
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2007 1

Unified Incremental Physical-Level
and High-Level Synthesis

Zhenyu Gu, Student Member, IEEE, Jia Wang,
Robert P. Dick, Member, IEEE, and Hai Zhou, Senior Member, IEEE

Abstract—Achieving design closure is one of the biggest chal-
lenges for modern very large-scale integration system designers.
This problem is exacerbated by the lack of high-level design-
automation tools that consider the increasingly important im-
pact of physical features, such as interconnect, on integrated
circuit area, performance, and power consumption. Using phys-
ical information to guide decisions in the behavioral-level stage
of system design is essential to solve this problem. In this pa-
per, we present an incremental floorplanning high-level-synthesis
system. This system integrates high-level and physical-design al-
gorithms to concurrently improve a design’s schedule, resource
binding, and floorplan, thereby allowing the incremental explo-
ration of the combined behavioral-level and physical-level design
space. Compared with previous approaches that repeatedly call
loosely coupled floorplanners for physical estimation, this ap-
proach has the benefits of efficiency, stability, and better quality
of results. The average CPU time speedup resulting from unify-
ing incremental physical-level and high-level synthesis is 24.72×

and area improvement is 13.76%. The low power consumption
of a state-of-the-art low-power interconnect-aware high-level-
synthesis algorithm is maintained. The benefits of concurrent
behavioral-level and physical-design optimization increased for
larger problem instances.

Index Terms—Behavioral synthesis, floorplanning, low power
design.

I. INTRODUCTION

PROCESS SCALING has enabled the production of inte-

grated circuits (ICs) with millions of transistors. This has

allowed the design of more full-featured and high-performance

ICs. However, these increased capabilities have come at a cost.

In order to deal with increased design complexity and size, it is

becoming increasingly important to automate higher levels of

the design process.

High-level-synthesis systems [1]–[4] automatically convert

behavioral algorithmic descriptions of design requirements,

e.g., control data flow graphs (CDFGs) [5], into optimized

register-transfer level (RTL) descriptions in languages such as

VHDL or Verilog. Based on a behavioral description, a high-

level-synthesis system determines an allocation of resources,

Manuscript received November 24, 2005; revised September 22, 2006.
This work was supported in part by the National Science Foundation under
Awards CCR-0238484, CNS-0347941, and CNS-0613967, and in part by the
Semiconductor Research Corporation under Award 2007-HJ-1593. This paper
was recommended by Associate Editor A. Raghunathan.

The authors are with the Department of Electrical Engineering and Computer
Science, Northwestern University, Evanston, IL 60208-3118 USA (e-mail:
zgu646@eecs.northwestern.edu; jwa112@eecs.northwestern.edu; dickrp@
northwestern.edu; haizhou@eecs.northwestern.edu).

Digital Object Identifier 10.1109/TCAD.2007.895774

assignment of operations to resources, and a schedule for

operations in an attempt to satisfy the design specifications

and minimize some combination of delay, area, and power

consumption [6]–[17]. Recently, in order to improve design

area or performance estimation, researchers have considered

the impact of physical details, e.g., floorplanning information,

on high-level synthesis [18]–[23].

In the past, it was possible for high-level-synthesis algo-

rithms to focus on logic, i.e., functional units (FUs) such as

adders and multipliers. The contribution of wire delay and

power was typically neglected without much loss of accuracy.

Focusing on logic was once reasonable since logic was re-

sponsible for the majority of delay and power consumption.

However, process scaling into the deep-submicrometer realm

has changed the focus of very large-scale integration (VLSI)

design from transistors to global interconnect. It is no longer

possible to simplify the high-level-synthesis problem by ignor-

ing interconnect.

Taking interconnect cost into consideration during high-

level synthesis has attracted significant attention. In previous

work [24]–[28], the number of interconnects or multiplexers

was used to estimate interconnect cost. The performance and

power impacts of interconnect and interconnect buffers are now

first-order timing and power considerations in VLSI design

[29]. It is no longer possible to accurately predict the power

consumption and performance of a design without first knowing

enough about its floorplan to predict the structure of its inter-

connect. This change has dramatically complicated both design

and synthesis. For this reason, a number of researchers have

worked on interconnect-aware high-level-synthesis algorithms

[30]–[32]. These approaches typically use a loosely coupled

independent floorplanner for physical estimation. Although this

technique improved on previous work by allowing estimation of

physical properties, it has two drawbacks. First, the independent

floorplanner may not be stable, i.e., a small change in the

input netlist may result in a totally different floorplan. A move

is a discrete change made to a solution during optimization

that results in transition to a new position in the solution

space. Floorplan instability may result in a high-level-synthesis

algorithm that bases its moves on cost functions without con-

tinuity. Second, even if a floorplanner is stable, creating a

floorplan from scratch for each high-level-synthesis move is

inefficient, given the fact that the new floorplan frequently

has only small differences with the previous one. The con-

structive approach works for small-problem instances but is

unlikely to scale to large designs. New techniques for tightly

coupling behavioral and physical synthesis that dramatically

0278-0070/$25.00 © 2007 IEEE

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2007

improve their combined performance and quality are now

necessary.

Incremental automated design promises to build tighter

relationship between high-level synthesis and physical de-

sign, improving the quality of each [33]–[35]. A number of

high-level-synthesis algorithms are based on incremental op-

timization and are, therefore, amenable to integration with in-

cremental physical-design algorithms. This has the potential of

improving both quality and performance. Incremental methods

improve quality of results by maintaining important physical-

level properties across consecutive physical estimations during

synthesis. Moreover, they shorten CPU time by reusing and

building upon previous high-quality physical-design solutions

that required a huge amount of effort to produce.

This paper describes an incremental high-level-synthesis

system that reduces synthesis time dramatically while

producing ICs with better area and low power consump-

tion compared to a state-of-the-art power-aware high-level-

synthesis algorithm. The benefits of this approach increase with

increasing problem size and complexity. This paper is based

on the interconnect-aware high-level-synthesis tool, ISCALP

[31], which was based on the low-power data-path synthesis

tool, SCALP [15]. We reuse the power modeling and iterative-

improvement high-level-synthesis framework from ISCALP.

However, this paper differs from previous work in that a truly

incremental floorplanner is used to estimate the interconnect

structure [36]. In contrast, past work used a fast constructive

algorithm. Moreover, the high-level-synthesis algorithm, itself,

is made incremental. As shown in Section V, this resulted

in an average speedup of 24.72× and an average area im-

provement of 13.76%, while maintaining the low power con-

sumption of a state-of-the-art power-aware high-level-synthesis

algorithm. In addition, wire delay is considered in this paper

to guarantee that the implementation meets its performance

requirements.

This paper is organized as follows. Section II explains the

motivation for this paper. Section III describes the design flow

for the proposed high-level-synthesis system. The details of

our incremental floorplanner are introduced in Section IV.

Experimental results are presented in Section V. Conclusions

and future work are presented in Section VI.

II. MOTIVATION

In this section, we first present definitions useful in the

discussion of high-level synthesis. Then, motivational examples

are given based on our observations of the synthesis process.

Examples are used to explain and motivate the use of unified

high-level and physical-level optimization.

A. Definitions and Background

The input to ISCALP is a CDFG G, an input arrival

(and output sampling) period Ts, and a library L of FUs

for data-path implementation. ISCALP produces an RTL cir-

cuit in which power consumption (including logic and wire

power consumption) and estimated area are optimized. The

ISCALP algorithm has two loops. Given the supply voltage, the

outer loop incrementally reduces the number of control steps,

csteps, from its maximum to minimum value, where csteps is

defined as

csteps = Ts × f (1)

or alternatively,

Tclock = Ts/csteps. (2)

In the above equations, each control step corresponds to a

time period of one clock cycle, and the sample period Ts is the

constraint on the input data rate. The solution obtained from

high-level synthesis must be able to process an input sample

before the next one arrives. For a given specification, the sample

period is fixed. Hence, csteps indicates the number of clock

cycles required to process an input sample. The variable f is the

chip clock frequency. Tclock is the chip clock period. ISCALP

searches for the lowest power architecture for each possible

value of csteps.

Given a value of csteps, which allows the clock period to

be determined, the inner loop first uses the fastest available

FU from the library to implement each operation. An as-soon-

as-possible (ASAP) schedule is then generated for the initial

solution to determine whether it meets its timing requirements.

The initial solution is then further optimized. Having obtained

an initial solution that meets the sample period constraint for

the current value of csteps, the iterative improvement phase

attempts to improve the architecture by reducing the switched

capacitance while satisfying the sample period constraints.

More details can be found in literature [15], [31].

B. Motivating Example

ISCALP employs a fast constructive slicing floorplanner

based on netlist partitioning and rotation/orientation selection

to obtain a floorplan optimized for wire length and area [37],

[38]. Although it improved on its predecessors by considering

the impact of floorplanning on synthesis, there are several

drawbacks to this approach.

First, an incremental high-level-synthesis algorithm only

changes a small portion of the modules and connections in

each move. However, a constructive (conventional) floorplanner

always starts floorplanning from scratch. This is not efficient

because the floorplan information obtained during the previous

run is not reused. Moreover, it is possible that the newly

produced floorplan will be totally different from the previous

one, despite only small changes in the set of modules and inter-

connections. This lack of autocorrelation in floorplan solutions

may result in a high-level-synthesis algorithm basing its future

moves on information that immediately becomes invalid after

the moves are applied.

Second, the efficiency of the constructive slicing-structure

floorplanner decreases dramatically for blocks with nonunity

aspect ratios (ISCALP assume blocks with unity aspect ratio).

As a result of constraining the solution space to slicing floor-

plans, it is prone to reaching suboptimal solutions. However,

simply replacing the slicing floorplanner with a high-quality

floorplanner would result in unacceptably high CPU time.

GU et al.: UNIFIED INCREMENTAL PHYSICAL-LEVEL AND HIGH-LEVEL SYNTHESIS 3

TABLE I
NUMBERS OF MERGES AND CPU TIMES OF DIFFERENT BENCHMARKS

TABLE II
CPU TIMES BREAK DOWN OF DIFFERENT BENCHMARKS

To solve these problems, we propose an incremental iterative

improvement high-level-synthesis algorithm tightly integrated

with a high-quality incremental floorplanner. This synthesis

system is called incremental floorplanning high-level synthesis

(IFP-HLS). We run the same benchmarks on both ISCALP and

IFP-HLS, listing the number of merge operations and CPU time

for each benchmark in Table I.

ttotal = Nmoves ∗ (tHLS + tfp) (3)

As (3) shows, the CPU time of the high-level-synthesis run

can be divided into two parts: high-level-synthesis moves and

the resulting physical design carried out by the floorplanner. As

shown in Table II, floorplanning is the most time consuming

of these. It uses at least 75.69% of the CPU time on average

for both ISCALP and IFP-HLS. As shown in Table I, IFP-

HLS achieves an average reduction of 50% in the number of

high-level-synthesis merge operations compared to ISCALP.

This results in a large reduction in floorplanner CPU time.

The reduction in moves, and CPU time, is mainly due to the

incremental high-level-synthesis and floorplanning algorithms

used in IFP-HLS. Many high-level-synthesis moves result in

time-consuming changes to the floorplan. IFP-HLS can greatly

reduce CPU time by reducing the number of merge operations,

particularly for larger benchmarks, which require larger solu-

tion spaces to be explored.

Fig. 1 illustrates the power consumptions of intermediate

solutions during optimization in ISCALP and IFP-HLS. For

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2007

Fig. 1. Power consumption of intermediate solution during the optimization
of ISCALP and IFP-HLS. (a) Power consumption of intermediate solution
during the optimization for all the values of csteps. (b) Power consumption
of intermediate solution during the optimization for the values of csteps from
zero to two.

each value of csteps, we plot the intermediate solutions pro-

duced by the optimization algorithm. Note that all of these in-

termediate solutions have the same value of csteps. Incremental

optimization allows IFP-HLS to focus on the most promising

(low power) regions of the solution space while ISCALP must

essentially restart optimization for each new potential clock

frequency. This allows improvement to both optimization time

and solution quality for IFP-HLS.

Note that ISCALP starts the floorplanner from scratch after

each high-level design change. The incremental physical and

architectural optimization used in IFP-HLS reduces CPU time

dramatically, particularly for large applications. Table I indi-

cates that the average CPU time speedup is 24.72×. The im-

provement is greatest for the largest benchmarks. For example,

when run on Random300, ISCALP does not finish within five

days, while IFP-HLS finishes within 4 h. In addition, IFP-HLS

achieves 13.76% improvement in area compared to ISCALP.

The above examples clearly illustrate the value of using

unified incremental physical-level and high-level synthesis. As

shown in detail in Section V, this approach improves both

design quality and CPU time.

Fig. 2. Incremental high-level-synthesis algorithm.

III. INCREMENTAL HIGH-LEVEL SYNTHESIS

In this section, we describe IFP-HLS, the proposed incre-

mental high-level synthesis algorithm. IFP-HLS is built upon

ISCALP [31]. However, incorporating incremental floorplan-

ning required substantial changes to that algorithm, resulting in

a new low-power IFP-HLS algorithm. IFP-HLS considers both

data-path and interconnect power consumption. As shown in

Fig. 2, the CDFG is simulated with typical trace in order to

profile the switching activity of each operation and data-transfer

edge. An RTL design library is set up to provide the power and

GU et al.: UNIFIED INCREMENTAL PHYSICAL-LEVEL AND HIGH-LEVEL SYNTHESIS 5

area information. The profiling information combined with this

RTL design library and floorplanner is then used to evaluate the

power consumption of both data path and interconnect. IFP-

HLS uses a new incremental method for improving FU binding

during high-level synthesis. Although this improvement alone

would result in a reduction in synthesis time, its motivation

was to facilitate the integration of an incremental-floorplanning

algorithm with high-level synthesis in order to improve solu-

tion quality and reduce synthesis time. This allows the high-

level-synthesis algorithm to determine the physical position of

each module during optimization, enabling interconnect power

consumption and delay estimation.

A. Incremental High-Level-Synthesis Framework

In this section, we give an overview of our incremental high-

level synthesis flow. The flowchart of IFP-HLS is shown in

Fig. 2. IFP-HLS differs from ISCALP in a number of ways. In-

stead of generating an initial solution for each value of csteps,

IFP-HLS only generates one solution at the maximum value

of csteps and incrementally changes the solution as csteps
decreases. Thus, in addition to using incremental floorplanning,

IFP-HLS also eliminates redundant moves by taking advan-

tages of incremental steps in high-level synthesis. Initially, we

still use an ASAP schedule and fully parallel allocation to

estimate whether there exists a valid solution for the current

value of csteps. If not, it is not necessary to do further moves

for the current number of control steps, because a binding that

further reduces the finish time of an ASAP schedule is not

possible. However, if an ASAP schedule that meets the timing

requirements is possible, we will use the best solution from the

previous value of csteps and reschedule it based on the current

value, which is equal to the previous csteps minus one. If,

after rescheduling, the solution meets its timing requirements,

rebinding is not necessary. Otherwise, it will be necessary to

parallelize some of the operations to improve performance. The

split move is used to eliminate resource contention by splitting

a pair of operations that were initially assigned to the same FU

onto separate FUs. A detailed description of the split move may

be found in Section III-B.

For a given value of csteps, when a move is chosen, IFP-HLS

incrementally changes the floorplan to see whether the change

improves solution quality. If so, the change is accepted. Other-

wise, the change is rejected and other moves are attempted. This

technique differs from that in ISCALP. In ISCALP, floorplan-

ning is only done at the end of each csteps iteration; it does not

take advantage of the solution correlation to save effort across

csteps values. ISCALP uses only power consumption to guide

the high-level-synthesis moves. In contrast, IFP-HLS uses a

weighted sum of area and power consumption (in picowatts),

with a ratio of 1 µm2 to 5 pW, in order to evaluate solution

quality.

A high-quality incremental floorplanner was developed and

incorporated into IFP-HLS to guide the high-level-synthesis

moves. Each time the high-level-synthesis algorithm needs

physical information, it extracts that information from the cur-

rent incrementally generated floorplan. Costs derived from the

floorplan are also used to guide the high-level-synthesis moves.

By using incremental floorplanning, closer interaction between

high-level synthesis and physical design is possible, i.e., the

high-level-synthesis algorithm may determine the impact of

potential changes to binding upon physical attributes such as

interconnect power consumption and area.

The core idea of incremental design is to maintain good

physical-level properties across consecutive physical estima-

tions during the high-level-synthesis moves. It is possible to ap-

ply the idea of using an incremental optimization framework to

integrate other algorithms, provided that the algorithms at each

level of design can be made incremental. Let us consider a few

other examples. In force-directed scheduling, all the operations

may be scheduled iteratively in the order of increasing cost.

The cost of scheduling each unscheduled operation is updated

after each operation is scheduled. This provides a potential

opportunity to tightly integrate an incremental floorplanner to

allow physical-information feedback. Maximal clique is NP-

hard. Therefore, for maximal clique-based resource sharing, a

heuristic is often used in practice. As long as the heuristic is

iterative, it can be made incremental.

In summary, IFP-HLS performs scheduling, allocation,

and binding by iteratively changing csteps and determining

whether operations need to be rescheduled or rebound (split)

in order to meet timing constraints. At each step, the floorplan

is updated and reoptimized.

B. Extended Move

This section describes split moves, rescheduling, and a new

graph technique to determine split locations.

We observed that when csteps decreases by one, each in-

dividual operation takes, at most, the same number of control

steps as it did for the previous value of csteps. Given that

csteps is no less than the previous csteps minus one, we can

conclude that the ASAP schedule for the previous value of

csteps violates the deadline for the current value of csteps
by, at most, one clock cycle. We will use node i’s slack Si to

represent this information, which is defined as follows:

Si = LSTi − ESTi (4)

where ESTi is the earliest start time, and LSTi is the latest start

time, which were computed by a topological sort. Hardware-

resource contention has already been considered.

Nodes with non-negative slack values do not imply timing vi-

olations. However, nodes with slack values of −1 cause timing

violations, i.e., they must be executed one cycle earlier. These

timing violations can be removed by splitting merged opera-

tions which, although useful for previous values of csteps, now

harm performance. Based on this observation, the split move is

used to eliminate timing violations. Therefore, the whole high-

level-synthesis algorithm is implemented in an incremental

way, from maximum to minimum values of csteps, without

rebinding from scratch at each value of csteps. Few changes

to binding and scheduling are required as a result of single-

unit change to csteps. However, in order to meet timing re-

quirements, it is sometimes necessary to split operators mapped

to the same FU. The split move makes it possible to quickly

apply these isolated changes. Previous high-level-synthesis

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2007

systems, e.g., SCALP and ISCALP, started from a fully par-

allel implementation for each value of csteps and repeatedly

merged operators to reduce area. Although both techniques are

reasonable in the absence of an integrated floorplanner, the

incremental approach used in IFP-HLS hastens optimization

(without degrading solution quality) by requiring far fewer

changes to the floorplan. Used together, the split and merge

moves allow complete exploration of the solution space. How-

ever, the primary goal of changing the number of control steps

is meeting timing constraints. We therefore start our exploration

of the solution space at the most promising region by iteratively

splitting FUs on the critical-timing path.

Algorithm I Reschedule and Split Procedure

1: Reschedule the design

2: Compute slacks of all operations

3: while there exists negative slack do

4: Construct graph including all the operations and edges

with negative slack

5: Use maximum flow to find the minimum cut in the graph

6: Do the split move

7: Reschedule the design

8: Compute slack of all operations

9: end while

The reschedule and split procedure is shown in Algorithm 1.

We will give an example to further describe this procedure.

Consider the data flow graph shown in Fig. 3(a), in which

arrows represent the data dependencies. Scheduling and alloca-

tion yield the DFG in Fig. 3(b). Here, we can see that three FUs

are used. Operations ∗1 and ∗2 share FU1, operations ∗3, ∗4,

and ∗5 share FU2, and operation +1, +2, and +3 share FU3.

The sample period is 108 ns; each multiplication takes 20 ns,

and each addition takes 10 ns. When csteps is reduced from

ten to nine, instead of binding and scheduling from scratch,

the algorithm reschedules based on current binding. For this

example, after rescheduling, there are still timing violations for

operations ∗3, ∗4, and ∗5 because they were all bound to FU2,

as shown in Fig. 3(c). Therefore, the split move is necessary in

order to allow all operations to meet their timing requirements

(a description of the split move follows).

Based on the result of slack computation, we produce a graph

including all the operations with negative slack. Each operation

is represented by a node. In addition, there are three kinds of

edges, which are defined as follows.

1) Data-dependence edges, indicating that the destination

node takes the source node’s data as input.

2) Merge edges, indicating that the two nodes are currently

bound to the same FU or same storage unit.

3) Pseudoedges, used to restructure the graph for application

of the min-cut algorithm. Pseudosource and pseudosink

nodes are introduced into the graph. All input nodes are

connected to the pseudosource node and all output nodes

are connected to the pseudosink node.

After constructing this graph, a min-cut algorithm is exe-

cuted. First, an infinite capacity is assigned to all the pseu-

doedges and data-dependence edges. Merge edges are each

Fig. 3. Incremental changes in high-level synthesis. (a) CDFG. (b) Scheduling
and allocation. (c) Timing violation. (d) Slack computation. (e) Min-cut flow.
(f) After split move.

given capacities of one. If two nodes are connected by both the

data-dependence edge and the merge edge, the merge edge is

eliminated because split moves on nodes sharing dependence

edges do not improve the timing properties. Using a min-cut

algorithm in this manner splits a minimal cardinality subset

of nodes, allowing a reduction in the finish time of the ASAP

schedule. One could consider the impact of area and power con-

sumption within the min-cut–max-flow algorithm by weighting

the edges appropriately. However, this would generally lead to

additional split operations, increasing CPU time.

Although decrementing csteps may increase delay by at

most one clock cycle, there may be some value of csteps
for which even fully parallel bindings do not allow an ASAP

schedule to meet its timing constraints. Therefore, min-cut and

rescheduling may not be carried out for some values of csteps.

GU et al.: UNIFIED INCREMENTAL PHYSICAL-LEVEL AND HIGH-LEVEL SYNTHESIS 7

Fig. 4. Iterative split move for a slack smaller than −1.

After the split move, the operations are rescheduled, and the

slack is recomputed to determine whether timing constraints

are met.

The algorithm described above was used to construct

the graph shown in Fig. 3(d). The dashed lines represent

merge edges. The solid lines represent pseudoedges and data-

dependence edges. Nodes S and T represent pseudosource and

pseudosink nodes, respectively. After slack computation, we

eliminate all the nodes and edges which are not on the critical

path and assign a capacity of one to merge edges and a capacity

of infinity to other edges, as shown in Fig. 3(e). For this

example, it is possible to cut through either edge (+2,+1), or

edges (∗3,∗ 1) and (∗4,∗ 2). Here, we cut through +2 and +1,

which is the minimal cut, thereby assigning +1 to a new FU,

FU4. Edges +3 and +2 remain bound to the original FU, FU3.

As shown in Fig. 3(f), no operation violates timing constraints.

Another case must also be considered. If no valid solutions

exist for the current value of csteps, IFP-HLS will skip further

optimization and decrement csteps. IFP-HLS may reach a valid

value of csteps after repeatedly decrementing csteps. In this

case, the slack values for some operations may be less than −1.

Hence, the value of csteps is decremented, and the split move,

followed by rescheduling, is repeated until a valid solution is

produced. This process is as shown in Fig. 4.

IV. INCREMENTAL FLOORPLANNING

As discussed in previous sections, in order to introduce

incremental combined behavioral and physical optimization

Fig. 5. (a) Horizontal cross and (b) vertical cross.

Fig. 6. Constraint graph without over-specifications and transitive edges can
have quadratic number of edges.

into high-level synthesis, a high-quality incremental floor-

planner is necessary. We have tested this idea by building

an incremental simulated-annealing floorplanner into the IFP-

HLS algorithm. In this section, we describe this incremental

floorplanner.

This floorplanner handles blocks with different aspect ratios

and produces nonslicing floorplans. Unlike the netlist-

partitioning approach used in ISCALP, it was designed primar-

ily for quality, not speed. Although the impact on synthesis time

would prevent the incorporation of a conventional high-quality

floorplanner in the inner loop of a high-level-synthesis system,

using incremental floorplanning enables both high-quality and

low-synthesis time. High-level-synthesis moves typically re-

move a single module or split a module into two. Therefore,

many changes are small, and their effects on the floorplan are

mostly local. We reuse the modified previous floorplan as a

starting point for each new floorplan. The previous floorplan

is optimized. Therefore, reoptimization of the current floorplan

to incorporate local changes is fast. In practice, we have found

that this technique leads to quality-of-results and performance

improvements over constructive floorplanning, even when com-

pared with a very fast constructive floorplanner.

A. Floorplan Representation

The adjacent constraint graph (ACG) floorplan representa-

tion is used within IFP-HLS’s incremental floorplanner [36],

[39], [40]. This representation will be briefly summarized here.

An ACG is a constraint graph satisfying the following three

conditions: first, there is, at most, one relation (either horizontal

or vertical) between any pair of vertices; second, there are no

transitive edges; and third, there are no crosses. A cross is a spe-

cial edge configuration that can result in quadratic number of

edges in the constraint graph. Fig. 5 shows two cases of crosses,

and Fig. 6 shows that a constraint graph with crosses may have

quadratic number of edges even when the first two conditions

are met. It is proved that the number of edges in an ACG is, at

most, O(n1.5), where n is the number of vertices [40].

The operations of removing and inserting vertices in an

existing ACG are designed to reflect high-level binding deci-

sions, i.e., merging and splitting. To obtain the physical position

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2007

of each module, packing that is based on the longest path

computation is employed since the ACG itself is a constraint

graph.

Perturbations on the graph are designed so that the ACG

can be used in an iterative optimization heuristic such as

simulated annealing. They change the graph topology locally

and have straightforward meanings in physical space. Since the

interconnect lengths are determined by the physical positions of

modules, which in turn depend on the graph topology, applying

these perturbations changes the interconnects locally. Other

perturbations include rotating a module and exchanging the two

modules represented by any pair of vertices. The latter changes

the interconnect globally.

B. Incremental Floorplanner

There are four situations in which the incremental floorplan-

ner is called by the IFP-HLS framework. First, a floorplan

should be generated after each ASAP schedule is produced. We

call this an initial floorplanning. Second, a floorplan should be

modified and optimized after each high-level-synthesis move.

We call this per-move floorplanning. Third, for each csteps
value, a floorplan for the best binding should be generated

and compared to the best existing floorplan. We call this per-

cstep floorplanning. Fourth, after determining the best clock

frequency and binding, floorplanning is carried out to provide

the final result. We call this final floorplanning.

Although initial, per-cstep, and final floorplanning are done

with simulated annealing for quality, per-move floorplanning

requires fewer global changes and less hill climbing. Moreover,

perturbations resulting from high temperatures may disrupt

high-quality floorplan structures. Therefore, it is reasonable to

use lower temperatures for per-move floorplanning. In practice,

we have found that using a temperature of zero results in good

quality and performance. In other words, although simulated

annealing is necessary in many cases, per-move floorplanning

is done with a greedy iterative-improvement algorithm.

The details of our approach follow. First, after generating

the first ASAP schedule and binding, we have an initial set

of modules and interconnections. Simulated annealing is used

to obtain an initial floorplan. Since every interconnect net

has exactly one driving module, multipin nets are broken into

two-pin wires with the driving module as the source. The

wire length is calculated as the Manhattan distance between

the two modules connected by the wire. At this point, the

unit-length switched capacitances of data transfers between

two modules are available. We use these as weights for the

wire lengths. The weighted total wire length is related to

power consumption, i.e., optimizing the weighted wire length

minimizes interconnect power consumption. A weighted

sum of the area and the interconnect power consumption is

calculated as the floorplanner’s cost function, i.e.,

A + w
∑

e∈E

CeDe (5)

where A is the area, w is the power-consumption weight, E
is the set of all wires, e is an interconnect wire, Ce is the

unit-length switched capacitance for the data transfer along e,

and De is the length of e. With this approach, we optimize the

floorplan for both the interconnect power consumption and the

area. The resulting floorplan will be improved during the con-

secutive IFP-HLS moves. Therefore, the number of simulated

annealing iterations is bounded to reduce synthesis time.

After each high-level-synthesis move, per-move floorplan-

ning first modifies the previous floorplan by removing or split-

ting a module. The modules and switched capacitances are

updated based upon the impact of these merges and splits.

The floorplan is then reoptimized with a greedy iterative-

improvement algorithm using the same cost function as the

simulated annealing algorithm. The greedy improvements are

divided into consecutive rounds. In every round, we apply the

same number of perturbations to the floorplan. If less than

10% of the perturbations result in reduced costs, reoptimization

stops. Although it would be easy to use a low simulated anneal-

ing temperature to allow some hill climbing during reoptimiza-

tion, this was not necessary in practice. It should be pointed out

that changes to switched capacitances may require a few global

changes in the ACG to obtain power-consumption-optimized

floorplans. Therefore, we still allow the exchange perturbation

to change the floorplan globally but reduce its frequency to

favor local perturbations.

When we find the best binding for a given value of csteps, we

do per-cstep floorplanning and compare the result with the best

floorplan from previous value of csteps. This time, nonzero

temperature simulated annealing is used because it increases

floorplan quality. These normal simulated annealing runs occur

only once per csteps value, allowing their CPU costs to be

amortized.

After determining the best binding across all the possible

values of csteps, a final floorplanning run is carried out for that

binding. This final floorplanning occurs only once per synthesis

run. Therefore, it is acceptable to use a higher quality, but

slower, annealing schedule than those in the inner loop of high-

level synthesis, thereby reducing chip area and interconnect

power consumption.

During the annealing schedule, we use a constant multiplica-

tive cooling factor r, i.e.,

T ′ = r × T (6)

where T is the current temperature, and T ′ is the temperature

for the next iteration. The cooling factors for initial, per-cstep,

and final floorplannings are 0.7, 0.8, and 0.9, respectively. At

one temperature, if less than 10% of the perturbations are

accepted, the annealing process stops. The ratio between the

numbers of the perturbations at one temperature for initial,

per-cstep, and final floorplannings is 1 : 1 : 5. The number of

perturbations per round for per-move floorplanning is the same

as that in the final floorplanning.

The interconnect power-consumption weight w is automati-

cally computed during synthesis for each floorplanning run to

avoid the difficulty of determining a proper value for all the

situations. Before each floorplanning, we calculate the area-

to-power-consumption ratio w0 using the existing floorplan,

GU et al.: UNIFIED INCREMENTAL PHYSICAL-LEVEL AND HIGH-LEVEL SYNTHESIS 9

which is either the previous floorplan for per-move, per-cstep,

and final floorplannings or the starting floorplan for initial

floorplanning. For initial, per-cstep, and final floorplannings,

the weight w is set to 0.5 · w0 to balance the area and the

interconnect power consumption. For per-move floorplanning,

it is more important to quickly provide a prediction of the trend

of interconnect power consumption, so w is set to 2.5 · w0

instead. Note that, in this stage, it is not the area cost but the

prediction of the interconnect power consumption that is the

major consideration. Therefore, the wire-length weight was set

to be a large value compared to the area weight.

V. EXPERIMENTAL RESULTS

In this section, we present the results produced by the IFP-

HLS algorithm described in Sections III and IV when run on

a number of benchmarks. The results generated by ISCALP

and IFP-HLS are compared. As explained in Section III-A,

both approaches optimize area and power consumption. The

experiments were conducted on Linux workstations with dual

933-MHz Pentium III processors and 512 MB of random access

memory.

A. Benchmarks

We evaluated 17 high-level-synthesis benchmarks using a

0.18-µm technology library. Chemical and IIR77 are infinite-

impulse-response (IIR) filters. DCT_IJPEG is the Indepen-

dent JPEG Group’s implementation of digital cosine transform

(DCT) [41]. DCT_Wang is a DCT algorithm named after the

inventor [42]. Both DCT algorithms work on 8 × 8 arrays of

pixels. Elliptic, an elliptic-wave filter, comes from the NCSU

CBL high-level-synthesis benchmark suite [43]. Jacobi is the

Jacobi iterative algorithm for solving a fourth-order linear

system [44]. WDF is a finite-impulse-response-wave digital

filter. The largest benchmark is Jacobi with 24 multiplications,

8 divisions, 8 additions, and 16 subtractions. In addition, we

generate five CDFGs using a pseudorandom graph generator

[45]. Random100 has 20 additions, 15 subtractions, and 19

multiplications. Random200 has 39 additions, 44 subtractions,

and 36 multiplications. Random300 has 59 additions, 58 sub-

tractions, and 72 multiplications.

IFP-HLS had better performance than ISCALP on these

large randomized benchmarks. In order to determine whether

the improved performance of IFP-HLS was the result of ran-

dom graph structure or benchmark size, we generated two

structured benchmarks, Small and Serial. Small is composed

of five operations connected in parallel. Serial is composed

of 45 operations connected in serial. As shown in Table I,

IFP-HLS has better CPU time for the structured large bench-

mark Serial. This is consistent with the results for other large

benchmarks.

The area of each benchmark described in this section was

estimated using presynthesized FUs (e.g., adders, multipliers,

etc.) based on NEC’s 0.18-µm process and the floorplanner

from the high-level-synthesis tool. The logic power consump-

tion of each benchmark was evaluated using power models

from the presynthesized FU-level design library. A full-

system switching-activity simulator was used during power-

consumption computation. Wire power consumption and wire

delay were calculated based on the wire capacitances estimated

using Cong’s and Pan’s technique [46] and the wire-length

information from the floorplanner of the high-level-synthesis

design tools. As described in Section III, both logic and wire de-

lays were calculated to determine whether each design meets its

timing requirements. However, since the wire delay estimation

is only implemented in IFP-HLS, this function was not used

when comparing to ISCALP.

B. Results

The results of running ISCALP and IFP-HLS on nonunity

aspect ratio FUs are shown in Fig. 7. As shown in

Fig. 7(a) and (b), and Table I, IFP-HLS achieves an average

CPU-time speedup of 24.72×, 13.76% improvement in area,

and 50% reduction in the number of merge moves in compari-

son with ISCALP. Low power consumption is maintained.

ISCALP uses a constructive floorplanner that may suffer

performance degradation when used with nonunity-aspect-ratio

FUs. In order to determine whether the improvement in quality

and run time were the result of the specific type of floorplanner

used in ISCALP, we repeated all experiments using only unity-

aspect-ratio FUs. As shown in Fig. 8 and Tables I and III, the

IFP-HLS algorithm achieves an average CPU-time speedup of

2.03×, 11.32% improvement in area, and 54% reduction in the

number of merge moves, while maintaining the same low power

consumption as ISCALP.

As shown in Figs. 7 and 8 and Tables I and III, IFP-HLS

always has better CPU time than ISCALP for both nonunity-

and unity-aspect-ratio cases except for two very small unity-

aspect-ratio benchmarks (PAULIN and MAC). There are two

contributors to CPU time [as shown in (3)]: the number of high-

level-synthesis moves and the resulting-floorplanning opera-

tions. ISCALP employs a fast constructive slicing floorplanner

based on netlist-partitioning and rotation/orientation selection

to obtain a floorplan optimized for wire length and area. It

is faster than our simulated annealing floorplanner for small

benchmarks with only a few blocks largely due to its deter-

minism. The simulated annealing algorithm may revisit the

same valid solutions multiple times before reaching the halt-

ing conditions, while the constructive-slicing floorplanner can

quickly consider all slicing-structure floorplans, given small

enough problem sizes. In contrast, the simulated annealing

floorplanner is relatively faster on large-problem instances,

because it can focus its moves on the most promising regions

of the solution space, while the constructive floorplanner is left

to explicitly consider an exponentially increasing number of

points in the solution space. Please note that both floorplanners

run quickly on small benchmarks. We are primarily concerned

with floorplanner performance on large-problem instances, for

which run-time is a concern. In addition, recall that ISCALP is

an interconnect-aware power-driven high-level-synthesis tool.

These results show that, on average, IFP-HLS achieves better

CPU time and area while maintaining good power consump-

tion. We also analyze the time break down between high-

level-synthesis moves and floorplanning. As shown in Table II,

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2007

Fig. 7. Comparison between ISCALP and IFP-HLS for nonunity-aspect-ratio FUs. (a) CPU time for nonunity-aspect-ratio FUs. (b) Number of moves, area, and
power consumption for nonunity-aspect-ratio FUs.

floorplanning used more than 75.69% of the total CPU time

on average for both ISCALP and IFP-HLS; floorplanning

is the most time-consuming part of the high-level-synthesis

design flow.

In an attempt to isolate the impact of using a constructive

floorplanner from the impact of using incremental optimization,

we compared the results produced by running ISCALP, which

is followed by a high-quality simulated annealing floorplanner

by those produced by IFP-HLS. On average, this results in

a 1.6% increase in area and 2.7% decrease in total power

compared to IFP-HLS for unity-aspect-ratio FUs and a 0.8%

increase in area and 1.3% decrease in total power consumption

for nonunity-aspect-ratio FUs. Note that ISCALP aggressively

optimizes power consumption. These results indicate that the

incremental optimization algorithm within IFP-HLS permits

comparable quality, using much less CPU time, as compared to

GU et al.: UNIFIED INCREMENTAL PHYSICAL-LEVEL AND HIGH-LEVEL SYNTHESIS 11

Fig. 8. Comparison between ISCALP and IFP-HLS for unity-aspect-ratio FUs. (a) CPU time for unity-aspect-ratio FUs. (b) Number of moves, area, and power
consumption for unity-aspect-ratio FUs.

a nonincremental behavioral synthesis algorithm followed by

an iterative improvement floorplanner.

VI. CONCLUSION

This paper presented an IFP-HLS system that integrates

high-level and physical-level design algorithms to concurrently

improve a design’s schedule, resource binding, and floor-

plan. Compared with previous approaches that repeatedly call

loosely coupled floorplanners, this approach has the benefit

of efficiency, stability, and better quality results. As shown in

Section V, for nonunity-aspect ratio FUs, incremental floor-

planning allowed an average CPU time speedup of 24.72× and

an area improvement of 13.76%. For unity-aspect-ratio FUs,

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2007

TABLE III
AREA AND POWER IMPROVEMENTS OF DIFFERENT BENCHMARKS

the CPU-time speedup was 2.03× and area was improved by

11.32%. In both cases, the low power consumption of a state-

of-the-art low-power interconnect-aware high-level-synthesis

algorithm was maintained. We conclude that incremental floor-

planning improved the quality of synthesis results and improves

performance dramatically, making synthesis from larger speci-

fications practical.

ACKNOWLEDGMENT

The authors would like to thank Prof. N. Jha of

Princeton University for the access to ISCALP and to NEC

Labs America for the access to their 0.18-µm technology

library. They would also like to thank Y. Liu of Tsinghua

University, Dr. A. Raghunathan of NEC Labs America, and

Prof. L. Zhong of Rice University for their helpful suggestions.

REFERENCES

[1] R. Camposano and W. Wolf, High Level VLSI Synthesis. Norwell, MA:
Kluwer, 1991.

[2] D. C. Ku and G. D. Micheli, High Level Synthesis of ASICs Under Timing

and Synchronization Constraints. Norwell, MA: Kluwer, 1992.
[3] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis: Introduction

to Chip and System Design. Norwell, MA: Kluwer, 1992.
[4] A. Raghunathan, N. K. Jha, and S. Dey, High-Level Power Analysis and

Optimization. Norwell, MA: Kluwer, 1997.
[5] P. G. Paulin, J. P. Knight, and E. F. Girczyc, “HAL: A multi-paradigm

approach to automatic data path synthesis,” in Proc. Des. Autom. Conf.,
Jun. 1986, pp. 263–270.

[6] R. K. Gupta and G. De Micheli, “Hardware–software cosynthesis for
digital systems,” IEEE Des. Test Comput., vol. 10, no. 3, pp. 29–41,
Sep. 1993.

[7] R. Mehra and J. Rabaey, “Behavioral level power estimation and explo-
ration,” in Proc. Int. Workshop Low Power Des., Apr. 1994, pp. 197–202.

[8] A. Dasgupta and R. Karri, “Simultaneous scheduling and binding for
power minimization during microarchitecture synthesis,” in Proc. Int.

Symp. Low-Power Des., Apr. 1994, pp. 255–270.
[9] L. Goodby, A. Orailoglu, and P. M. Chau, “Microarchitecture synthe-

sis of performance-constrained, low-power VLSI designs,” in Proc. Int.

Comput. Des., Oct. 1994, pp. 323–326.
[10] A. Raghunathan and N. K. Jha, “Behavioral synthesis for low power,” in

Proc. Int. Conf. Comput. Des., Oct. 1994, pp. 318–322.

[11] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and
R. Brodersen, “Optimizing power using transformations,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 14, no. 1, pp. 12–31,
Jan. 1995.

[12] R. S. Martin and J. P. Knight, “Power profiler: Optimizing ASICs
power consumption at the behavioral level,” in Proc. Des. Autom. Conf.,
Jun. 1995, pp. 42–47.

[13] J. M. Chang and M. Pedram, “Register allocation and binding for low
power,” in Proc. Des. Autom. Conf., Jun. 1995, pp. 29–35.

[14] N. Kumar, S. Katkoori, L. Rader, and R. Vemuri, “Profile-driven behav-
ioral synthesis for low-power VLSI systems,” IEEE Des. Test Comput.,
vol. 12, no. 3, pp. 70–84, 1995.

[15] A. Raghunathan and N. K. Jha, “SCALP: An iterative-improvement-based
low-power data path synthesis system,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 16, no. 11, pp. 1260–1277, Nov. 1997.
[16] K. S. Khouri, G. Lakshminarayana, and N. K. Jha, “High-level synthe-

sis of low power control-flow intensive circuits,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 18, no. 12, pp. 1715–1729,
Dec. 1999.

[17] H. P. Peixoto and M. F. Jacome, “A new technique for estimating lower
bounds on latency for high level synthesis,” in Proc. Great Lakes Symp.

VLSI, Mar. 2000, pp. 129–132.
[18] M. C. McFarland and T. J. Kowalski, “Incorporating bottom–up design

into hardware synthesis,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 9, no. 9, pp. 938–950, Sep. 1990.
[19] D. W. Knapp, “Fasolt: A program for feedback-driven data-path optimiza-

tion,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 11,
no. 6, pp. 677–695, Jun. 1992.

[20] J. P. Weng and A. C. Parker, “3D scheduling: High-level synthesis with
floorplanning,” in Proc. Des. Autom. Conf., Jun. 1991, pp. 668–673.

[21] Y. M. Fang and D. F. Wong, “Simultaneous functional-unit binding
and floorplanning,” in Proc. Int. Conf. Comput.-Aided Des., Nov. 1994,
pp. 317–321.

[22] M. Xu and F. J. Kurdahi, “Layout-driven RTL binding techniques for
high-level synthesis using accurate estimators,” ACM Trans. Des. Autom.

Electron. Syst., vol. 2, no. 4, pp. 312–343, Oct. 1997.
[23] W. E. Dougherty and D. E. Thomas, “Unifying behavioral synthesis and

physical design,” in Proc. Des. Autom. Conf., Jun. 2000, pp. 756–761.
[24] P. G. Paulin and J. P. Knight, “Scheduling and binding algorithms for high-

level synthesis,” in Proc. Des. Autom. Conf., Jun. 1989, pp. 1–6.
[25] C. A. Papachristou and H. Konuk, “A linear program driven scheduling

and allocation method followed by an interconnect optimization algo-
rithm,” in Proc. Des. Autom. Conf., Jun. 1990, pp. 77–83.

[26] T. A. Ly, W. L. Elwood, and E. F. Girczyc, “A generalized interconnect
model for data path synthesis,” in Proc. Des. Autom. Conf., Jun. 1990,
pp. 168–173.

[27] S. Tarafdar and M. Leeser, “The DT-model: High-level synthesis using
data transfer,” in Proc. Des. Autom. Conf., Jun. 1998, pp. 114–117.

GU et al.: UNIFIED INCREMENTAL PHYSICAL-LEVEL AND HIGH-LEVEL SYNTHESIS 13

[28] C. Jego, E. Casseau, and E. Martin, “Interconnect cost control dur-
ing high-level synthesis,” in Proc. Int. Conf. Des. Circuits Integr. Syst.,
Nov. 2000, pp. 507–512.

[29] R. Ho, K. Mai, and M. Horowitz, “The future of wires,” Proc. IEEE,
vol. 89, no. 4, pp. 490–504, Apr. 2001.

[30] P. Prabhakaran and P. Banerjee, “Simultaneous scheduling, binding and
floorplanning in high-level synthesis,” in Proc. Int. Conf. VLSI Des.,
Jan. 1998, pp. 428–434.

[31] L. Zhong and N. K. Jha, “Interconnect-aware low power high-level syn-
thesis,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 24,
no. 3, pp. 336–351, Mar. 2005.

[32] A. Stammermann, D. Helms, M. Schulte, A. Schulz, and W. Nebel, “Bind-
ing, allocation and floorplanning in low power high-level synthesis,” in
Proc. Int. Conf. Comput.-Aided Des., Nov. 2003, pp. 544–550.

[33] O. Coudert, J. Cong, S. Malik, and M. Sarrafzadeh, “Incremental CAD,”
in Proc. Int. Conf. Comput.-Aided Des., Nov. 2000, pp. 236–244.

[34] W. Choi and K. Bazargan, “Hierarchical global floorplacement using
simulated annealing and network flow migration,” in Proc. Des. Autom.

Test Eur. Conf., Mar. 2003, pp. 1104–1105.
[35] Z. P. Gu, J. Wang, R. P. Dick, and H. Zhou, “Incremental exploration of

the combined physical and behavioral design space,” in Proc. Des. Autom.

Conf., Jun. 2005, pp. 208–213.
[36] H. Zhou and J. Wang, “ACG-adjacent constraint graph for general floor-

plans,” in Proc. Int. Comput. Des., Oct. 2004, pp. 572–575.
[37] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for

improving network partitions,” in Proc. Des. Autom. Conf., Jun. 1982,
pp. 173–181.

[38] L. Stockmeyer, “Optimal orientations of cells in slicing floorplan de-
signs,” Inf. Control, vol. 57, no. 2/3, pp. 91–101, May 1983.

[39] J. Wang and H. Zhou, “Interconnect estimation without packing via ACG
floorplans,” in Proc. Asia Pac. South Pac. Des. Autom. Conf., Jan. 2005,
pp. 1152–1155.

[40] J. Wang, “Floorplanning by adjacent constraint graph and its applica-
tions,” M.S. thesis, Northwestern Univ., Evanston, IL, Jun. 2005.

[41] Independent JPEG group. [Online]. Available: www.ijp.org
[42] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advan-

tages, Applications. New York: Academic, 1990.
[43] NCSU CBL high-level synthesis benchmark suite. [Online]. Available:

www.cbl.ncsu.edu/benchmarks
[44] S. Y. Kung, VLSI Array Processors. Englewood Cliffs, NJ: Prentice-

Hall, 1988.
[45] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for free,” in

Proc. Int. Workshop Hardware/Software Co-Des., Mar. 1998, pp. 97–101.
[46] J. Cong and Z. Pan, “Interconnect performance estimation models for

design planning,” IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 20, no. 6, pp. 739–752, Jun. 2001.

Zhenyu (Peter) Gu (S’04) received the B.S. and
M.S. degrees from Fudan University, Shanghai,
China, in 2000 and 2003, respectively. He is cur-
rently working toward the Ph.D. degree at the De-
partment of Electrical Engineering and Computer
Science, Northwestern University, Evanston, IL.

His research interests include thermal- and power-
aware design automation of integrated circuits.

Jia Wang received the B.S. degree in electronic en-
gineering from Tsinghua University, Beijing, China,
in 2002, and the M.S. degree in computer engi-
neering from Northwestern University, Evanston, IL,
in 2005. He is currently working toward the Ph.D.
degree at the Department of Electrical Engineering
and Computer Science, Northwestern University.

His research interests include computer-aided de-
sign of very large scale integrated circuits and algo-
rithm design.

Robert P. Dick (S’95–M’02) received the B.S.
degree from Clarkson University, Potsdam, NY,
and the Ph.D. degree from Princeton University,
Princeton, NJ.

He worked as a Visiting Researcher at NEC Labs
America and as a Visiting Professor at the Depart-
ment of Electronic Engineering, Tsinghua Univer-
sity. He is currently an Assistant Professor at the
Department of Electrical Engineering and Computer
Science, Northwestern University, Evanston, IL. He
has published in the areas of embedded system syn-

thesis, embedded operating systems, low-power and temperature-aware inte-
grated circuit design, data compression, reliability, behavioral synthesis, and
mobile ad hoc network protocols.

Dr. Dick was the recipient of the NSF CAREER award and won his
department’s Best Teacher of the Year award in 2004. He is an Associate
Editor of the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION

(VLSI) SYSTEMS and serves on the Technical Program Committees of several
conferences.

Hai Zhou (M’04–SM’04) received the B.S. and
M.S. degrees in computer science and technology
from Tsinghua University, Bejing, China, in 1992
and 1994, respectively, and the Ph.D. degree in
computer sciences from The University of Texas at
Austin, in 1999.

Before he joined the faculty of Northwestern Uni-
versity, Evanston, IL, he was with the Advanced
Technology Group, Synopsys, Inc., Mountain View,
CA. He is currently an Associate Professor of elec-
trical engineering and computer science at North-

western University. His research interests include very large scale integration
computer-aided design, algorithm design, and formal methods.

Dr. Zhou served on the technical program committees of many conferences
on very large-scale integrated circuits and computer-aided design. He was a
recipient of the CAREER Award from the National Science Foundation in 2003.

