
Incremental Exploration of the Combined Physical and
Behavioral Design Space

∗

Zhenyu (Peter) Gu, Jia Wang, Robert P. Dick, Hai Zhou
Northwestern University

2145 Sheridan Road
Evanston, IL, USA

{zgu646, jwa112, dickrp, haizhou}@ece.northwestern.edu

ABSTRACT

Achieving design closure is one of the biggest headaches for mod-
ern VLSI designers. This problem is exacerbated by high-level
design automation tools that ignore increasingly important factors
such as the impact of interconnect on the area and power consump-
tion of integrated circuits. Bringing physical information up into
the logic level or even behavioral-level stages of system design
is essential to solve this problem. In this paper, we present an
incremental floorplanning high-level synthesis system. This sys-
tem integrates high-level and physical design algorithms to con-
currently improve a system’s schedule, resource binding, and floor-
plan, thereby allowing the incremental exploration of the combined
behavioral-level and physical-level design space. Compared with
previous approaches that repeatedly call loosely coupled floorplan-
ners for physical estimation, this approach has the benefit of effi-
ciency, stability, and better quality of results. For designs contain-
ing functional units with non-unity aspect ratios, the average CPU
time improved by 369 %, the area improved by 14.24 %, and power
improved by 4 %.

Categories and Subject Descriptors

J.6 [Computer-Aided Engineering]: Computer-Aided Design;
B.8.2 [Hardware]: Performance and Reliability—Performance

Analysis and Design Aids

General Terms: Design, Algorithms

Keywords: High-level Synthesis, Incremental, Floorplan

1. INTRODUCTION
Process scaling has enabled the production of integrated circuits

(ICs) with millions of transistors. This has enabled increasingly
full-featured and high-performance ICs. However, these capabil-
ities have come at a cost. In order to deal with increased design
complexity and size, it has been necessary to automate the higher

∗This work is supported by the NSF in part under award CCR-
0347941 and in part under award CCR-0238484.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005 June 13–17, 2005, Anaheim, California, USA
Copyright 2005 ACM 1­59593­058­2/05/0006 ...$5.00.

levels of the design process. Unfortunately, considering intercon-
nect dramatically complicates the synthesis problem. Although an
abstract high-level description of the system is sufficient to predict
logic delay and power consumption [1–4], detailed physical infor-
mation, i.e., a floorplan, is necessary to make similar predictions
about interconnect.

A number of researchers have considered the impact of physi-
cal details, e.g., floorplanning information, on high-level synthe-
sis [5–8]. Interconnect and interconnect buffers are now first-order
timing and power considerations in VLSI design [9]. This change
has complicated both design and synthesis. It is no longer possible
to accurately predict the power consumption and performance of a
design without first knowing enough about its floorplan to predict
the structure of its interconnect. For this reason, a number of re-
searchers have worked on interconnect-aware high-level synthesis
algorithms [10–13]. These approaches typically use a loosely cou-
pled independent floorplanner for physical estimation. There are
two drawbacks to this approach. First, the independent floorplan-
ner may not be stable, i.e., a small change in the input netlist may
result in a totally different floorplan. This results in a high-level
synthesis algorithm that bases its moves on cost functions with-
out continuity. Second, even if the floorplanner is stable, creating
a floorplan from scratch for each high-level synthesis move is not
efficient, given the fact that the new floorplan has only small differ-
ence from the previous one. New techniques for tightly coupling
behavioral and physical synthesis that dramatically improve their
combined performance and quality are now necessary.

Incremental automated design allows a tighter relationship be-
tween high-level synthesis and physical design, improving the qual-
ity of each [14]. A number of high-level synthesis algorithms are
based on incremental optimization and are, therefore, amenable
to integration with incremental physical design algorithms. This
has the potential of improving both quality and performance. In-
cremental methods improve quality of results by maintaining im-
portant physical-level properties across consecutive physical esti-
mations during synthesis. Moreover, they shorten CPU time by
reusing and building upon high-quality, previous physical design
solutions that required a huge amount of time and effort to produce.

In this paper, an incremental high-level synthesis system is pro-
posed to reduce synthesis time dramatically while producing ICs
with better area and power consumption. The benefits of this ap-
proach increase with increasing problem size and complexity. Our
work is based on the interconnect-aware high-level synthesis tool,
ISCALP [12], which was based on the low-power data path syn-
thesis tool, SCALP [1]. We reuse the power models and iterative-
improvement high-level synthesis framework from ISCALP. How-
ever, this work differs from previous work because it uses a truly in-

13.3

208

cremental floorplanner to estimate interconnect structure [15]. Pre-
vious work relied on a fast constructive algorithm. Moreover, the
high-level synthesis algorithm itself is made incremental. This re-
sults in substantial improvements in CPU time and solution qual-
ity for large problem instances. As shown in Section 4, quality of
results improves by an average of 14.24 % for area on non-trivial
behavioral specification, i.e., specifications with more than 30 op-
erations. Moreover, CPU time improves by an average of 369 %
when compared with similar non-incremental techniques. Even
when compared with high-level synthesis algorithms that use care-
fully tuned fast constructive floorplanners as in ISCALP, we still
observe an average improvement of 12.5 % in area for non-trivial
specifications and better CPU time for large benchmarks with 169
operations.

This paper is organized as follows. Section 2 describes the de-
sign flow for the proposed high-level synthesis system. Section 3
contains a detailed description of our incremental floorplanner. Ex-
perimental results are presented in Section 4 and we present con-
clusions and future work in Section 5.

2. INCREMENTAL HIGH­LEVEL

SYNTHESIS
This section presents definitions useful in the discussion of high-

level synthesis and describe our incremental floorplanning high-
level synthesis algorithm, called IFP-HLS.

2.1 Definition
The input to IFP-HLS is a control data-flow graph (CDFG), G, an

input sampling period, Ts, and a library, L, of components to use for
implementing the data path. IFP-HLS produces an RTL circuit in
which power consumption and estimated area are optimized. IFP-
HLS algorithm has two loops.

Given the supply voltage, in the outer loop the number of con-
trol steps, csteps, changes from its maximum value to its minimum
value, where csteps is defined as

csteps = Ts × f (1)

or alternatively,

Tclock = Ts/csteps (2)

In above equations, sample period Ts is the constraint on the in-
put data rate. The system must be able to process an input sample
before the next one arrives. For the given design, the sample period
is a constant number. Hence, csteps indicates the number of clock
cycles required to process an input sample. The variable f is the
system clock frequency. Tclock is the system clock period.

Given csteps, which allows the clock period to be determined,
the inner loop first uses the fastest available functional unit from
the library to implement each operation. An as-soon-as-possible
(ASAP) schedule is then generated for the initial solution to de-
termine whether it meets the timing requirements. The initial so-
lution must be further optimized. Having obtained an initial solu-
tion that meets the sample period constraint for the current value
of csteps, the iterative improvement phase attempts to improve the
architecture by reducing the switched capacitance while satisfying
the sample period constraints. Additional details can be found in
the literature [1], [12] .

2.2 Incremental High­level Synthesis
Framework

In this section, we describe our incremental high-level synthesis
tool, IFP-HLS. IFP-HLS is built upon ISCALP [12]. However, in-
corporating incremental floorplanning required substantial changes

N

Y

Y

N

Y

N

Y

Y

N

Y

N

Reschedule

Initial allocation
Fine optimization

in floorplan

Find merges?

Incremental change
Local optimization

in floorplan

Improved?

Save current solution

MIN csteps?

Fine optimization

in floorplan

in floorplan

Incremental change

Slack computation
Split operation

Local optimization

Print best solution

N

Global optimization
in floorplan

Initial estimiation

CDFG simulation

Valid csteps?

MAX csteps?

requirement?
Meet the timing

Extract physical info
Cost estimation

csteps = csteps 1

Figure 1: Incremental High-Level Synthesis Algorithm

to that algorithm, resulting in a new low-power, incremental floor-
planning high-level synthesis algorithm. IFP-HLS considers both
data path and interconnect power consumption. It uses a new, incre-
mental, method of improving functional unit binding during high-
level synthesis.

The flowchart of the incremental high-level synthesis is shown in
Fig. 1. IFP-HLS differs from ISCALP in a number of ways. Instead
of generating an initial solution for each value of csteps, IFP-HLS
only generates one solution at the maximum value of csteps and
incrementally changes the solution as csteps decreases. Thus, in
addition to using incremental floorplanning, IFP-HLS also elim-
inates redundant operations by taking advantages of incremental
steps in high-level synthesis. Initially, we still use an ASAP sched-
ule and fully parallel allocation to estimate whether valid solution
exists for the current value of csteps. If not, further operations are
not necessary for the current value of csteps because a binding that
further reduces the finish time of an ASAP schedule is not possible.
However, if an ASAP schedule meeting the timing requirements is
possible, we start from the final solution for the previous value of
csteps and reschedule it based on the current value, i.e., the pre-
vious csteps minus 1. If, after rescheduling, the solution meets
its timing requirement, rebinding is not necessary. Otherwise, it
is necessary to rebind some of the tasks and use parallel execu-
tion to improve performance. A split operation is used to eliminate

209

resource contention by splitting a pair of tasks that were initially
assigned to the same functional unit onto separate functional units.
A detailed description of the split operation may be found in Sec-
tion 2.3.

For a given value of csteps, when a move is chosen, we incre-
mentally change the floorplan to see whether the change improves
solution quality. If so, the change is accepted. Otherwise, the
change is rejected and other moves are attempted. This technique
differs from that in the original ISCALP. In that algorithm, floor-
planning was only done at the end of each csteps iteration; i.e.,
the algorithm did not take advantage of solution correlation to save
effort across csteps values.

A high-quality incremental floorplan was developed and incor-
porated into IFP-HLS. Each time the high-level synthesis algorithm
needs physical information to guide its moves, it extracts that infor-
mation from the current, incrementally generated, floorplan. More-
over, costs derived from the floorplan are also used to guide high-
level synthesis moves. By using incremental floorplanning, closer
interaction between high-level synthesis physical design is possi-
ble, i.e., the high-level synthesis algorithm may determine the im-
pact of potential changes to binding upon physical attributes such
as interconnect power consumption and area.

In summary, IFP-HLS performs scheduling/allocation/binding
by iteratively changing csteps, determining whether operations need
to be rescheduled or re-bound (split) in order to meet timing con-
straints. At each step the floorplanner is updated.

2.3 Extended Operation
In this subsection, we explain the split operation in detail. In

addition, we describe rescheduling and a new graph technique to
determine split locations.

First, we make some observations on the iterative improvement
algorithm. Since each time csteps decreases by one, each individual
operation takes, at most, the same number of control steps as it did
for the previous value of csteps. Given that csteps is no less than
the previous csteps minus one, we can conclude that the optimal
schedule for the previous value of csteps violates the deadline for
the current value of csteps by, at most, one clock cycle. We will use
slack, S, to represent this information, which is defined as follows:

S = LST −EST (3)

Here, EST is the earliest start time and LST is the latest start time.
These values were computed by the ASAP and ALAP accordingly.
Notice that the calculations consider the sharing of resources.

Nodes with slack values greater than 0 do not result in timing
violations. However, nodes with slack values of −1 cause tim-
ing violations, i.e., they must be executed one cycle earlier. These
timing violations can be removed by splitting merged operations
which, although useful for previous values of csteps, now harm
performance. Based on this observation, the split operation is used
to eliminate timing violations. Therefore, the whole high-level syn-
thesis algorithm is implemented in an incremental way from maxi-
mum to minimum values of csteps without rebinding from scratch
at each value of csteps. Few changes to binding and scheduling
are required as a result of single-unit change to csteps. However,
in order to meet timing requirements, it is sometimes necessary
to split operators mapped to the same functional unit. The split
operation makes it possible quickly apply these isolated changes.
Previous high-level synthesis systems, e.g., SCALP and ISCALP,
started from a fully parallel implementation for each value of csteps

and repeatedly merged operators to reduce area. Although both
techniques are reasonable in the absence of an integrated floorplan-
ner, the incremental approach used in IFP-HLS speeds optimization

(without degrading solution quality) by requiring far fewer changes
to the floorplan. Generally, the split and merge operations, com-
bined, allow complete exploration of the solution space. However,
the primary goal, when changing the number of control steps, is
meeting timing constraints. We therefore focus our exploration
of the solution space on the most promising region by iteratively
splitting functional units on the critical timing path. In summary,
completeness is easy to achieve but inefficient in practice compared
with the proposed critical path based algorithm.

We will give an example to further describe the split operations.
Consider the data flow graph shown in Fig. 2(a), in which arrows
represent the data dependencies. Scheduling and allocation yield
the CDFG in Fig. 2(b). Here, we can see that three functional units
(FUs) are used. Tasks A, B, and C share FU1, tasks D and E share
FU2, and task F uses FU3. When csteps is reduced from 3 to 2,
instead of initializing binding and scheduling from scratch, the al-
gorithm reschedules it based on current binding. For this example,
after rescheduling, there is still a timing violation for tasks A, B,
and C because they were all bound to FU1. Therefore, the split op-
eration is necessary in order to allow all tasks to meet their timing
requirements. The following steps are used to do the split opera-
tion.

Based on the result of slack computation, we produce a graph
including all the tasks with negative slack. Each task is represented
by a node. In addition, there are three kind of edges, defined as
follows:

1. Data dependency edges, indicating that the destination node
takes the source node’s data as input;

2. Merge edges, indicating that the two nodes are bound to the
same functional unit or the same storage unit; and

3. Pseudo edges, used to restructure the graph for application
of the min-cut algorithm. A pseudo source node and pseudo
sink node are introduced to the graph. All input nodes are
connected to the pseudo source node and all output nodes
are connected to the pseudo sink node.

After constructing this graph, the min-cut algorithm is executed.
First, an infinite weight is assigned to all pseudo edges and data
dependency edges. Merge edges are each given weights of one.
If two nodes are connected by both a data dependency edge and
a merge edge, the merge edge is eliminated because split opera-
tions on nodes sharing dependency edges do not improve the tim-
ing properties. Using the min-cut algorithm in this manner splits
a minimal cardinality subset of nodes, allowing a reduction in the
finish time of the ASAP schedule.

Although decrementing csteps may increase delay by at most
one clock cycle, there may be some value of csteps for which even
fully parallel bindings do not allow an ASAP schedule to meet its
timing constraints. Therefore, min-cut and rescheduling may not be
carried out for some values of csteps. After the split operation, the
tasks are rescheduled and slack is recomputed to determine whether
timing constraints are met.

Fig. 2(c) illustrates a merge graph. The dashed lines represent
merge edges and the solid lines represent pseudo-edges. For this
example, it is possible to cut through either A and B, or B and C.
Here, we cut through A and B, thereby assigning A to a new func-
tional unit, FU4. B and C remain bound to the original functional
unit, FU1. As shown in Fig. 2(d), all tasks now meet their timing
constraints.

Another case need also be considerated. If no valid solutions
exist for the current value of csteps, IFP-HLS will skip further
optimization and decrement csteps. IFP-HLS may reach a valid
value of csteps after skipping several csteps values. In this case,

210

A

C

B

E

D F

(a) CDFG

FU1

C

FU2 FU3 0

2

1

3

A

B

D F

E

(b) Scheduling and Allocation

A B C TS

(c) Slack Computation

0

2

1

E

FU2

DB

FU1

C

F

FU3

A

FU4

(d) After Split Operation

Figure 2: Incremental Changes on HLS

the slack values for some tasks may less than −1. We use the fol-
lowing algorithm to cope with this case, as illustrated in Fig. 3. The
value of csteps is decremented and the split operation, followed by
rescheduling, are repeated until valid solution is produced.

3. INCREMENTAL FLOORPLANNING
As discussed in previous sections, in order to introduce incre-

mental combined behavioral and physical optimization into high-
level synthesis, a high-quality incremental floorplanner is neces-
sary. We have tested this idea by building an incremental simulated
annealing floorplanner into the IFP-HLS algorithm. In this section,
we describe this incremental floorplanner.

This floorplanner handles blocks with different aspect ratios and
produces non-slicing floorplans. However, unlike the network par-
titioning approach used in ISCALP, it was designed primarily for
quality, not speed. Although the impact on synthesis time would
prevent incorporation of a conventional high-quality floorplanner in
the inner loop of a high-level synthesis system, incremental floor-
planning enables both high quality and low synthesis time. High-
level synthesis moves typically remove a single module or split a
module into two. Therefore, many changes are small and their ef-
fects on the floorplan are mostly local. We reuse the previous floor-
plan as a starting point for each new floorplan. The previous floor-
plan was already high-quality. Therefore, re-optimization of the
current floorplan to incorporate local changes is fast. In practice,
we have found that this technique leads to quality-of-results and
performance improvements over constructive floorplanning, even
when compared with a very fast constructive floorplanner.

3.1 Floorplan Representation
The Adjacent Constraint Graph (ACG) floorplan representation

is used within IFP-HLS’s incremental floorplanner. This represen-
tation is described in detail in another publication [15], but will
be summarized here. An ACG is a constraint graph with exactly
one geometric relationship between every pair of modules. ACGs
have invariant structural properties that allow the number of edges

Y

N

Y

N

Meet the timing
requirement?

Slack compute
Split operation

Incremental change
Local optimization

in floorplan

Reschedule

csteps == cur_csteps

csteps = prev_csteps

csteps = csteps 1

csteps = cur_csteps

Figure 3: Iterative Split Operation for Slack Smaller than −1

in the graph to be bounded. Operations on ACGs have straight-
forward meanings in physical space and change graph topology lo-
cally; they require few, if any, global changes. The operations of
removing and splitting modules are designed to reflect high-level
binding decisions. To obtain the physical position of each module,
packing based on longest path computation is employed.

Although initial floorplan optimization is done with simulated
annealing, re-optimization requires fewer global changes and less
hill climbing. Moreover, perturbations resulting from high temper-
atures may disrupt high-quality floorplan structures. Therefore, it is
reasonable to use lower temperatures for re-optimization. In prac-
tice, we have found that using a temperature of zero results in good
quality and performance when re-optimizing; in other words, al-
though simulated annealing is necessary during initial global floor-
plan optimization, using a greedy iterative improvement algorithm
during re-optimization produced a good trade-off between quality
and CPU time.

3.2 Incremental Floorplan Operation
The details of our approach follow. First, after generating the

first ASAP schedule, we have an initial set of modules and inter-
connections. Simulated annealing is used to obtain an initial floor-
plan. Since every interconnect net has exactly one driving module,
multi-pin nets are broken into two-pin wires with the driving mod-
ule as the source. The wire length is calculated as the Manhattan
distance between the two modules connected by the wire. At this
point, the unit-length switched capacitances of data transfers be-
tween two modules are available. We use these as weights for the
wire lengths. The weighted total wire length is related to power
consumption, i.e., optimizing weighted wire length minimizes in-
terconnect power consumption. A weighted sum of the area and the
interconnect power consumption is calculated for use as the floor-
planner’s cost function, e.g.,

A+w ∑
e∈E

CeDe (4)

211

where A is the area, w is the power consumption weight, E is the set
of all wires, e is an interconnect wire, Ce is the unit-length switched
capacitance for the data transfer along e, and De is the length of e.
With this approach, we optimize the floorplan for both the inter-
connect power consumption and the area. The resulting floorplan
will be improved during the consecutive incremental floorplanning
high-level synthesis moves. Therefore, the number of simulated
annealing iterations is bounded to reduce synthesis time.

After each high-level synthesis move, the previous floorplan is
modified by removing or splitting a module. The modules and
switched capacitances are updated based upon the impact of these
merges and splits. The floorplan is then re-optimized with a greedy
iterative improvement algorithm using the same cost function as
the simulated annealing algorithm. The greedy improvements are
divided into consecutive rounds. In every round we apply the same
number of perturbations to the floorplan. If less than 10% of the
perturbations result in reduced costs, we conclude that we have ap-
proached a local minimum and stop the greedy improvement al-
gorithm. Although it would be easy to use a low simulated anneal-
ing temperature to allow some hill climbing during re-optimization,
this was not necessary during re-optimization in practice.

When we find the best binding for a given value of csteps, we do
floorplanning again and compare it with the best floorplan from the
previous value of csteps. This time, non-zero temperature simu-
lated annealing is used because it increases the accuracy of estima-
tions. These normal simulated annealing runs occur only once per
csteps value, allowing their time cost to be amortized. After deter-
mining the best binding across all the possible values of csteps, an-
other simulated annealing floorplanning run is carried out for that
binding. This final floorplanning stage occurs only once for ev-
ery synthesis run. Therefore, it is acceptable to use a slower (but
higher-quality) annealing schedule than those in the inner loop of
high-level synthesis, thereby improving integrated circuit area and
interconnect power consumption.

During the annealing schedule, we use a constant cooling factor,
r, that is,

T ′
= r×T (5)

where T is the current temperature and T ′ is the temperature during
the next iteration. The number of the perturbations for the initial
floorplanning run, the floorplanning for each value of csteps run,
and the final floorplanning run can be normalized to 1 : 2 : 20. The
number of perturbations per round for the greedy iterative improve-
ment algorithm is the same as that for final floorplanning run.

4. EXPERIMENTAL RESULTS
In this section, we present experimental results for the IFP-HLS

incremental floorplanning high-level synthesis algorithm described
in Sections 2 and 3. The results generated by ISCALP and IFP-
HLS are compared. As explained in Section 2.2, both approaches
optimize area and power consumption. The circuits described in
this section were synthesized using a register transfer level (RTL)
design library based on NEC’s 0.25 µm process. The experiments
were conducted on AMD Athlon-based linux workstations with
512 MB–1 GB of random access memory.

4.1 Benchmarks
We evaluated fifteen high-level synthesis benchmarks using a

0.25 µm technology library. Chemical and IIR77 are infinite im-
pulse response (IIR) filters used in industry. DCT IJPEG is the In-
dependent JPEG Group’s implementation of discrete cosine trans-
form (DCT). DCT Wang is a DCT algorithm named after the in-
ventor. Both DCT algorithms work on 8×8 pixel arrays. Elliptic,

an elliptic wave filter, comes from the NCSU CBL high-level syn-
thesis benchmark suite [16]. Jacobi is the Jacobi iterative algorithm
for solving a fourth order linear system. WDF is a finite impulse re-
sponse (FIR) wave digital filter. The largest benchmark, Jacobi, has
24 multiplications, 8 divisions, 8 additions, and 16 subtractions. In
addition, we generated three CDFGs using a pseudo-random graph
generator [17]. Random100 has 20 additions, 15 subtractions, and
19 multiplications. Random200 has 39 additions, 44 subtractions,
and 36 multiplications. Random300 has 59 additions, 58 subtrac-
tions, and 72 multiplications.

Currently, we don’t consider wire delays because we use 0.25 µm
technology for which buffered and sized wire delay [9] is only
0.45 ns for 1 cm wires. Functional units delay ranges from 13.2 ns
to 47.8 ns. We also checked a 0.18 µm process, for the wire delay
is only 0.39 ns for 1 cm wires. This is also very small compared
with the delay of functional units. Hence, the wire length is only
used with unit-length switched capacitances to obtain interconnect
power consumption (however, please see Section 5). Here, we use
the wire capacitances from Cong’s paper [9] along with an RTL de-
sign library from NEC to estimate the power consumption for the
benchmarks.

4.2 Results
The results of running ISCALP and IFP-HLS on non-unity as-

pect ratio functional units are shown in Fig. 4. As shown in the ta-
ble, IFP-HLS enable an average of 14% improvement in area, 4 %
improvement in power consumption, 172 % reduction in the num-
ber of merge operations, and 369 % improvement in CPU time.

We later used a unity aspect ratio for the functional units in both
ISCALP and IFP-HLS. The IFP-HLS algorithm enable an average
of 12% improvement in area, 7 % improvement in power consump-
tion, and 100 % reduction in the number of merge operation. Al-
though IFP-HLS has a higher CPU time for small benchmarks, syn-
thesis time was smaller than ISCALP for large benchmarks (Jacobi
and random300). For random300, IFP-HLS required 60 minutes
and 11 seconds to finish. ISCALP was not able to finish within 6
hours.

The reported power is calculated by summing the power con-
sumptions of the functional units, multiplexors, registers (from the
library), and interconnect (from the floorplan). We compared the
power consumptions of our designs with those produced by an ex-
isting high-level synthesis algorithm (ISCALP) coupled with a con-
structive floorplanner. For the set of benchmarks with unity aspect
ratio functional unit, the interconnect power decreased by 28.7 %
and functional unit power is decreased by 4 %; i.e., it is possible to
significantly decrease interconnect power consumption without in-
creasing functional unit power consumption. Moreover, since both
IFP-HLS and ISCALP were already designed to minimize power
consumption, it is notable that we were still able to reduce power
consumption while, at the same time, dramatically reducing CPU
time for large problem instances.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we presented an incremental floorplanning, high-

level synthesis system that integrates high-level and physical design
algorithms to concurrently improve a system’s schedule, resource
binding, and floorplan. Compared with previous approaches that
repeatedly call loosely coupled floorplanners for physical estima-
tion, this work makes the following contributions: 1) it extends this
system to support tight integration with physical design algorithms;
and 2) it builds a novel incremental high-level synthesis algorithm
into the resulting framework. This approach has the benefit of effi-
ciency, stability, and better quality results. As shown in Section 4,

212

(a) (b)

(c) (d)

Figure 4: Experimental Result

the proposed incremental high-level synthesis algorithm allows im-
provement in area and power consumption while dramatically de-
creasing CPU time especially for big benchmarks.

Interconnect delay is becoming increasingly important. There-
fore, our future work will focus on delay-driven incremental high-
level synthesis for 0.13 µm and finer processes.

6. ACKNOWLEDGMENTS
We would like to thank Prof. Niraj Jha’s research group at Prince-

ton University for access to the ISCALP and NEC for access to
their 0.25 µm technology library. We also would like to thank Yong-
pan Liu, Dr. Anand Raghunathan, and Dr. Lin Zhong for their help-
ful suggestions.

7. REFERENCES

[1] A. Raghunathan and N. K. Jha, “SCALP: An
iterative-improvement-based low-power data path synthesis
system,” IEEE Trans. Computer-Aided Design of Integrated

Circuits and Systems, vol. 16, no. 11, pp. 1260–1277, Nov.
1997.

[2] A. P. Chandrakasan, et al., “Optimizing power using
transformations,” IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, vol. 14, no. 1, pp. 12–51,
Nov. 1997.

[3] R. S. Martin and J. P. Knight, “Power profiler: Optimizing
ASICs power consumption at the behavioral level,” in Proc.

Design Automation Conf., June 1995.

[4] K. S. Khouri, G. Lakshminarayana, and N. K. Jha,
“High-level synthesis of low power control-flow intensive
circuits,” IEEE Trans. Computer-Aided Design of Integrated

Circuits and Systems, vol. 18, no. 12, pp. 1715–1729, Dec.
1999.

[5] D. W. Knapp, “Fasolt: A program for feedback-driven
data-path optimization,” IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems, vol. 11, no. 6, pp.
677–695, June 1992.

[6] J. P. Weng and A. C. Parker, “3D scheduling: High-level
synthesis with floorplanning,” in Proc. Design Automation

Conf., June 1992.

[7] Y. M. Fang and D. F. Wong, “Simultaneous functional-unit
binding and floorplanning,” in Proc. Int. Conf.

Computer-Aided Design, Nov. 1994.

[8] W. E. Dougherty and D. E. Thomas, “Unifying behavioral
synthesis and physical design,” in Proc. Design Automation

Conf., June 2000.

[9] J. Cong and Z. Pan, “Interconnect performance estimation
models for design planning,” IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems, pp. 739–752,
June 2001.

[10] R. Mehra, L. M. Guerra, and J. M. Rabaey, “Low power
architecture synthesis and impact of exploiting locality,” J.

VLSI Signal Processing, vol. 13, no. 8, pp. 877–888, Aug.
1996.

[11] P. Prabhakaran and P. Banerjee, “Simultaneous scheduling,
binding and floorplanning high-level synthesis,” in Proc. Int.

Conf. VLSI Design, Jan. 1998.

[12] L. Zhong and N. K. Jha, “Interconnect-aware high-level
synthesis for low power,” in Proc. Int. Conf. Computer-Aided

Design, Nov. 2002.

[13] A. Stammermann, et al., “Binding, allocation and
floorplanning in low power high-level synthesis,” in Proc.

Int. Conf. Computer-Aided Design, Nov. 2003.

[14] O. Coudert, et al., “Incremental CAD,” in Proc. Int. Conf.

Computer-Aided Design, Nov. 2000, pp. 236–244.

[15] H. Zhou and J. Wang, “ACG–Adjacent Constraint Graph for
General Floorplans,” in Proc. Int. Conf. Computer Design,
Oct. 2004.

[16] “NCSU CBL,” www.cbl.ncsu.edu/benchmarks/.

[17] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs
for free,” in Proc. Int. Wkshp. Hardware/Software

Co-Design, Mar. 1998, pp. 97–101.

213

