Fig. 9. Bad crossover.

of type exist in . Similar problems are caused by the
indiscriminate crossover of other types of strings.

It would be possible to detect structurally incorrect solutions
and repair, or immediately terminate, them. However, examin-
ing every solution and modifying or terminating those that are
structurally incorrect would be costly in terms of computation
time. More important, the postprocessing would destroy the
locality of the crossover operator, i.e., this step would disrupt
the partial solutions that were swapped during crossover.

MOGAC uses the concept of solution clusters to prevent
structurally incorrect solutions from being created in the first
place. As shown in Fig. 10, solutions are grouped into clusters.
Solutions within a cluster all share the same PE-allocation,
IC-allocation, and link-allocation strings. Thus, each solution
in the single cluster has the same PE and communication
link resources available to it. However, the task-assignment,
core-assignment, and link-connectivity strings of solutions
in the same cluster may differ. Crossover of assignment
and link connectivity strings occurs between solutions in the
same cluster. Mutation of these strings can be applied to
individual solutions. Solutions resulting from these opera-
tions are guaranteed to be structurally correct. Crossover of
allocation strings occurs between entire clusters, destroying
the solutions within the clusters. Similarly, when one of
a cluster’s allocation strings mutates, each of the solutions
within the cluster is updated so that it shares the cluster’s
new allocation string. Intercluster crossover and mutation
of allocation strings occurs less frequently than intracluster
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Fig. 10. Solution clusters.

crossover and mutation. Every time crossover or mutation
is applied to clusters, instead of individual solutions, the
information contained in the assignment and link connectivity
strings of the involved solutions is no longer valid. These
strings are, therefore, reinitialized.

There are three advantages to the use of solution clus-
ters. The overall algorithm is simplified because it is not
necessary to detect or repair structurally incorrect solutions.
The algorithm’s execution time is decreased because it is
not necessary to deal with structurally incorrect solutions and
because locality is not destroyed by repair operations, thus
allowing more implicit parallelism in the genetic algorithm
(see Section II-A). Last, using clusters makes MOGAC a
parallel algorithm. There is no need for solutions in different
clusters to communicate with each other except during the
infrequent application of intercluster crossover.

C. Solution Evaluation

Performance evaluation consists of calculating a solution’s
costs and determining how severely they violate the constraints
imposed by the designer. If one of the system’s costs is higher
than itshard constraint,the system is invalid. For example, the
schedule length of a task graph cannot exceed its hard real-time
constraint. Valid systems may have costs that are higher than
their soft constraints,although it is desirable to reduce a cost
until it is lower than its soft constraint. In this subsection, we
will explain how MOGAC does performance evaluation and
then describe the process by which raw performance metrics
are converted into hard and soft constraint violation values.

1) Scheduling:The PE allocations, IC allocations, link
allocations, task assignment, core assignment, and link con-
nectivities of MOGAC’s solutions are derived from their
strings. Scheduling, however, is carried out by a conventional
algorithm before each solution evaluation. MOGAC uses a
slack-based list scheduling algorithm to generate static PE
and communication link schedules. Static scheduling makes
it possible to guarantee that hard real-time constraints will
be met [35]. In the current implementation, a nonpreemp-
tive schedule is generated. Although there are advantages to
allowing preemption in coarse-grained scheduling problems,
a nonpreemptive scheduler was sufficient to allow MOGAC
to meet or beat results from the literature (see Section IV).
The advantages of preemptive scheduling are partially offset
by a practical weakness. In general, preemption results in
context-switching penalties that are costly in terms of power
consumption [36]. MOGAC’s scheduling algorithm assigns a
priority to a task based upon the difference between its latest
possible start time and its earliest possible start time. The
relative priorities of tasks in different task graphs, as well
as different copies of the same task graph, are based on the

Fig. 11. Task graph copies.

periods and deadlines of the different graphs. The scheduler
is capable of dealing with embedded system specifications in
which task graphs have periods less than their deadlines.

The hyperperiodis the LCM of all the task graph periods
in a multirate system specification. Cosynthesis systems that
use a straightforward application of the LCM scheduling
method [30] are forced to repeatedly schedule each task
graph until the hyperperiod of the system has elapsed. This
can be computationally expensive for systems in which the
hyperperiod is large, relative to the periods of individual task
graphs. MOGAC uses heuristics to tackle system specifications
with a large hyperperiod. One of these is an extension of
a method used in real-time computing [37]. The problem
caused by a large hyperperiod can be reduced by tightening
the periods of some task graphs. Consider a system consisting
of two periodic task graphs, where the first has a period of
12 and the second has a period of 13. The hyperperiod is,
therefore, 156. If we tighten the period of the second task
graph to 12, however, the system’s hyperperiod reduces to
12. The designer has full control over the aggressiveness
with which the hyperperiod contraction heuristic is applied.
MOGAC allows the designer to specify the maximum and
minimum acceptable periods for each task graph in the system.
Subject to these constraints, a period for each task graph is
calculated such that the number of task graph copies needed
for LCM scheduling is minimized.

We have developed a method in which some of the task
graph copies in the hyperperiod areimplicit and some arereal
(see Fig. 11). Each implicit copy has a realparent. Implicit
copies are not entered in a solution’s task-assignment string;
they share the assignment strings of their parents. Although it
is necessary to schedule implicit task graph copies, there is no
need to prioritize the nodes of these copies; the implicit task
graph node priorities are equivalent to the parent task graph
node priorities. Additionally, the absence of implicit copies
from a solution’s task-assignment string reduces the size of the
genetic algorithm’s solution space, thus speeding optimization.
Selecting a ratio of the number of real task graph copies to the
total number of task graph copies involves making a tradeoff
between potential solution quality and MOGAC’s run time.
This decision is left to the designer. For the examples in
Section IV, a low ratio ( 0.2) rapidly produced high-quality
results.

2) Cost Calculation: System price, task graph completion
time, and system power consumption are computed during cost
calculation. System price is determined by taking the sum of
the prices of all IC’s, processors, and links in the allocation
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strings. The completion time of each node in a task graph is
recorded during scheduling. Therefore, the completion times
of all nodes with deadlines are available for inspection. All
schedules span the system’s hyperperiod. System power con-
sumption is computed by stepping through each PE and link’s
hyperperiod schedule, obtaining the system energy required
(this includes the idle PE/link energy), and dividing the energy
by the hyperperiod [21].

3) Constraint Violation: A system’s constraint violations
are derived from its costs and the constraints imposed by
the designer. Solutions have a number of hard constraints.
Although solutions in which one or more hard constraints
have been violated are invalid, MOGAC treats them no
differently than other solutions during its run. Solutions that
violate their hard constraints are removed only at the end
of a cosynthesis run. It may seem counterintuitive to allow
invalid solutions to survive. However, doing so is benefi-
cial when solving constrained problems [38], for there are
significant disadvantages associated with the alternatives. If
one terminates invalid solutions immediately, one wastes a
significant amount of computation time in identifying such
solutions. The solutions most likely eventually to evolve into
high-quality valid solutions are those that are near the bound-
ary between valid and invalid. By immediately terminating
all invalid solutions in each generation, one destroys many
solutions that are likely ultimately to evolve into high-quality
valid solutions. One could instead attempt to repair invalid
solutions. However, it is in general difficult to formulate a
repair operation that is guaranteed to repair all solutions [28].
Thus, one will often be forced to terminate solutions even after
expending computation time attempting to repair them. More
important, a repair operation applied to a solution that was
made invalid by crossover disrupts a portion of that solution,
effectively changing the crossover operator such that it no
longer preserves locality. These problems are analogous to
the problem with terminating or repairing invalid solutions
discussed in Section III-B.

Each system specification has price and average power-
consumption soft constraints. Typically, the desired price is
set to zero. Thus

A system’s average power violation is calculated in a similar
manner.

Every task graph has one or more nodes with specified
deadlines. A system’s hard real-time constraint violation is the
sum of the time-constraint violations of all such nodes in all the
real and implicit task graph copies in the system. For every IC,
the peak power-dissipation and device-count requirements of
all the cores assigned to that IC are summed. Similarly, the pin-
count requirement placed on an IC by all of the communication
links attached to it are summed. When an IC is not capable
of meeting the requirements of the cores assigned to it or
communication links connected to it, the appropriate hard
constraint violations in the solution are increased.

Fig. 12. Solution reproduction algorithm.

D. Ranking and Reproduction

In this subsection, we explain the manner in which solutions
and clusters are selected for reproduction. The number of
clusters and solutions maintained by MOGAC is conserved
during one run of the algorithm. For each cluster or solution
created via reproduction, another is terminated. The number of
solutions and clusters maintained during a run can be chosen
at the start of the run. We typically use 20 clusters, each of
which contains 20 solutions.

1) Solution Ranking and Reproduction:Solutions within a
cluster are ranked using the method presented in Section II-
B. In each generation, a prespecified number of solutions
within each cluster are eliminated to make space for the
reproduction of other solutions. MOGAC maintains a variable
calledsolutionselectionelitism,which controls the probability
of high-rank solutions’ being selected for reproduction. This
variable increases during the run of the algorithm. The practi-
cal effect of this feature is to allow MOGAC to easily escape
local minima during the start of a run. Near the end of a
run, however, MOGAC becomes greedier in order to allow its
solutions to converge on local minima. Solutions are selected
for reproduction by indexing inward from the highest ranking
solution with a Gaussian random variable whose variance is
the inverse of thesolution -selectionelitism. The pseudocode
for MOGAC’s reproduction algorithm is shown in Fig. 12.

After reproduction, crossover and mutation are carried out
on the solutions that were copied. The number of crossovers
and mutations per generation, for each type of string, are
specified by user-defined parameters. Crossover is applied
to randomly selected solution pairs that are selected from
the solutions created by reproduction. Mutation is applied to
randomly selected solutions that are also selected from the
solutions created by reproduction.

2) Cluster Ranking and Reproduction:Ranking clusters is
more complicated than ranking solutions. Each solution has
one set of costs. Thus, determining whether it dominates
another solution is straightforward. Clusters, however, contain
numerous solutions; each cluster is associated with many
sets of costs. We extend the concept of domination, in a
straightforward way, to take partial domination into account.
Cluster domination is represented by a scalar instead of a
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Fig. 13. Example PE-allocation string.

Boolean value. The definition of rank must also be adjusted
when it is applied to clusters. Let and be clusters.
is the set of noninferior solutions in. is 1 if is
not dominated by and 0 otherwise. Then

and

rank

Once cluster ranks have been determined, cluster repro-
duction is analogous to solution reproduction. A prespecified
number of clusters is removed to make room for high-rank
clusters to reproduce. Clusters are selected for reproduction in
the same manner as solutions. Cluster crossover and mutation
are also analogous to solution crossover and mutation.

E. Evolution

In this subsection, we formally define the six strings that
describe each solution. These strings were introduced in
Section III-B. In addition, we explain how these strings are
modified to allow solutions to evolve.

1) Allocation Strings: The PE-allocation string, IC-
allocation string, and link-allocation string are arrays of
integers. Each integer represents the number of instances
of a single type of PE, IC, or link present in a solution.
An example PE-allocation string is shown in Fig. 13. This
example string indicates that there are five instances of
type , two instances of type , zero instances of
type , and one instance of type in the solution.
As mentioned before, for a genetic algorithm to function
properly, it is important for its strings to preserve locality,
i.e., related entries must be located closer to each other in
a string than disparate entries [29]. The allocation string
ordering algorithm places PE’s such that those with similar
characteristics, e.g., price, have a higher probability of being
located close together in the string than those with disparate
characteristics. The order of PE types in the PE-allocation
string is determined in the following way.

As mentioned in Section II-C, the relationship between
tasks and PE’s is defined by a collection of two-dimensional
arrays. For the purpose of characterizing a PE type, the
one-dimensional arrays corresponding to that PE type are
selected from these two-dimensional arrays. Thus, each PE
can be characterized by a collection of one-dimensional
arrays and some scalars. The first step in determining the
order of PE types in the PE-allocation string is to collapse
each PE type’s arrays into scalars. This conversion is done

Fig. 14. PE-allocation-string initialization.

by taking a sum of each array’s entries and weighting each
entry with the number of tasks, of the type corresponding
to that entry’s position, that exist in the embedded system
specification. After this step, each PE is described by
a collection of scalars, i.e., a vector. Imposing a linear
locality-preserving cycle on a set of-dimensional vectors is
equivalent to the traveling salesman problem. This problem is
NP-complete. An approximation algorithm is used to impose
an order on these vectors that, in general, places vectors,
which are close to each other in the-dimensional space,
close together in the PE-allocation string. Thelink-allocation
string andIC-allocation stringare similar to the PE-allocation
string, and they are ordered using similar algorithms.

PE-allocation strings are initialized with the simple con-
structive algorithm shown in Fig. 14. If the solution contains
any cores, its IC-allocation string is initialized to contain a
single, randomly chosen IC. Otherwise, the IC-allocation string
is initially empty. Initially, a solution’s link-allocation string is
empty, i.e., the solution contains no links. Links are introduced
by subsequent mutations. The intention of these initialization
algorithms is to set up minimal valid solutions that will be
improved via mutation and crossover.

An allocation string’s mutation operator selects a PE, IC,
or link type at random; each has the same probability of
being selected. The number of instances of the selected PE,
IC, or link type is either incremented or decremented, with
equal probability. When the crossover operator is applied to
two allocation strings, the strings are cut at the same two
random offsets and the portions between the cuts are swapped.
After the crossover or mutation of a PE-allocation string, the
constructive algorithm shown in Fig. 14 is applied to the par-
ticipating string. This enforces the condition that for each task,
there exists at least one PE capable of executing it. Usually,
it is not necessary for this postprocessing step to make any
changes to the PE-allocation string. Similarly, if a crossover
or mutation causes a solution that contains one or more cores to
be without IC’s, a single, randomly selected IC is introduced.

2) Assignment Strings:The task-assignment string is an
array of PE instance references specifying the PE to which
each task is assigned. An example task-assignment string
is shown in Fig. 15 (see Section II-C for more information
about task graphs). In this example, the task-assignment string
indicates that task is assigned to PE instance, to ,

to , and to . Task-assignment strings are ordered by
conducting a depth-first traversal of all the task graphs in the
system specification and concatenating the results. This order-
ing algorithm makes it probable that tasks that are located close
together, along paths through task graphs, will be located close
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Fig. 15. Example task-assignment string.

together in the task-assignment string. The core-assignment
string is an ordered string of IC instance references specifying
the IC to which each core is assigned. It is ordered using an
algorithm similar to that applied to the PE-allocation string.

Initially, each task is randomly assigned to a PE instance
in the PE-allocation string that is capable of executing it.
The constructive algorithm used to initialize a solution’s PE-
allocation string guarantees that there is at least one PE capable
of executing each task (see Fig. 14). Similarly, each core in
the core-assignment string is randomly assigned to an IC.

The task-assignment string mutation operator selects a task
at random and changes the PE type used to carry out that
task (see Fig. 16). An analogous algorithm is used for the
mutation of core-assignment strings. MOGAC maintains a
variable calledPE aggressiveness,which decreases during the
run of the algorithm. If the value of this variable is small, a
nearby PE type will probably be used to carry out the task.
If PE aggressivenessis large, it is likely that pe will be far
from pe in the PE-allocation string. The PE-allocation string is
ordered in a locality-preserving way. Hence, there is an inverse
correlation between distance on the PE-allocation string and
PE type similarity. DecreasingPE aggressivenessduring a run
allows MOGAC to initially mutate task-assignment strings in
a way that is likely to cause large jumps across the solution
space. As a run nears its end, task-assignment mutation makes
only small changes to the task-assignment string, fine-tuning it.

When the crossover operator is applied to two task-
assignment strings, the strings are cut at the same random
offset and the portions following the cut are swapped. The
two participating strings always come from solutions that
have the same PE allocations because task-assignment-string
crossover is an intracluster genetic operator. The mutation
operation for core-assignment strings is analogous.

3) Link-Connectivity Strings:The link-connectivity string
is an array of IC and processor instance references specifying
the IC’s and processors to which each communication link
is connected. An example link-connectivity string is shown in
Fig. 17. In this illustration, link ’s two contacts are connected
to PE instances and . Link connects , , and .
More than one link may be connected to the same PE instance.
In Fig. 17, PE instance is an example of a PE connected
to two communication links. The order of link types in the
link-connectivity string is equivalent to their order in the
link-allocation string.

Initially, each link is randomly connected to PE’s in the PE-
allocation string (see Fig. 18). The link-connectivity mutation

operator selects a location in the string at random and applies
the inner loop of the initialization algorithm shown in Fig. 18
to it. In other words, it connects a link to PE’s randomly.
The link-connectivity string’s crossover operator cuts the
participating strings at the same random offset and swaps
the portions following the cut. The two participating strings
always come from solutions that have the same link allocations
because link-connectivity-string crossover is an intracluster
genetic operator.

IV. EXPERIMENTAL RESULTS

MOGAC is a prototype consisting of approximately 18 000
lines of C and Bison code. Our results were obtained on a
200-MHz Pentium Pro system with 96 MB of main memory
running the Linux operating system. We compare our results
with those of Yen [5], Hou [17], and COSYN [21], which were
obtained on a SPARCstation 20, as well as those of SOS [13],
which were obtained on a Solbourne Series5e/900 (similar to
a SPARC 4/490). The CPU times are given in seconds.

MOGAC’s input consists of two ASCII files. The first file
specifies the attributes of each PE, IC, and link type that
may be used to implement an architecture. In addition, this
file specifies the relationships between PE’s and tasks, i.e.,
for each PE, it contains arrays specifying the worst case
execution times, average power consumptions, and peak power
consumptions of each task on that PE. The second file specifies
the topologies, periods, deadlines, tasks, and communication
flows associated with all the task graphs composing the system
specification. MOGAC runs without designer intervention and,
upon halting, outputs one or more solutions. Each solution is a
system architecture consisting of a price, power consumption,
PE allocation, IC allocation, link allocation, core assignments,
task assignments, link connectivities, task schedules for each
PE, and communication event schedules for each link.

A. Price Optimization

MOGAC has a slew of parameters that can be modified
to tune its performance. Although every problem has its own
optimal parameter settings, it would be inappropriate to report
only the CPU time necessary to achieve a given solution
if significantly more time was spent finding a good set of
parameters. We therefore use the same set of parameters for all
the examples presented in this subsection. In addition, the same
value is used to seed MOGAC’s random number generator
for every result presented in this paper, with the exception of
Table IV.

It was necessary to trade off run time against solution quality
when selecting a general parameter set for the examples in
this subsection. Using a smaller solution pool and cluster pool
would allow MOGAC to produce low-cost solutions for simple
examples more rapidly. However, the solution quality for more
complicated examples would suffer. For illustrative purposes,
run times achieved by tuning MOGAC’s parameters to an
individual problem’s complexity, as well as the run times that
resulted from using the general parameter set, are shown in
the price-optimization tables.
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Fig. 16. Task-assignment string mutation.

TABLE I
HOU’S EXAMPLES

Fig. 17. Example link-connectivity string.

Table I compares MOGAC’s performance with that of
COSYN [21] and Yen’s system [5] when each is run on
the clustered and unclustered versions of Hou’s task graphs
[17]. Task clustering is the process of using a prepass to
collapse multiple tasks into a cluster of tasks. This cluster
is treated like a single task during assignment, i.e., all the
tasks in a cluster are executed on the same PE. Clustering
reduces the complexity of the cosynthesis problem by
decreasing the number of tasks that must be assigned. Hou
ran Yen’s system on the clustered and unclustered versions
of his graphs. We use the same clusters as Hou when
comparing our results with his and those of COSYN. For the
example upon which it was possible to make a comparison
between MOGAC and COSYN, COSYN’s performance was
similar to that of MOGAC. Unfortunately, this was a small
example, containing only eight tasks. The only existing
implementation of COSYN is solely owned by Lucent. We
relied on results reported in the literature to compare with
COSYN.

It is interesting to observe the impact of increased problem
complexity upon MOGAC and Yen’s system. MOGAC’s CPU

Fig. 18. Link-connectivity-string initialization.

time increases slightly when it solves the unclustered ver-
sions of Hou’s examples instead of the clustered versions. In
contrast, Yen’s system takes approximately 1000as long to
produce solutions. Despite consuming significantly less CPU
time, in one case MOGAC produces a lower price architecture
than Yen’s system. The difference in solution quality between
Yen’s system and MOGAC is likely to be a result of the
general class of algorithm used by each system. The run time
of Yen’s system is significantly influenced by the method used
to guarantee schedule validity. Yen uses an algorithm in which
a single solution is iteratively improved. Although the search
is not blind, only a single stage of look-ahead is used. For each
real evaluation, only a single solution is implicitly evaluated.
Invalid solutions are terminated instantly instead of being
improved upon. The use of a locality-preserving crossover
operator allows MOGAC’s genetic algorithm to implicitly
evaluate more than one solution for each explicit evaluation
(see Section II-A). Instead of maintaining a single solution
that moves across the solution space, MOGAC maintains
multiple solutions that spread out across the solution space.
These solutions share information with each other. MOGAC
attempts to improve invalid solutions, which are otherwise of
high quality, instead of terminating them immediately. We
believe that these features allow MOGAC to tackle large
problem instances without a prohibitive increase in execution
time.

The hyperperiod contraction heuristic described in
Section III-C was applied to the clustered and unclustered
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TABLE II
PRAKASH AND PARKER’S EXAMPLES

TABLE III
YEN’S LARGE RANDOM EXAMPLES

versions of the task graphs called Hou 3 and 4. The period
of one of the task graphs in these examples was contracted
by 5%. We were able to decrease MOGAC’s CPU time
without decreasing solution quality by tuning the size of
MOGAC’s solution pool and making its halting conditions
less tolerant.

Table II compares MOGAC’s performance with that of SOS
[13] and COSYN when they are applied to Prakash and
Parker’s task graphs. The performance number shown by each
task graph is the worst case finish time for the task graph.
For instance, “Prakash and Parker 1 ” refers to Prakash
and Parker’s first task graph with a worst case finish time
of four time units. In these graphs, an unconventional model
for communication is used [13]. A task may begin executing
before all of its input data have arrived. We converted their
specifications into graphs that conform to the conventional
communication model, i.e., a task can only begin execution
when all of its input data have arrived. Their model implies
that part of each task is independent of the task’s input data.
This is expressed by splitting each task into a portion that
depends on input data and a portion that is independent of its
input data. We assure that each task’s subtasks are assigned to
the same PE. It is not surprising that SOS requires significantly
more CPU time than MOGAC. The mixed-integer linear-
programming algorithm used in SOS is exhaustive, evaluating
all solutions that have the potential to be optimal, while
MOGAC makes no guarantee of optimality. However, for
each of these examples, we can see that MOGAC also obtains
optimal results.

Table III compares MOGAC’s performance with that of
Yen’s system when each system is applied to Yen’s large
random task graphs [5]. Yen’s Random 1 consists of six task
graphs, each of which contains approximately eight tasks.
There are eight PE types available in this example. Yen’s
Random 2 consists of eight task graphs, each of which
contains approximately eight tasks. There are 12 PE types
available in this example. Neither of these examples contains
communication links; all communication costs are zero. The
observations comparing MOGAC to Yen’s system, in the
discussion of Table I, apply to these examples as well.

The task graph periods in these systems are coprime.
Therefore, the hyperperiod contraction heuristic presented in
Section III-C significantly reduces the number of task graph
copies that MOGAC is required to schedule. The heuristic
was prevented from specifying task graph periods to be less
than the corresponding deadlines or greater than the periods
specified in [5].

MOGAC’s performance depends on the seed given to its
pseudorandom number generator. Each problem instance has
a different random seed for which MOGAC produces the best
results most rapidly. However, MOGAC is able to arrive at
a high-quality solution given suboptimal seeds if its solution
pool size or cluster pool size are increased or its halting
conditions are made more lenient. Table IV shows the average
results of optimizing each of the price-optimization examples
30 times, given random seeds ranging from one to 30. In
this table, reported price is the price reported for a single
run of MOGAC with a fixed seed (see Tables I–III).Effort
corresponds to the computing resources MOGAC is allowed
to dedicate to the problem. The meaning of each effort value is
given in Table V. Theaverage pricecolumn shows the average
price of the solutions. MOGAC was run in single-objective
optimization mode for these experiments. Therefore, each run
produces only one nondominated solution. When MOGAC is
given the same parameters as were used in the previous tables
in this section, there are a small number of example-random
seed combinations for which it does not arrive at valid solu-
tions. Slightly more liberal parameters were used for Table IV
than for the preceding tables. This ensures thataverage price
is meaningful. Note that when allowed a modest increase in
run time, MOGAC robustly deals with varying random seeds.

Table V shows the parameter settings corresponding to each
effort setting in Table IV.Solutions is the total number of
solutions per cluster andnew solutionsis the number of
solution reproductions that occur per generation, per cluster.
Similarly, clustersand new clustersare the total number of
clusters and the number of cluster reproductions per genera-
tion. Generations before haltingis the number of generations
that must pass without improvement in MOGAC’s solution
pool before MOGAC halts.
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TABLE IV
EFFECT OF VARYING RANDOM SEED

TABLE V
EFFORT DEFINITIONS

B. Multiobjective Power and Price Optimization

Table VI displays the results of simultaneously optimizing
the price and power consumption of system architectures based
on examples presented in past work. The data base for the
example called Yen’s Random 2 contains two IC types and
two core types in addition to the processor types specified
by Yen, for a total of 14 PE types. The values shown in
the “Ignoring Power” column indicate the results of running
MOGAC, in single-objective price-optimization mode, on the
same embedded system specifications. MOGAC was given the
same parameters for all of the examples in this subsection,

although the parameter set used for price optimization in
Section IV-A differs from the parameter set used in this
subsection.1

The advantage of multiobjective optimization over the use
of a linear weighted sum can clearly be seen in Table VI.
When MOGAC simultaneously optimizes power and price, it
provides a designer with its entire set of noninferior solutions.
For each system specification, only a single cosynthesis run
was necessary to produce all the corresponding architectures

1The data base files used for these examples are available via anonymous
ftp at ftp://ftp.ee.princeton.edu/pub/dickrp/Trans/Mogac.
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TABLE VI
POWER-CONSUMPTION EXAMPLES

Fig. 19. Yen’s Random 2 example.

whose costs are listed in Table VI. Note that for the Hou 3
and 4 (clustered) example, MOGAC produces a lower cost
when conducting price and power optimization than when
optimizing only price in Section IV-A. This is a result of the
more lenient halting conditions and larger solution pool size
used in this section. It is necessary to trade off CPU time for
solution quality, and we focused on quality during price and
power optimization.

MOGAC provides an upper bound on a problem’s Pareto-
optimal solution set instead of merely producing a single
solution. This approach allows a designer to see the relation-
ship between the costs of different architectures that satisfy
the same system specification. Fig. 19 illustrates the danger of
selecting a solution without knowing the shape of a system’s

Fig. 20. Very Large Random 1 example.

noninferior solution curve. Although all of MOGAC’s solu-
tions for Yen’s Random 2 example are noninferior, a designer
would rarely select the solution with a price of 153 and a power
consumption of 25.4 when, for a price penalty of only five, a
solution with a power consumption of 15.7 can be obtained.
Presenting a noninferior solution set shows the designer the
cost tradeoff’s available between different solutions.

Figs. 20 and 21 show the results of optimizing very large
multirate examples that require communication link synthesis.
These pseudorandom examples were generated with the Task
Graphs for Free (TGFF) system [39]. They are available via
anonymous ftp. The first very large example contains eight
task graphs, each of which has approximately 63 tasks. There
are eight PE types and five link types available. MOGAC took
40.9 CPU min to arrive at the noninferior solution curve shown
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Fig. 21. Very Large Random 2 example.

in Fig. 20. The second very large example contains ten task
graphs, each of which has approximately 100 tasks. There
are 20 PE types and ten link types available. MOGAC took
203.5 CPU min to arrive at the noninferior solution curve
shown in Fig. 21. The primary purpose of these examples is
to demonstrate that MOGAC can rapidly solve extremely large
problem instances. We hope that others will use these examples
for comparative purposes.

V. CONCLUSIONS

In this paper, we have presented a method for the cosyn-
thesis of low-power, real-time, multirate heterogeneous hard-
ware–software distributed embedded systems. A novel mul-
tiobjective genetic algorithm, which allows exploration of
the Pareto-optimal set of architectures instead of providing
a designer with a single solution, has been practically applied
to a number of examples found in the literature. MOGAC
has been shown to rapidly synthesize architectures with costs
that are lower than or equal to those presented in previous
work. For large examples upon which comparisons with other
systems are possible, MOGAC produces significantly lower
cost solutions, despite requiring orders of magnitude less run
time. It has been demonstrated that adaptive multiobjective
genetic algorithms are well suited to solving the cosynthesis
problem.
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