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Abstract. In this paper we present a new abstraction technique that enables the

usage of model checking for the verification of parameterized systems. The tech-

nique targets asynchronous systems. Compared to previous approaches the ap-

plication of the proposed technique imposes fewer restrictions on the correctness

property. Moreover, it can be applied to a class of parameterized systems for

which other abstraction methods may not work. We demonstrate the effective-

ness of the abstraction technique by applying it on a self-stabilizing spanning tree

construction algorithm.

1 Introduction

This paper describes a new abstraction technique for enabling the use of automatic

verification tools to check the correctness of parameterized systems.

There are two kinds of methods that are used for the verification of asynchronous

systems: deductive verification and model checking. Deductive verification is an in-

teractive verification method. The user is required to provide properties that facilitate

the proof by the tool. Model checking is an automatic method. However, it is efficient

only when applied to relatively small finite state space systems. Therefore, abstraction

is used to transform infinite or large state space systems to smaller finite state space

systems, thereby enabling the use of model checking for their verification [9]. In this

paper we present an abstraction technique that enables the use of model checking for

the verification of asynchronous parameterized systems.

A parameterized system is built by the parallel composition of
✂
processes, where✂

can be any natural number greater than a minimum value. Model checking can be

used for the verification of instances of a parameterized system with few processes, i.e.,

small
✂
. Ideally we would like to prove the correctness of a parameterized system for

any number of processes. However, the number of those systems is infinite when there

is no upper bound for
✂
. Moreover, even if an upper bound exists, verification may be

intractable for large
✂
because the number of states increases exponentially with the

number of components in the system. There are two ways to overcome this difficulty:

one is to use control abstraction [12, 9], and the other is to use the methods of invisible

ranking [17, 2, 7].

The idea behind control abstraction is to abstract away an arbitrary number of sym-

metric processes by using a network invariant ✄ . Then the correctness property can be
proved for the abstract system, which is composed of a finite number of processes and

the network invariant [9]. A difficulty with this approach is that the network invariant



needs to have the same set of observable variables as the system of symmetric processes

abstracted by it. Therefore, if each of the
✂
processes has one observable variable and

we use a network invariant for these processes, the network invariant needs to have✂
observable variables. This problem has restricted the application of control abstrac-

tion to specific classes of distributed algorithms. Control abstraction has successfully

been applied on ring topologies of processes [11], in which every process has only two

neighbors and, therefore, the number of input/output variables for each process is inde-

pendent of
✂
. It has also been successfully applied on systems for which the number

of shared variables does not increase with the number of processes. An example is a

mutual exclusion algorithm, in which all processes share only one semaphore [9].

An alternative approach is the method of invisible invariants [17]. The method can

be used to bound the number of processes needed to prove a correctness property for a

class of parameterized systems. The approach can be used for the verification of safety

properties [2] and response liveness properties [7]. Response liveness properties are

properties of the form ☎✝✆✟✞✡✠☞☛✍✌✏✎ , i.e., for every state satisfying assertion ✞ there is
a future state satisfying assertion ✌ . The paper does not discuss how other liveness
properties can be checked using this method. Moreover, the method imposes a number

of restrictions on the structure of the next state relation and the initial condition of the

system. The method can be automated, so the user does not have to observe the invariant

being used. In our work we target general liveness properties. More specifically, the

correctness property we prove for the spanning tree algorithm is a persistence property

( ☛✑☎✒✞ ). This type of property can be used to describe the correctness of self-stabilizing
systems.

In this paper we present an abstraction technique that builds on the theory of con-

trol abstraction. We target structures of processes, for which the number of observable

variables is a parameter. These structures are very common. One example is proving

a property for a process that is connected in a graph of arbitrary topology. Then the

number of neighbors with which the process interacts is a parameter. For this type of

structure we provide an abstraction that reduces the number of observable variables to

a small finite number. Then model checking is used to check the correctness property

on the abstract system. If the property holds for the abstract system, then it holds for

the parameterized system for any valid value of the parameter. The proposed technique

can be used for checking general temporal properties. Moreover, it can be applied to a

class of parameterized systems for which other methods may not work.

Themethod is sufficient to prove that the correctness property is valid for the param-

eterized system. However, like control abstraction and invisible ranking, the proposed

method is incomplete. If a behavior of the abstract system does not satisfy the correct-

ness property, no conclusion can be drawn for the parameterized system. Additionally,

a number of restrictions must hold for the parameterized system to guarantee the sound-

ness of our approach. Most of these restrictions concern the atomicity of the actions of

the parameterized systems.

In Section 2 we survey related work in this field and indicate our contributions.

Section 3 describes the systems we consider. Section 4 gives an overview of the pro-

posed technique. We demonstrate the application of the technique to a Spanning-Tree



construction algorithm in Section 5. The soundness of the technique is proved in the

appendix.

2 Related work

Instead of control abstraction, the method of invisible invariants can be used for the

verification of parameterized systems [17]. Arons et al. [2] present the method for the

verification of safety properties. Later the work was extended to include verification of

response liveness properties [7]. The authors describe a method to bound the number

of processes needed to prove a correctness property for a parameterized system. How-

ever, their method is applicable to a restricted class of distributed algorithms. One of

the restrictions is that a variable ✓ taking values in 1 ✔✕✔ ✂ , can appear in two kinds of
expressions: “ ✓ ” and “ ✖✏✌✗✌✘✖✚✙✜✛✢✓✤✣ ”. These expressions can only appear in a formula that
compares expressions of the same type. This means that the only operators that can be

applied to ✓ are indexing ✛✥✣ and relational operators ✦★✧✪✩✦★✧✘✫✬✧✮✭✬✧✘✯✬✧✮✰ . When operators✱✬✲
1 and ✳ ✲

1 are included, the size of the abstract system increases significantly. Only

response liveness property are discussed in that work. Our approach can be applied to

other temporal properties, for example persistence.

Other works on the abstraction of parameterized systems can only be applied to

high-atomicity distributed algorithms [5, 18, 4, 6], in which a process can read the values

of all its
✂
neighbors in one atomic step. Since this assumption may not be realistic for

large
✂
, in our work we target low atomicity distributed algorithms.

Kurshan and McMillan presented a structural induction theorem for processes [12]

defining sufficient properties for the network invariants. The method was applied on

two examples; in the first the processes formed a complete graph and in the second

a ring. However, for the case of the complete graph the authors consider the observ-

able behavior as the sequence of actions taken. More specifically, in that example it is

the sequence of messages sent between the system and its environment. Therefore, the

problem we deal with in this paper was not discussed.

Kesten and Pnueli define a sound data abstraction method [10]. Their method is

useful for reducing the range of the data variables of the system. The user needs to

invent the abstraction function and in some case the progress monitor for a specific

system. Their method can be used as a preprocessing step to replace variables ranging

over parameterized or infinite domains to abstract variables, which range over finite

sets. Then our technique provides the user with an abstraction function to reduce the

number of variables in the system.

Other works discuss only safety properties for the verification of parameterized sys-

tems [8].

The abstraction technique presented in this paper is similar to temporal case split-

ting [15, 16] in that it reduces a vector of unbounded size to a vector with a fixed small

number of elements. With temporal case splitting the proof is decomposed to a large

number of proof subgoals, which become a fixed number of problems using symme-

try properties. Our technique includes the abstraction of the fairness conditions of the

concrete system, especially on actions accessing or modifying the elements of the ab-

stracted vector. Moreover, we define fairness conditions for the abstract system based



on the existence of constant values stored in the vector. As we will show, these fairness

conditions are necessary, e.g., to prove the correctness of a spanning tree algorithm.

Additionally, constant values of the index type do not increase the size of the abstract

system in our approach.

3 Systems we consider - Notation

In this section we describe the types of systems we consider.

We deal with the verification of closed parameterized systems. A closed parameter-

ized system can be defined as

T ✆ ✂ ✎✴✦✵✆✷✶✝✆ 1 ✎✹✸✹✶✝✆ 2 ✎✺✸✚✔✕✔✻✔✼✸✽✶✝✆ ✂ ✎✘✎✿✾
In the above formula ✶✝✆ 1 ✎✪✧✷✶✝✆ 2 ✎✗✧✘✔✕✔✻✔✻✧✷✶✝✆ ✂ ✎ are identical processes up to renaming. The
operator ✸ denotes parallel asynchronous composition and ✆✥✎ ✾ restriction. Both opera-
tors are defined in the literature [9]. In the above definition of the parameterized system

it is assumed that each process ✶✝✆✮❀✷✎ , for ❀❂❁ 1 ✔✕✔ ✂ , is independent of the number ✂ of
processes in the system. For example, the

✂
processes may be used to specify a mutual

exclusion algorithm with only one shared variable for the whole system [9]. However,

there are cases in which the number of observable variables of each process depends on✂
. In those cases, the definition of the system can be written as

Q ✆ ✂ ✎✴✦✵✆❃✶❄✆ 1 ✧ ✂ ✎❅✸✹✶✝✆ 2 ✧ ✂ ✎✺✸✏✔✻✔✻✔✼✸✽✶❆✆ ✂ ✧ ✂ ✎❇✎❅✾ (1)

While ✶✝✆❇❀❈✧ ✂ ✎ and ✶✝✆❊❉❋✧ ✂ ✎ with ❀●✩✦❍❉ differ only in their id values, ✶✝✆❇❀❈✧ ✂ ✎ and✶✝✆❇❀❈✧❇■✵✎ with ✂ ✩✦❏■ have a different number of observable variables.
We are interested in proving the correctness of a parameterized systems described

by (1).

In this paper we follow a similar notation that is used by Abadi and Lamport [1] for

describing systems. Each system, which can be composed of one or more processes, is

represented by its specification ❑▲✦◆▼ Σ ✧✷❖★✧ N ✧✷P❘◗ . Σ is the state space of the specifica-
tion, ❖❚❙ Σ is the set of initial states, N ❙ Σ ❯ Σ is the next state relation, and P is the
supplementary property defined over Σ. The state machine ▼ Σ ✧❃❖★✧ N ◗ defines the ma-
chine property of ❑ . For all systems we consider, ❑ is machine closed and P specifies
a liveness property. The definition of machine closure can be found in the literature [1,

13].

The next state relation is defined using a set of atomic actions ❱ . Each action α has a
precondition (or enable condition) prec ✆ α ✎ , which is a state function, and an effect part
eff ✆ α ✎ , which describes the values of the variables in the next state ❲❨❳ , as a function of
the current state ❲ . Therefore, α can be described as the conjunction of its precondition
and its effect1

1 Actions also contain conjucts of the form ❩❭❬❫❪◆❩ for each variable ❩ that must re-

main unchanged. Therefore, the effect of an action may be considered as the conjunct of

ε ❴ α ❵✚❛ unch ❴ α ❵ . In the last formula ε ❴ α ❵ is a boolean combination of predicates of the form❩✬❬✽❪❆❜❝❴✥❞✿❵ , and unch ❴ α ❵ is the conjunction of predicates of the form ❩❭❬❨❪❡❩ . We say that an
action “reads” a variable ❢ , when ❢ appears in a predicate ❩❭❬✪❪❣❜❅❴✥❞✿❵ in ε ❴ α ❵ . An action “mod-
ifies” or “writes” a variable ❩ , when there is a predicate ❩ ❬ ❪❡❜❅❴✥❞✿❵ in ε ❴ α ❵ and ❜❝❴✥❞✿❵✐❤❪❥❩ .
This classification is based on the syntax and can be performed by static analysis.



α
∆✦❧❦ prec ✆ α ✎❦ eff ✆ α ✎
A state pair ▼❃❲♠✧❇❲✹❳✕◗✐❁ N , if and only if there exists α ❁❣❱ , such that prec ✆ α ✎ is true

for ❲ and the pair of states ▼❇❲♥✧❇❲✽❳✕◗ satisfies eff ✆ α ✎ . Then the triple ✆❃❲♥✧ α ✧✮❲✹❳✻✎ is called a
transition of the system. We assume there is a stuttering step τ ❁▲❱ and for all states❲♦❁ Σ, ▼❇❲♥✧❇❲✽◗ belongs to N .
The liveness property P is a restriction imposed on the infinite behaviors of the

system. It can include the conjunction of strong and weak fairness properties specified

on some of the actions. We useW and S to represent the sets of actions with weak and
strong fairness properties respectively. The sets W and S are disjoint and subsets of❱ . Then P♣✠rq α s W t❝✉ ✆ α ✎✤❦✈q α s S ❲ ✉ ✆ α ✎ . The weak and strong fairness properties are
defined as t❝✉ ✆ α ✎ ∆✦❚✆✥☎●☛✐✇ prec ✆ α ✎✘✎✑①②✆✥☎●☛✝✆✮▼ eff ✆ α ✎✮◗✮✎❈✎❲ ✉ ✆ α ✎ ∆✦❚✆✥☛✑☎●✇ prec ✆ α ✎✘✎✑①❍✆✥☎●☛✝✆✘▼ eff ✆ α ✎✘◗✮✎❈✎
The expression ▼ eff ✆ α ✎✮◗ evaluates to true when action α is executed and the system’s

state changes. Therefore, for a pair of states ▼❃❲♥✧✮❲✽❳✕◗▼❇❲♥✧❇❲ ❳ ◗✐③ ✦❚▼ eff ✆ α ✎✘◗⑤④⑥▼❇❲♥✧❇❲ ❳ ◗✑③ ✦ eff ✆ α ✎✤❦⑤❲ ❳ ✩✦❏❲
For a more detailed description of weak ( t❝✉ ) and strong ( ❲ ✉ ) fairness properties, the
reader should refer to the literature [13].

Moreover, P can include justice and compassion requirements on sets of states. Jus-
tice requirements have the form ☎●☛❘✞ and compassion requirements can be represented
as ☎●☛⑧⑦⑨✠⑩☎●☛✍✌ , where ✞ , ⑦ , and ✌ are atomic predicates which specify sets of states [9].
In this paper we assume that ✞❶✧❈⑦❷✧✘✌ are not specified on the shared variables of the sys-
tem, which are going to be abstracted, i.e., the variables in SV ❸ (see Section 4 for the
definition of this set).

A sequence σ of states, with σ ❁ Σω, is a behavior of ❑ if σ satisfies the specification❑ . More specifically, it must hold that ✆ σ ✧ 0 ✎❂❁❹❖ , ❺❂❀✴✯ 0 : ▼✘✆ σ ✧✮❀❃✎✗✧❈✆ σ ✧✘❀❅❻ 1 ✎✮◗❼❁ N , and
σ ③ ✦②P , where ✆ σ ✧✘❀✷✎ is the ❀ th state in sequence σ.
We use this operator ③ ✦ to denote that an assertion is valid for a state or a set of states.

We extend its usage to temporal properties and sequences or sets of sequences. When

a specification is used at the LHS and a temporal formula at the RHS, the temporal

formula is valid for all behaviors of the specification.

For a state ❲✍✦❽✆✘❾♠✧✮❀❃✎✑❁♣❿✵❯⑤❖ , where ❾➀❁❣❿ and ❀❼❁♣❖ , we call ❾ the ❿ -part of the
state or ❾ -part of the state. The ❾ -part of the state includes only the variables in ❾ and
their values.

The operator Π denotes projection. For a state ❲⑧✦➁✆✘❾♠✧✮❀❃✎ , it holds Π ➂✏✆❇❲✽✎❂✦➃❾ and
Π ➄ ➂✷➅ ✆❇❲✽✎⑨✦➃❀ . That means Π ➂✏✆❃❲❨✎ is the projection of ❲ on the ❾ -part of the state and
Π ➄ ➂✷➅ ✆❇❲✽✎ is the projection of ❲ on the part of the state that is not included in ❾ . We use
the projection operator on sets of states as well.

Another operator that is commonly used is the property operator P . Operator P is
defined on a temporal property χ, which could be a system specification, and denotes
all behaviors that satisfy χ.



Some variables of the system are local to a specific process, while others are observ-

able to all processes. We call the observable variables “shared variables”. We consider

vectors of shared variables of the form

sv1 ❁❥✛ 1 ✔✕✔ ✂ ✠ FS1 ✣
sv2 ❁❥✛ 1 ✔✕✔ ✂ ✠ FS2 ✣✔✕✔✻✔
sv ➆★❁❥✛ 1 ✔✕✔ ✂ ✠ FS ➆❨✣

where FS ➇ is a finite set for all ❀ in 1 ✔✻✔✢➈ . For simplicity, we restrict our discussions to
systems with only one parameter

✂
and only one vector of shared variables sv. Then

the system state space can be represented as Σ ✦ Σ ➉✹➊✥➋➌❯❆✛ 1 ✔✻✔ ✂ ✠ FS ✣ , where Σ ➉✹➊✥➋ is
the state space without the sv vector. In the rest of the paper we refer to each sv ✛ ❉✚✣ with❉❭❁ 1 ✔✻✔ ✂ as a shared variable.
Besides vectors of shared variables, the system can have a finite set of variables that

are observable to all processes. The cardinality of the set must be independent of
✂
. We

consider these variables as part of Σ ➉✽➊➍➋ and we restrict the usage of the term “shared
variable” only for an element of the vector sv.

If the effect of one action α can be obtained from the effect of another action β
by replacing any appearance of one shared variable sv ✛ ➈✤✣ with another shared variable
sv ✛ ❉✚✣ , then eff ✆ α ✎ and eff ✆ β ✎ are called syntactically equivalent. For example, in Figure
1 only eff ✆ α ✎ and eff ✆ β ✎ are syntactically equivalent.

α
∆➎➌➏ prec ➐ α ➑➏ r ➒ ➎ sv ➓ j ➔✷→ 1 β

∆➎➌➏ prec ➐ β ➑➏ r ➒ ➎ sv ➓ k ➔✥→ 1 γ
∆➎●➏ prec ➐ γ ➑➏ p ➒ ➎ sv ➓ j ➔✥→ 1 δ

∆➎●➏ prec ➐ δ ➑➏ r ➒ ➎ sv ➓ j ➔✷→ 2
Fig. 1. Only the two leftmost actions have syntactically equivalent effects.

We now present our assumptions for the systems we consider. Then we elaborate

on the reasons for making these assumptions and their implications.

Λ1. Although actions can read and modify a number of Σ ➉✽➊✥➋ variables, they can either
read or write at most one shared variable in each atomic step.

Λ2. Each shared variable is a single-writer multi-reader variable. More specifically,❺✤❉✬❁ 1 ✔✕✔ ✂ : sv ✛ ❉✚✣ can be written only by process ❉
Λ3. The preconditions of the actions do not depend on the values of the shared variables.

Therefore, reading or writing a shared variable can only be done by the effect part

of an action.

Λ4. (a) There exist no action that reads only variables in Σ ➉✽➊✥➋ and has the same effect
at some state as an action that reads a shared variable. More specifically, if α

is an action that reads a shared variable and α ❁ W ➣ S , then for any action β

that does not read a shared variable❺✐▼❃❲♥✧✮❲ ❳ ◗❶❁ N : ▼❃❲♥✧✮❲ ❳ ◗✍✩③ ✦❚✆✚▼ eff ✆ α ✎✮◗❂❦❥▼ eff ✆ β ✎✘◗✚✎



(b) There exist no action that modifies only variables in Σ ➉✽➊➍➋ and has the same
effect at some state as an action that writes a shared variable. More specifically,

if α is an action that writes a shared variable and α ❁ W ➣ S , then for any action
β that does not write a shared variable❺✐▼❃❲♥✧✮❲ ❳ ◗❶❁ N : ▼❃❲♥✧✮❲ ❳ ◗✍✩③ ✦❚✆✚▼ eff ✆ α ✎✮◗❂❦❥▼ eff ✆ β ✎✘◗✚✎

(c) Two actions that are not syntactically equivalent and access different shared

variables cannot have the same effect at some state ❲ , unless the shared vari-
ables accessed have the same value at ❲ . More formally, if α and β are two ac-
tions of the system with eff ✆ α ✎↔✦❥✓✴✆❈❾♠✧❈❾✽❳✥✧ sv ✛ ❉♥✣✟✎ and eff ✆ β ✎↔✦➙↕↔✆✘❾♠✧❈❾✹❳✥✧ sv ✛✢➈❷✣➛✎ ,then❺❶▼❃❲♠✧❇❲ ❳ ◗❶❁ N : ▼❃❲♥✧✮❲ ❳ ◗✍✩③ ✦❚✆✮▼ eff ✆ α ✎✘◗❷❦♣▼ eff ✆ β ✎✮◗✤❦ sv ✛ ❉✚✣❼✩✦ sv ✛ ➈✤✣✟✎

We believe that the above constraints are common among many applications. Only

Λ1 and Λ2 restrictions are needed when safety properties are checked. When liveness

conditions are checked, Λ3 and Λ4 restrictions must also hold. The restriction Λ3 has
been used in other works ([14],Chapter 9). Our intuition behind this restriction is that

reading a non-local variable should be an atomic action. The decision of a process

to execute an action should be based on local variables only. Note that process ❉ can
maintain a local copy of sv ✛ ❉✚✣ and because of restrictionΛ2 the copy can be always equal

to the value of the shared variable. The intuition behind Λ4 is that we cannot satisfy the
liveness requirements of an action by simulating it with a completely different action.

However, syntactically equivalent actions are not restricted by Λ4. Most systems with

a program counter for each process satisfy the Λ4 restriction. More specifically, if each
instruction has a different successor, the effect of each action of one process is distinct.

Since the program counter is a local variable of each process, the effect of each action

cannot be simulated by an action of a different process.

The restrictions Λ1-Λ4 do not need to hold for the fixed set of global variables in

Σ ➉✽➊✥➋ . Therefore, we can have a fixed finite set of multi-writer variables.
For the systems amenable to our technique the correctness property ϕ that we are

going to check is independent of the number of processes in the system. More specif-

ically, ϕ is expressed as a function of the local and shared variables of a finite set of
processes ➜ . The set ➜ is the same for all values ✂ ✯ ✂❡➝ ➇➞➉ . For simplicity in this
paper we assume that ③ ➜➟③✜✦ 1. This means that the correctness property is specified on✶✝✆ 1 ✧ ✂ ✎ . Under symmetry conditions the property will hold ❺ ✂

: ✶✝✆ ✂ ✧ ✂ ✎ , if it holds
for ✶✝✆ 1 ✧ ✂ ✎ . Note that ϕ can be any LTL property that can be expressed using operators☎ and ☛ .
As noted before we are concerned with the verification of a closed parameterized

system. In such a system there is no interaction with the environment. The property

that we want to prove is described as a function of some variables of the system. These

variables represent the external part of the state. While all other variables belong to

the internal part of the state. The distinction of external and internal part of the state is

described in the literature [1].

In this section we presented the assumptions for the systems we consider and the

notation we use. In the next section we describe the proposed technique for the verifi-

cation of these systems.



4 The proposed technique

In this section we describe the proposed technique for the abstraction of parameterized

systems of the form of (1). We start by describing a verification framework in which

this technique is useful (Section 4.1). Then we present in detail the abstraction of the

technique (Section 4.2). For simplicity, in this section we assume that ③ ➜➟③✜✦ 1 and that
there is only one parameter

✂
and one shared variable sv with

✂
elements. Because③ ➜♣③❋✦ 1, the number of shared variables in the abstract system is 2 ( ✦❽③ ➜➟③❇❻ 1).

4.1 Overview of the approach

We wish to verify that property ϕ is valid for the closed parameterized system

Q ✆ ✂ ✎✴✦❚✆✥✶❄✆ 1 ✧ ✂ ✎❅✸✽✶✝✆ 2 ✧ ✂ ✎✺✸✚✔✕✔✻✔✟✸✹✶❆✆ ✂ ✧ ✂ ✎❇✎✤✾
for all finite

✂ ✯ ✂❄➝ ➇➞➉ , where ✂❄➝ ➇➞➉ is the minimum number of processes in the
system.

We assume that the system Q ✆ ✂ ✎ and property ϕ satisfy all the assumptions de-
scribed in Section 3. The property may be verified as follows:

1. The user provides a network invariant ✄↔✆ ✂ ✎ [9], such that for any ✂✶✝✆ 2 ✧ ✂ ✎✹✸✏✔✻✔✕✔✟✸✹✶✝✆ ✂ ✧ ✂ ✎✴➠❍➡❹✄↔✆ ✂ ✎
and the number of local variables of ✄↔✆ ✂ ✎ is finite and independent of ✂ .

2. Following the steps of our technique as described in Section 4.2, the user obtains

the system ❑↔➢ .
3. Model checking is used to automatically prove ❑ ➢ ③ ✦ ϕ.

Then the user concludes that Q ✆ ✂ ✎✑③ ✦ ϕ holds for all
✂ ✯ ✂ ➝ ➇❊➉ .

In order for the third step to be successful, ✄↔✆ ✂ ✎ and ✶✝✆ 1 ✧ ✂ ✎ should be finite-state
processes for any

✂
. Note that for the modular abstraction relation of step 1 to be valid,✄↔✆ ✂ ✎ must have ✂
observable variables.

In this paper we are dealing with the second step, which is described in the next

section.

4.2 Obtaining the abstract system

In this section we describe the technique to derive ❑✒➢ from ❑✍➤✑✦➥✆✥✄↔✆ ✂ ✎✹✸✹✶✝✆ 1 ✧ ✂ ✎✘✎ ✾ .
We denote the abstract system as ❑⑧➢✒✦❽▼ Σ ➢❷✧✷❖✝➢✤✧ N ➢✤✧❃P✐➢✏◗ and explain how each of the
components of the ❑ ➢ can be obtained from the corresponding components of ❑ ➤ ✦▼ Σ ✧✷❖★✧ N ✧✷P❘◗ .
State space: The only change in the state space is that the shared variables sv ❁➟✛ 1 ✔✻✔ ✂ ✠
FS ✣ become sv ➢ ❁▲✛ 1 ✔✕✔ 2 ✠ FS ✣ . Let Σ be expressed as Σ ✦ Σ ➉ sv ❯✡✛ 1 ✔✕✔ ✂ ✠ FS ✣ , where
Σ ➉ sv is the state space of all variables except sv. Then we can formally define Σ ➢ as
Σ ➢ ✦ Σ ➉ sv ❯➦✛ 1 ✔✕✔ 2 ✠ FS ✣ . We denote sv ➢ the variable in ✛ 1 ✔✻✔ 2 ✠ FS ✣ .



Next state relation: The next state relationN ➢ of ❑ ➢ is defined by a new set of actions
Ã. We derive Ã from some newly defined actions and the ❑ ➤ actions. Each action of ❑ ➤
is either an action of ✄↔✆ ✂ ✎ or of ✶✝✆ 1 ✧ ✂ ✎ . The actions of process ✄↔✆ ✂ ✎ cannot modify
sv ✛ 1 ✣ because of the single-writer restriction (Λ2). They can modify any of the ✂➨➧

1

elements sv ✛ ❉✚✣ with ❉✈❁ 2 ✔✕✔ ✂ . Let SV ❸ be the set of these elements, i.e.
SV ❸ ∆✦➫➩ sv ✛ ❉♥✣❃③ ❉✈❁ 2 ✔✻✔ ✂❡➭

On the other hand, the actions of process ✶✝✆ 1 ✧ ✂ ✎ can access any of the elements of sv,
but can only modify sv ✛ 1 ✣ .
The following steps describe how we obtain Ã, which initially is an empty set.

T0 For each value ➯ in FS, we define and add to Ã an action α ➋ of the form
αv

∆✦❍❦ sv ❳a ✦✵✛ sva EXCEPT ! ✛ 2 ✣❷✦ v ✣❦ UNCHANGED ▼ all other variables ◗
The precondition of α ➋ is TRUE in all states and its effect is to change sv ➢❅✛ 2 ✣ to a
new value in FS. All other variables remain unchanged.

T1 For any action α ❁❆❱ that does not access or write any of the variables in SV ❸ ,
α ❁ Ã2.

T2 For any action α ❁➲❱ that reads variable sv ✛ ❉✚✣ , with sv ✛ ❉✚✣❂❁ SV ❸ , we replace all
references to sv ✛ ❉✚✣ by sv ➢ ✛ 2 ✣ to obtain α̃. Then we add α̃ to the set of actions Ã, i.e.
α̃ ❁ Ã.

T3 For any action α ❁♣❱ that writes to variable sv ✛ ❉✚✣ , with sv ✛ ❉✚✣✜❁ SV ❸ , we replace all
references to sv ✛ ❉✚✣ by sv ➢ ✛ 2 ✣ to obtain α̃. Then we add α̃ to Ã, i.e. α̃ ❁ Ã.

T4 For any action α ❁⑤❱ that reads an element sv ✛ ↕↔✆❈❾✽✎❃✣ with ↕↔✆✘❾❨✎❼❁ 1 ✔✕✔ ✂ and ❾✍❁ Σ ➉✽➊➍➋ ,
let eff ✆ α ✎❘✦②✓❘✆✘❾♠✧❈❾✹❳✥✧ sv ✛ ↕↔✆❃❲✽✎❃✣✟✎ . We define action α̃ as follows

α̃
∆✦❍①▲❦ prec ✆ α ✎❦ g ✆ e ✎✴✦ 1❦ h ✆ e ✧ e ❳ ✧ sva ✛ 1 ✣➛✎①▲❦ prec ✆ α ✎❦ g ✆ e ✎➳✩✦ 1❦ h ✆ e ✧ e ❳ ✧ sva ✛ 2 ✣➛✎

Action α̃ is composed of two disjuncts, one for each possible value of ↕↔✆✘❾❨✎ . The
first disjunct is the conjunction of prec ✆ α ✎ , ↕↔✆✘❾❨✎✐✦ 1, and the effect expression of
action α with every reference of sv ✛ 1 ✣ replaced by sv ➢ ✛ 1 ✣ . The second disjunct is the
conjunction of prec ✆ α ✎ , ↕↔✆❈❾✽✎⑧✩✦ 1, and the effect expression of action α with every
reference to sv ✛ 1 ✣ replaced by sv ➢❅✛ 2 ✣ . The new action α̃ is added to Ã, i.e. α̃ ❁ Ã.
Note that there are no actions in ❱ that read more than one element of sv or read

and modify elements of sv because of restriction Λ1. Furthermore, if an action writes
to a variable sv ✛ ↕↔✆❃❲✽✎❃✣ , we can determine whether it is an action handled by rule T1 or
T3 based on the process performing the action because of restriction Λ2. Consequently,

any action in ❱ is handled by one of the ➵ 1 ➧ ➵ 4 cases.
2 For simplicity for this and the following types of actions we do not describe the changes in the

unch ❴ α ❵ part. From now on we will use eff ❴ α ❵ to describe the ε ❴ α ❵ part of the action.



Initial states: The initial states ❖ ➢ can be obtained by the projection of ❖ on Σ ➉✽➊➍➋ and
the set of initial values for the variables sv. In ❑ ➢ the element sv ➢ ✛ 1 ✣ has the same set of
initial values as sv ✛ 1 ✣ in the original system. For sv ➢ ✛ 2 ✣ the set of initial values is the set
of all possible initial values in the original system for the elements in SV ❸ .
Liveness conditions: Based on the rule used to define an action α̃ its weak or strong

fairness properties will be specified. For any α̃ constructed based on rule ➵ 1 from ❑ -
action α, the action inherits the weak or strong fairness properties, if any, of α. The

same happens for any α̃ produced from α by rules ➵ 2 ➧ ➵ 4. However, in this case α̃

can be considered as being constructed from a set of actions ❱ ➊♦➸ ❱ . For any such α̃
the fairness property added to P ➢ will be the weakest property specified for any action
in ❱ ➊ . More formally, if α̃ can be constructed by any α ❁❆❱ ➊ using one of the rules➵ 1 ➧ ➵ 4, then ❱ ➊❋➺ W

➤ ➺ S
➤ ✩✦ /0 ➻ α̃ ❁❧➼ W̃

➤ ➺ S̃
➤✿➽✆✥❱ ➊✜➺ W

➤ ➺ S
➤ ✦ /0 ✎❷❦➟✆✷❱ ➊❫➺ W ✩✦ /0 ✎ ➻ α̃ ❁ W̃✆✷❱ ➊✜➺ W

➤ ➺ S
➤ ✦ /0 ✎❷❦➟✆✥❱ ➊❋➺ W ✦ /0 ✎❷❦➟✆✥❱ ➊❋➺ S ✩✦ /0 ✎✑➻ α̃ ❁ S̃

In the relations aboveW
➤
and S

➤
are the complements ofW and S , respectively.

Besides the strong and weak fairness conditions on actions, we specify some live-

ness conditions related to constants. More specifically, suppose for any
✂ ✯ ✂❥➝ ➇❊➉

and for all behaviors of Q ✆ ✂ ✎ , there exists ➈♣❁ 2 ✔✻✔ ✂ and ➯❝➆❭❁ FS, such that it holds☎✝✆ sv ✛ ➈✤✣❫✦◆➯ ➆ ✎ . If there exists an action α ❁ W , accessing sv ✛ ➈✤✣ , then we define con-
dition ➾♥✆❈❾♠✧❈❾✹❳➚✧✘➯ ➆ ✎ obtained from ▼ eff ✆ α ✎✮◗ by replacing each occurrence of sv ✛ ➈✤✣ by the
value ➯ ➆ . We define constraint➾ ✉ ✆ α ✎ ∆✦➪☎●☛✐✇ prec ✆ α ✎❶①➲☎●☛⑧➾♠✆✘❾♠✧✿❾ ❳ ✧✮➯❅➆✚✎
For an action α ❁ S accessing sv ✛ ➈✤✣ , the corresponding constraint will be➾ ✉ ✆ α ✎ ∆✦➶☛✑☎●✇ prec ✆ α ✎❶①➲☎●☛⑧➾♠✆✘❾♠✧✿❾ ❳ ✧✮➯❅➆✚✎
We denote as C the set of the actions that read shared variables, which for all

✂ ✯ ✂ ➝ ➇❊➉
and for all behaviors of Q ✆ ✂ ✎ have a constant value. Note that the ➈ does not need to
be the same specific index for all behaviors, if the fairness properties are specified on a

set of syntactically equivalent actions that are defined for all ❀❼❁ 2 ✔✕✔ ✂ .
Finally, for any justice or compassion conditions P ➂ expressed on variables only on

Σ ➉✽➊✥➋ and sv ✛ 1 ✣ , we require that the abstract system satisfies the conditions P ➂ , as well.
Then P ➢ can be expressed asP ➢ ✦❍➹

α̃ s W̃ t❝✉ ✆ α̃ ✎✐❦❡➹
α̃ s S̃ ❲ ✉ ✆ α̃ ✎✐❦❄➹ α s C ➾ ✉ ✆ α ✎✑❦❥P ➂

The example below is a demonstration of rule T2. The new action is created from✂➘➧
1 actions of the abstract system. If there exists a constant value in the concrete

system for some ➈⑤❁ 2 ✔✕✔ ✂ and ❺❷❉★❁ 2 ✔✻✔ ✂ : Action ✆➞❉❷✎➳❁ W ➣ S , then the new abstract
action is included in C .



module a

concrete version

...

Action ✆ j ✎ ∆✦❧❦ var1 ✭ var2❦➲① u1 ❻ 1 ✭ u2① u2 ✩✦ var2❦➲① var2 ❳✏✦ sv ✛ j ✣✽❻ 1① var2 ❳✏✦ sv ✛ j ✣❦ UNCHANGED ▼ other variables ◗
...

Next
∆✦❍①▲➴ j ❁ 2 ✔✻✔N : Action ✆ j ✎①➙✔✻✔✕✔

...

module b

abstract version

...

Action
∆✦❍❦ var1 ✭ var2❦▲① u1 ❻ 1 ✭ u2① u2 ✩✦ var2❦▲① var2 ❳✚✦ sva ✛ 2 ✣✽❻ 1① var2 ❳✚✦ sva ✛ 2 ✣❦ UNCHANGED ▼ other variables ◗

...

Next
∆✦❍① Action①➙✔✻✔✕✔

...

The following theorem states that the abstraction technique is safe.

Theorem 1. If ❑ ➢ ③ ✦ ϕ, then ❺ ✂ ✯ ✂➲➝ ➇❊➉ : Q ✆ ✂ ✎✑③ ✦ ϕ.

In the appendix we give the complete proof for the soundness of the technique. In

the next section we demonstrate the usefulness of the proposed technique by applying

it on a spanning-tree construction algorithm.

5 Spanning-Tree example

In this section we describe the application of the proposed technique on a variant of

Arora and Gouda’s Spanning-Tree (ST) construction algorithm [3]. In the appendix

(Algorithm 1-3) the TLA+ descriptions of different versions of the ST algorithm are

displayed. The algorithm is explained in Section 5.1. In Section 5.2 we present a version

of the ST-algorithm after the application of data abstraction. In Section 5.3 we present

some theoretical preliminaries. We report the results of the application of our technique

in Section 5.4.



5.1 ST algorithm

In this algorithm each process executes the program displayed in appendix (Algorithm

1). The node with the greatest id, EQk, becomes the root of the tree. Eventually, every

other node ❀ stores in its Root ✛✕❀➚✣ the id of the root. Moreover, eventually D ✛✕❀➚✣ holds ❀ ’s
distance from the root and F ✛❊❀➍✣ its parent in the tree. Node ❀ selects the parent node, so
that D ✛✕❀➚✣ is equal to the minimum distance, dist ✛✕❀➚✣ , from the root in the graph. Note that
dist ✛✕❀➍✣ is not a variable of the system.
For the spanning tree construction algorithm we want to prove the convergence

of any process with dist ✦➁➷ after all its neighbors with dist ✦➁➷ ➧ 1 have converged
and some general properties on the graph hold. In order to do so, we assume process✶✝✆ 1 ✧ ✂ ✎ is at distance ➷ from the root and has ✂➬➧

1 neighbors. Out of the
✂➬➧

1

neighbors at least one must be a neighbor at distance ➷ ➧ 1 from the root. Some of the
neighbors can have dist ✦➫➷ or dist ✦❏➷✽❻ 1. There is no neighbor that can be at distance
less than ➷ ➧ 1 or more than ➷✽❻ 1. Otherwise, ✶✝✆ 1 ✧ ✂ ✎ ’s distance would not be ➷ , which
is a contradiction.

The property ψ that we want to prove is

ψ
∆✦➮☛✑☎●➱✃✠❐☛✑☎✝❒

where H
∆✦❍❦❣❺ i ❁ 1 ✔✕✔N : ❦ dist ✛ i ✣❅✦ l ➧ 1 ✠➪❦ Root ✛ i ✣❝✦ EQk❦ D ✛ i ✣❝✦ l ➧ 1❦❥✆ dist ✛ i ✣❫✯ l ❦ Root ✛ i ✣✤✦ EQk ✎❘✠ D ✛ i ✣❋✯ l❦ Root ✛ i ✣✜✫ EQk❦▲➴ j ❁ 2 ✔✕✔N : lsv ✦ sv ✛ j ✣

and J
∆✦❧❦ Root ✛ 1 ✣✤✦ EQk❦ D ✛ 1 ✣✤✦ l❦ F ✛ 1 ✣❋❁➦➩ j ③ j ❁ 2 ✔✻✔N ❦ dist ✛ j ✣❅✦ l ➧ 1 ➭

Note here that ✶✝✆ 1 ✧ ✂ ✎ is not symmetric to all processes ✶✝✆ 2 ✧ ✂ ✎✪✧✮✔✻✔✕✔✻✧✷✶✝✆ ✂ ✧ ✂ ✎ .
However, ✶✝✆ 1 ✧ ✂ ✎ cannot guess the dist values of the processes, so all processes are
identical up to renaming for ✶✝✆ 1 ✧ ✂ ✎ . Moreover, ✶✝✆ 1 ✧ ✂ ✎ is identical up to renaming to
all other process at distance ➷ from the root.
5.2 Data abstraction

In the variant of the ST algorithm, some of the variables range over parameterized or

infinite domains. These variables include

Root ❁❥✛ 1 ✔✕✔ ✂ ✠➪❮✴✣
D ❁❥✛ 1 ✔✕✔ ✂ ✠➪❮❭➣⑤➩ 0 ➭ ✣
F ❁❆❮

and variables used as local copies of their values (lRoot, lD, and lF).

We use data abstraction [10, 9] to reduce the state space of the system to a finite set,

which is independent of the number of processes in the system. More specifically, data



abstraction reduces the range of the above variables to a finite set. Even though the range

of the variables can be reduced, the number of the shared Root and D variables still

depends on
✂
. Therefore, the abstraction technique presented in this paper is employed

as a next step to reduce the number of these variables to 2. Then we can use model

checking to verify the system.

Formally, the steps we followed to verify that the parameterized system Q ✆ ✂ ✎ sat-
isfies property ϕ are

1. Abstracted the system and the property to Q ✆ ✂ ✎ ➢ and ϕ
➢
in which all variables

range over finite domains

2. Used the abstraction technique to transform Q ✆ ✂ ✎ ➢ to ❑✍➢
The abstract property ϕ

➢
does not need to be abstracted in the second step because we

assume it is expressed on variables not in SV ❸ . If model checking proves that ❑⑧➢➀③ ✦ ϕ
➢
,

we conclude that Q ✆ ✂ ✎ ➢ ③ ✦ ϕ
➢
because of Theorem 1. Moreover, because of results

presented in the literature [10], Q ✆ ✂ ✎ ➢ ③ ✦ ϕ
➢ ➻ Q ✆ ✂ ✎✐③ ✦ ϕ.

The version of the algorithm after data abstraction can be seen in the appendix

(Module Process - Algorithm 2). The variable Root now ranges over the set ➩ LTk,EQk ➭ .
Model values LTk and EQk stand for “less than root” and “equal to root”, respectively.

Variable F is abstracted to ➩ NotNeighborNode ✧ NeighborLorMore ✧ NeighborLMinus1 ✧ 1 ➭ .
Finally, all D values that are greater than ❰ are abstracted to DGTK model value. The
corresponding operators for the model values are defined using the principles of data

abstraction [10].

5.3 Theoretical preliminaries

The first task according to the overview of our approach (Section 4.1) is to build a

network invariant ✄↔✆ ✂ ✎ for all processes other than ✶✝✆ 1 ✎ . The following result can help
us simplify the construction of the network invariant.

Lemma 1. If every reachable state that satisfies ➱ is an initial state, then for any ✂
Q ✆ ✂ ✎✐③ ✦❍☛✑☎●➱Ï✠➶☛✑☎✝❒

if and only if

Q ✆ ✂ ✎✑③ ✦②☎●➱➘✠r☛✑☎✝❒
PROOF:We start with the direction✆ Q ✆ ✂ ✎✐③ ✦②☎●➱Ï✠➶☛✑☎✝❒❘✎✴➻☞✆ Q ✆ ✂ ✎✐③ ✦❧☛✑☎●➱Ï✠➶☛✑☎✝❒❘✎
Suppose it holds Q ✆ ✂ ✎⑨③ ✦➫☎●➱Ð✠Ñ☛✑☎✝❒ and there is a behavior σ of Q ✆ ✂ ✎ for which
σ ✩③ ✦❍☛✑☎●➱➘✠r☛✑☎✝❒ . Then

σ ✩③ ✦❍✇✝✆✥☛✑☎●➱▲✎❷①✈☛✑☎✝❒❆➻
σ ③ ✦❍☛✑☎●➱❚❦★☎●☛✐✇♦❒❆➻

σ ③ ✦❧☛✑☎●➱❽❦ σ ③ ✦❍☎●☛✐✇♦❒
Consequently, there exists ❉❭❁⑤❮ such that the execution segment starting at state ✆ σ ✧❊❉✤✎
satisfies always ➱ and has infinitely many ✇♦❒ states. Since ✆ σ ✧✕❉❷✎ is also an initial state,
there exists sequence τ with ✆ τ ✧✘❀✷✎❶✦❚✆ σ ✧❊❉⑨❻❥❀✷✎✪✧✟❺❂❀❼✯ 0



Sequence τ is also a behavior of Q ✆ ✂ ✎ and satisfies ☎●➱②❦●☎●☛✐✇♦❒ . However, that means
that τ ✩③ ✦❡☎●➱Ò✠Ð☛✑☎✝❒ , which implies thatQ ✆ ✂ ✎❶✩③ ✦❡☎●➱Ò✠Ð☛✑☎✝❒ . This is a contradiction.
For the direction✆ Q ✆ ✂ ✎✐③ ✦❍☛✑☎●➱Ï✠➶☛✑☎✝❒❘✎✴➻Ó✆ Q ✆ ✂ ✎✐③ ✦❍☎●➱Ï✠➶☛✑☎✝❒❘✎
we note that any behavior σ of Q ✆ ✂ ✎ that satisfies ☎●➱ satisfies ☛✑☎●➱ as well. There-
fore, for any σ such that

σ ③ ✦②☎●➱✵❦✝☎●☛✐✇♦❒
the following property holds

σ ③ ✦❧☛✑☎●➱❽❦★☎●☛✐✇♦❒
Consequently, whenever the conclusion of the implication is false, the hypothesis is

false, too.

Lemma 1 provides us with a safety property ➱ , which can be used to simplify
the network invariant ✄↔✆ ✂ ✎ . More specifically, we are interested in finding a system✶✝✆ 1 ✧ ✂ ✎✺✸✹✄↔✆ ✂ ✎ , which specifies at least the same behaviors that Q ✆ ✂ ✎ specifies. The
systems Q ✆ ✂ ✎ and ✶✝✆ 1 ✧ ✂ ✎✹✸✺✄↔✆ ✂ ✎ are not restricted, since any process adjacent to✶✝✆➞❉❋✧ ✂ ✎ , with ❉❆✩✦ 1, is communicating with Q ✆ ✂ ✎ , providing input values to some
processes in Q ✆ ✂ ✎ . However, for any value of these inputs a behavior σ of Q ✆ ✂ ✎ that
violates ☎●➱ is not a property that can satisfy ☎●➱➥❦➟☎●☛✐✇♦❒ . The reason is that ☎●➱
is a safety property that is violated by a finite sequence, whereas ☎●☛✐✇♦❒ can only be
satisfied by an infinite behavior.

In general to find whether ψ holds for Q ✆ ✂ ✎ we only need to check behaviors for
which ☎●➱ holds. All other behaviors satisfy ψ trivially. Therefore, ✄↔✆ ✂ ✎ for all inputs
should not produce any state that violates ➱ .
In this case we choose ✄↔✆ ✂ ✎ to be the process that writes on the shared vari-

ables in SV ❸ any values that do not violate ➱ . Process ✄↔✆ ✂ ✎ has no inputs and no
local variables. It specifies the behaviors that are defined by the projection of ☎●➱ on
SV ❸ , P ✆✥✄↔✆ ✂ ✎✘✎➳✦ P ✆ ΠSV Ô ✆✷☎●➱▲✎✮✎ . Therefore, all possible behaviors that the system✶✝✆ 2 ✧ ✂ ✎✺✸✚✔✕✔✻✔✟✸✹✶✝✆ ✂ ✧ ✂ ✎ specifies and which satisfy ☎●➱ , are specified by ✄↔✆ ✂ ✎

P ➼ ΠSV Ô ✆✷✶✝✆ 2 ✧ ✂ ✎✺✸✚✔✕✔✻✔✟✸✹✶✝✆ ✂ ✧ ✂ ✎✘✎ ➽ ➺ P ➼ ΠSV Ô ✆✷☎●➱▲✎ ➽ ❙ P ✆➍✄↔✆ ✂ ✎✮✎ (2)

In this case ✄↔✆ ✂ ✎ does not have any inputs. Because all inputs of ✶✝✆ 1 ✧ ✂ ✎ are the SV ❸
variables, which are outputs of ✄↔✆ ✂ ✎ , the system ✶✝✆ 1 ✧ ✂ ✎✺✸✹✄↔✆ ✂ ✎ is restricted.
For the property at the LHS of (2) we can define a specification Õ✝✆ ✂ ✎ with exactly

the same sequences as behaviors. The new systemwill be the same as ✶✝✆ 2 ✧ ✂ ✎✺✸✏✔✻✔✻✔✼✸✽✶✝✆ ✂ ✧ ✂ ✎
with additional conjunctsΠSV Ô ✆✷➱▲✎ in the initial condition and ΠSV Ô ✆➍➱❆❳❊✎ in the next
state relation. Formally,

P ✆✥Õ★✆ ✂ ✎✮✎ ∆✦ P ✆✷✶✝✆ 2 ✧ ✂ ✎✺✸✚✔✕✔✻✔✼✸✽✶✝✆ ✂ ✧ ✂ ✎✮✎ ➺ P ➼ ΠSV Ô ✆✥☎●➱▲✎ ➽
Moreover, we assume for all inputs of Õ✝✆ ✂ ✎ that they are local variables to each

process and can take any value. Since both Õ✝✆ ✂ ✎ and ✄↔✆ ✂ ✎ have no inputs and have
exactly the same set of observable variablesÕ✝✆ ✂ ✎❂➠❧➡♣✄↔✆ ✂ ✎



and because of that ✆❃✶✝✆ 1 ✧ ✂ ✎✺✸✹Õ✝✆ ✂ ✎✘✎✚✾❆➠❏✆✥✶✝✆ 1 ✧ ✂ ✎✺✸✺✄↔✆ ✂ ✎✮✎♠✾
The system ✶✝✆ 1 ✧ ✂ ✎✺✸✺✄↔✆ ✂ ✎ can be seen in the appendix (Algorithm 2).

5.4 Application of the technique

We apply the proposed technique on the system ✶✝✆ 1 ✧ ✂ ✎✺✸✺✄↔✆ ✂ ✎ and obtain the abstract
system ❑ ➢ . The abstract system has 8000 states and TLC takes 2 minutes to prove the
property. The concrete system with

✂ ✦ 4 has 216800 states and TLC takes 40 minutes
to prove its correctness. In the appendix (Algorithm 3) the specification of the abstract

system in TLA+ is displayed. The variable SetOfLMinus1Neighbors, which was used

by the network invariant in the concrete system to leave the nodes at distance ➷ ➧
1

unchanged, is removed using data abstraction.

6 Conclusions

In this paper we presented a new abstraction technique for the verification of parame-

terized systems using model checking. The technique imposes less restrictions on the

correctness property. We used the technique to prove a persistence temporal property

of a self-stabilizing spanning-tree construction algorithm. In the future we plan to work

on ways to automate the application of the abstraction technique and remove some of

the restrictions on the type of systems that this technique can be applied to.
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A Proof of correctness

In this section we prove the correctness of the proposed technique. It is enough to prove

that ❑✍➤Ö➠➥❑❫➢ . As before ❑♦➤ stands for the concrete system ✆✥✶✝✆ 1 ✧ ✂ ✎✹✸✺✄↔✆ ✂ ✎✮✎ ✾ . We
are going to use the theory of refinement mappings [1] to prove that the abstraction is

correct. More specifically, we first define system ❑ π➤ by augmenting ❑♦➤ with a prophecy
variable π and then we define a refinement mapping from ❑ π➤ to ❑✍➢ .
A.1 System with a prophecy variable

In this section we describe how we obtain the ❑ π➤ ✦➘▼ Σπ ✧✷❖ π ✧ N π ✧ Lπ ◗ system from❑ ➤ ✦❚▼ Σ ✧❃❖★✧ N ✧ L ◗ for each ✂ ❁✝❮ .➵ π1 The state space Σπ ✦ Σ ❯ 2 ✔✻✔ ✂ . This implies that π ❁ 2 ✔✻✔ ✂ in all reachable states of❑ π➤ .➵ π2 The set of initial states ❖ π ✦②❖②❯ 2 ✔✻✔ ✂ . As a consequence, π can have any value in
2 ✔✻✔ ✂ initially.➵ π3 From the set of actions ❱ of ❑⑧➤ , based on which N is defined, we are going to

derive the set of actions ❱ π, which define the next state relation N π of ❑ π➤ . There
are four types of actions in ❱ π:➵ π3 ✔ 0 ❱ π includes

✂➁➧
1 actions of the form

απ

j

∆✦❧❦ π ❳♥✦ j❦ UNCHANGED ▼ all other variables ◗
where ❉✈❁ 2 ✔✕✔ ✂ and sv ✛ ❉♥✣ is the next element in SV ❸ that is going to be read or
written. These actions are always enabled.➵ π3 ✔ 1 For any action α that does not modify or read any of the variables in SV ❸ , a
new action is defined, which has as an effect the conjunction of the effect of α
and the condition π ❳♥✦ π. The new action is included in ❱ π:

απ ∆✦❧❦ prec ✆ α ✎❦ eff ✆ α ✎❦ π ❳♥✦ π➵ π3 ✔ 2 For any action α that reads one of the variables in SV ❸ , a new action απ is

defined and added to ❱ π. Let the accessed variable be sv ✛ ❉✚✣ . The precondition
of απ is the conjunction of the precondition of α and π ✦❄❉ . The effect is the
same as the effect of α and π is left unchanged

απ ∆✦❧❦ prec ✆ α ✎❦ π ✦ j❦ eff ✆ α ✎❦ π ❳♥✦ π➵ π3 ✔ 3 For any action α that modifies one of the variables in SV ❸ , a new action απ is

defined and added to ❱ π. Let the modified variable be sv ✛ ❉♥✣ . The precondition
of απ is the conjunction of the precondition of α and π ✦❄❉ . The effect is the
same as the effect of α and π is left unchanged



απ ∆✦❧❦ prec ✆ α ✎❦ π ✦ j❦ eff ✆ α ✎❦ π ❳♥✦ π➵ π3 ✔ 4 For any action α that reads a variable sv ✛ ↕↔✆❈❾❨✎✷✣ , with ↕↔✆❈❾✽✎❂❁ 1 ✔✻✔ ✂ and ❾⑧❁ Σ ➉✽➊➍➋ ,
let eff ✆ α ✎❼✦❍✓❘✆✘❾♠✧❈❾✹❳✷✧✮❲✿➯❫✛ ↕↔✆❈❾❨✎✷✣ . We define action απ as follows

απ ∆✦❧①➲❦ prec ✆ α ✎❦ g ✆ e ✎✴✦ 1❦ h ✆ e ✧ e ❳➛✧ sv ✛ g ✆ e ✎✷✣➛✎❦ π ❳♥✦ π①➲❦ prec ✆ α ✎❦ π ✦ g ✆ e ✎❦ h ✆ e ✧ e ❳➛✧ sv ✛ g ✆ e ✎✷✣➛✎❦ π ❳♥✦ π
The new action απis added to ❱ π.➵ π4 We define liveness condition P π built by the following algorithm:

(a) P π ✦ TRUE
(b) For each action απ constructed from α using any of the rules ➵ π3 ✔ 1 ➧ ➵ π3 ✔ 4,

i. if α ❁ W , thenP π ✦②P π ❦➲×✘✆✷☎●☛✐✇ prec ✆ α ✎✮✎⑨①❚×❃☎●☛➦× eff ✆ α ✎✤❦⑤❲ ❳ ✩✦❏❲✽Ø✽Ø✽Ø
ii. if α ❁ S , thenP π ✦②P π ❦ × ✆✥☛✑☎●✇ prec ✆ α ✎✮✎⑨① × ☎●☛ × eff ✆ α ✎✤❦⑤❲ ❳ ✩✦❏❲ Ø✽Ø✽Ø
where ❲ is the projection of state ❲ π on Σ.

(c) If P✑➂ is the conjunction of all justice and compassion requirements of ❑✒➤ thenP π ✦❍P π ❦★P✑➂
Note that P❹Ù②P π by construction.

In order to prove that ❑ ➤ and ❑ π➤ define the same externally visible property, we need to
prove conditions P1-P6, as Abadi and Lamport found [1]. For convenience, we repeat

the conditions P1-P6 as described in their paper

P1. Σπ ❙ Σ ❯ Σπ for some set Σπ

P2. (a) Π ➄ π ➅ ✆✥❖ π ✎❂❙Ú❖
(b) For all ✆❃❲♥✧ π ✎✍❁ Π Û 1➄ π ➅ ✆✷❖●✎ there exists π0 ✧ π1 ✧✘✔✕✔✻✔ π ➉ ✦ π such that ✆❃❲♠✧ π0 ✎✍❁▲❖ π

and, for 0 ✫②❀❼✭②Ü , ▼✮✆❇❲♥✧ π ➇ ✎✪✧✘✆❃❲♠✧ π ➇✼Ý 1 ✎✮◗✐❁ N π

P3. If ▼✮✆❇❲♥✧ π ✎✪✧✘✆❇❲✺❳➚✧ π ❳✕✎✘◗❂❁ N π then ▼❃❲♥✧✮❲✺❳✕◗❂❁ N or ❲➳✦➫❲✺❳ .
P4. If ▼❃❲♠✧❇❲✺❳✻◗⑨❁ N and ✆❃❲✹❳➛✧ π ❳✕✎➳❁ Σπ then there exist π ✧ π ❳0 ✧✘✔✮✔✘✔✘✧ π ❳ ➉ Û 1 ✧ π ❳ ➉ ✦ π ❳ such that▼✮✆❇❲♥✧ π ✎✪✧✘✆❇❲✺❳➚✧ π ❳ 0 ✎✮◗❶❁ N π and, for 0 ✫②❀❘✭②Ü : ▼✮✆❇❲✹❳➚✧ π ❳ ➇ ✎✗✧✘✆❇❲✺❳➚✧ π ❳ ➇✼Ý 1 ✎✮◗✐❁ N π.

P5. P π ✦ Π Û 1➄ π ➅ ✆✷P✴✎ .
P6. For all ❲⑧❁ Σ the set Π Û 1➄ π ➅ ✆❇❲✽✎ is finite and nonempty.



The set Π Û 1➄ π ➅ ✆❇❲✽✎ is defined as the set of all states Þ❘✦❚✆❃❲♥✧ π ✎ for which Π ➄ π ➅ ✆✮Þ✘✎✴✦❏❲ .
Lemma 2. Systems ❑ ➤ and ❑ π➤ define the same externally visible property.
PROOF SKETCH: Using the way ❑ π➤ was constructed (properties ➵ π0- ➵ π4), we prove

premises P1-P6. Based on Proposition 5 of Abadi and Lamport’s paper, the lemma is

implied from these premises.

PROOF:

1. ➵ π1 implies P1
1.1. Because of ➵ π1 it holds that Σπ ✦ Σ ❯ 2 ✔✕✔ ✂ . If we substitute Σπ for 2 ✔✻✔ ✂ , the
following condition becomes true

Σπ ✦ Σ ❯ Σπ ➻ Σπ ❙ Σ ❯ Σπ☎
2. ➵ π2 implies P2(a) and P2(b)
PROOF SKETCH: We prove that ➵ π2 satisfies a much stronger property, i.e.,❖ π ✦ Π Û 1➄ π ➅ ✆✥❖●✎
This property is the same as P2 ❳ in Abadi and Lamport’s paper [1].
PROOF:

Π Û 1➄ π ➅ ✆✥❖●✎✑✦Ò➩❷✆❇❲♥✧ π ✎✺③➞❲♦❁♣❖❆❦♣✆❃❲♥✧ π ✎❶❁ Σπ ❦ Π Û 1➄ π ➅ ✆❇❲♥✧ π ✎❼✦❏❲ ➭✦Ò➩❷✆❇❲♥✧ π ✎✺③➞❲♦❁♣❖❆❦❹❲⑧❁ Σ ❦ π ❁ 2 ✔✕✔ ✂❡➭✦◆❖❏❯ 2 ✔✻✔ ✂✦◆❖ π

3. ➵ π3 ✔ 0 ➧ ➵ π3 ✔ 4 imply P3
PROOF SKETCH: We prove P3 by doing a case based analysis of all actions in ❱ π, us-

ing the properties ➵ π3 ✔ 0 ➧ ➵ π3 ✔ 4. For each action απ ❁★❱ π we prove that all possible

transitions ▼✘✆❃❲♥✧ π ✎✗✧ απ ✧✘✆❇❲ ❳ ✧ π ❳ ✎✘◗ satisfy ▼❇❲♥✧❇❲ ❳ ◗❶❁ N or ❲➳✦❏❲ ❳ .
3.1. CASE: απ is constructed by rule ➵ π3 ✔ 0, then ❲✍✦➫❲✽❳
By definition of απ (rule ➵ π3 ✔ 0) for any ✆❃❲♥✧ π ✎ in Σπ such that ▼✘✆❃❲♥✧ π ✎✗✧ απ ✧✘✆❇❲✺❳➚✧ π ❳✕✎✘◗
is a transition of ❑ π➤ , it holds that ❲✐✦②❲✺❳ . This is guaranteed by the second conjunct
of the definition.

3.2. CASE: απ is constructed by rule ➵ π3 ✔ 1, then ▼❇❲♥✧❇❲✽❳✕◗✐❁ N
Let απ be an action constructed by rule ➵ π3 ✔ 1. For any transition ▼✮✆❇❲♥✧ π ✎✗✧ απ ✧❈✆❃❲✺❳➛✧ π ❳✕✎✘◗
of system ❑ π➤ we know that there is an action α of ❑ ➤ with the same precondition
and the same effect on the Σ-part of the state. Therefore, α is enabled at ❲ and can
produce ❲✹❳ , when executed at ❲ . This implies ▼❃❲♥✧✮❲✹❳✻◗❶❁ N .
3.3. CASE: απ is constructed by rule ➵ π3 ✔ 2, then ▼❇❲♥✧❇❲✽❳✕◗✐❁ N
Let απ be an action constructed by rule ➵ π3 ✔ 2. For any transition ▼✮✆❇❲♥✧ π ✎✗✧ απ ✧❈✆❃❲✺❳➛✧ π ❳✕✎✘◗
of system ❑ π➤ we know that there is an action α of system ❑⑧➤ such that

prec ✆ απ ✎✑✠ prec ✆ α ✎
eff ✆ απ ✎✑✠ eff ✆ α ✎

Therefore, α is enabled at ❲ and can produce ❲✽❳ , when executed at ❲ . This implies▼❃❲♥✧✮❲✺❳✕◗❶❁ N .
3.4. CASE: απ is constructed by rule ➵ π3 ✔ 3, then ▼❇❲♥✧❇❲✽❳✕◗✐❁ N
We can apply the same reasoning as in the Case 3.3.

3.5. CASE: απ is constructed by rule ➵ π3 ✔ 4, then ▼❇❲♥✧❇❲✽❳✕◗✐❁ N



Let απ be an action constructed by rule ➵ π3 ✔ 4. For any transition ▼✮✆❇❲♥✧ π ✎✗✧ απ ✧❈✆❃❲✺❳➛✧ π ❳✕✎✘◗
of system ❑ π➤ we know that there is an action α of system ❑ ➤ such that

απ ✠ ① prec ✆ α ✎✤❦★↕↔✆✘❾❨✎❼✦ 1 ❦✝✓✴✆❈❾♠✧❈❾✹❳➍✧ sv ✛ ↕↔✆❈❾✽✎❃✣✟✎✤❦ π ❳♠✦ π① prec ✆ α ✎✤❦ π ✦❍↕↔✆✘❾❨✎✤❦★✓❘✆✘❾♠✧✿❾✹❳✥✧ sv ✛ ↕↔✆✘❾❨✎❃✣✟✎✤❦ π ❳♠✦ πß❨à ➂❇á s 1 â â ✲➧ ✠ × prec ✆ α ✎✤❦★✓❘✆✘❾♠✧❈❾ ❳ ✧ sv ✛ ↕↔✆✘❾❨✎✷✣➛✎ Ø✠ α

Since α is expressed only on ❲ , we have▼✮✆❇❲♥✧ π ✎✪✧✘✆❇❲ ❳ ✧ π ❳ ✎✮◗✑③ ✦ α ✠☞▼❇❲♥✧❇❲ ❳ ◗✑③ ✦ α

This implies ▼❇❲♥✧❇❲✹❳✕◗❂❁ N .
4. ➵ π3 ✔ 0 ➧ ➵ π3 ✔ 4 imply P4
PROOF SKETCH: We prove P4 by doing a case based analysis of all actions in ❱ ,
using the properties ➵ π3 ✔ 0 ➧ ➵ π3 ✔ 4. For each ▼❃❲♥✧✮❲✽❳✕◗➳❁ N , we prove based on the
action α that caused the transition ▼❃❲♥✧ α ✧✮❲✹❳✻◗ that there exist a sequence of actions in❱ π that satisfy the premises of P4.

4.1. CASE: ➴ α ❁➟❱ :
1. ▼❃❲♥✧ α ✧❇❲✹❳✻◗ is a transition of ❑ ➤
2. α does not read or modify any element of SV ❸

By rule ➵ π3 ✔ 1 there exists action απ ❁❆❱ π that is enabled at ❲ , for any value of
π, and can produce ❲✹❳ , if executed at ❲ . The value of π remains unchanged by the

execution of απ. This implies ▼✘✆❃❲♥✧ π ❳✕✎✗✧❈✆❃❲✺❳➍✧ π ❳✕✎✘◗ belongs to N π.

4.2. CASE: ➴ α ❁➟❱ :
1. ▼❃❲♥✧ α ✧❇❲✹❳✻◗ is a transition of ❑♦➤
2. α reads or modifies an element of SV ❸

Let sv ✛ ❉✚✣ be the element read or modified, where ❉✝❁ 2 ✔✻✔ ✂ . For each ✆❃❲❨❳➛✧ π ❳✕✎✐❁ Σπ

there exists transition ▼✮✆❃❲✽❳➛✧❊❉✤✎✗✧ απ ✧✘✆❃❲✹❳➚✧ π ❳✕✎✮◗ . The reason is that actions constructed
by rule ➵ π3 ✔ 0 are always enabled, so the action απ is enabled in ❲✹❳ . Therefore, it
holds ▼✮✆❃❲✹❳➛✧✕❉❷✎✗✧❈✆❃❲✺❳➍✧ π ❳✻✎✮◗➳❁ N π. Because of rules ➵ π3 ✔ 2, ➵ π3 ✔ 3 we know that there
exists action in ❱ π, whose precondition is the conjunction of the precondition of

α and π ✦✡❉ . Therefore, this action is enabled in state ✆❃❲♠✧❊❉❷✎ . Moreover, its effect is
the effect of α and it leaves π unchanged. This implies that ▼✮✆❃❲♠✧❊❉❷✎✪✧✘✆❇❲✽❳✥✧❊❉✤✎✮◗❶❁ N π.

4.3. CASE: ➴ α ❁➟❱ :
1. ▼❃❲♥✧ α ✧❇❲✹❳✻◗ is a transition of ❑♦➤
2. α ✦ prec ✆ α ✎❷❦✝✓✴✆❈❾♥✧✿❾✹❳✥✧ sv ✛ ↕↔✆❈❾❨✎✷✣➛✎ , where ↕↔✆✘❾❨✎✑❁ 1 ✔✕✔ ✂

In this case there exists action απ in ❱ π defined by rule ➵ π3 ✔ 4. Since ▼❃❲♠✧❇❲✹❳✻◗✑③ ✦ α,

in state ❲ we have that ↕↔✆❈❾❨✎❼✦ 1 or ↕↔✆✘❾❨✎✐❁ 2 ✔✻✔ ✂ . If ↕↔✆✘❾❨✎❼✦ 1, then▼❃❲♥✧✮❲ ❳ ◗✑③ ✦ × ↕↔✆✘❾❨✎❼✦ 1 ❦★✓❘✆✘❾♠✧❈❾ ❳ ✧ sv ✛ ↕↔✆✘❾❨✎❃✣✟✎✤❦ prec ✆ α ✎ Ø
For every ✆❃❲✹❳➛✧ π ❳✕✎❂❁ Σπ, state ✆❃❲♥✧ π ✎ , with π ❳✚✦ π, is in Σπ and▼✘✆❃❲♥✧ π ✎✗✧❈✆❃❲ ❳ ✧ π ❳ ✎✘◗✒③ ✦Ð×✏↕↔✆✘❾❨✎❂✦ 1 ❦★✓❘✆✘❾♠✧✿❾ ❳ ✧ sv ✛ ↕↔✆✘❾❨✎✷✣➛✎✤❦ prec ✆ α ✎✤❦ π ❳ ✦ π ØÖã π3 â 4➻ (3)▼✘✆❃❲♥✧ π ✎✗✧❈✆❃❲ ❳ ✧ π ❳ ✎✘◗✒③ ✦ απ

If ↕↔✆✘❾❨✎✑❁ 2 ✔✕✔ ✂ , then let ❉●✦❧↕↔✆❈❾✽✎ with ❉❭❁ 2 ✔✻✔ ✂ . Then for all ✆❃❲✽❳➛✧ π ❳✕✎❶❁ Σπ, there is

action απ

0
created by rule ➵ π3 ✔ 0 such that ▼✘✆❃❲✽❳➚✧❊❉✤✎✗✧❈✆❃❲✺❳➍✧ π ❳✕✎✘◗✑③ ✦ απ

0
. Then state ✆❇❲♥✧❊❉✤✎

belongs to Σπ and satisfies ↕↔✆✘❾❨✎❘✦▲❉ . Therefore,▼✮✆❇❲♥✧❊❉✤✎✗✧✘✆❇❲ ❳ ✧✕❉❷✎✘◗➀③ ✦Ð×✏↕↔✆❈❾✽✎❂✦❆❉✑❦ π ✦▲❉✑❦ prec ✆ α ✎✤❦★✓❘✆✘❾♠✧✿❾ ❳ ✧ sv ✛ ↕↔✆✘❾❨✎❃✣✟✎✤❦ π ❳ ✦ π Ø➻☞▼✮✆❇❲♥✧❊❉✤✎✗✧✘✆❇❲ ❳ ✧✕❉❷✎✘◗➀③ ✦ απ



5. ➵ π4 implies P5

PROOF SKETCH: The argument is based on the equivalence of P and P π.

The P π property is expressed on variables in Σ and is equivalent to P . Therefore, for
every infinite behavior σ that satisfies P π, Π ➄ π ➅ ✆ σ ✎ must satisfy P . Moreover, for each
behavior σ satisfying P , all corresponding behaviors produced by the machine of ❑ π➤
must satisfy P π.

6. P6 is valid by construction of the state space

For each
✂
and each state ❲ , there are at most ✂➁➧

1 values for π, so at most
✂➁➧
1

elements in the set Π Û 1➄ π ➅ ✆❇❲✽✎ . Each state ❲ which is reachable for ❑ ➤ has at least one
corresponding state ✆❇❲♥✧ π ✎ which is reachable for ❑ π➤ . Therefore,Π Û 1➄ π ➅ ✆❃❲❨✎ is finite and
non-empty for each

✂
.

The next lemma states that there exists a refinement mapping from the system ❑ π➤
with the augmented prophecy variable to the abstract system constructed using rules➵ 1 ➧ ➵ 4. We represent the state ❲ ➤ ✦➫✆❇❲♥✧ π ✎❘❁ Σπ➤ as ✆✘❾♠✧ sv ✧ π ✎ , where ❾ is the part of the
state without the shared variable sv ( ❾➀❁ Σ ➉✽➊➍➋ ). We consider ✆✘❾♠✧ sv ✛ 1 ✣➛✎ the external part
of the state, even though the external part of the state may be only a part of ✆✘❾♠✧ sv ✛ 1 ✣➛✎ .
Extending to those cases should be straightforward. The shared variable is sv. In system❑ π➤ the shared variable ranges over ✛ 1 ✔✻✔ ✂ ✠ FS ✣ . The state of the abstract system can
be represented as ❲❷➢⑨✦❏✆❈❾❷➢✤✧ sv ➢✚✎ , where sv ➢⑧❁➦✛ 1 ✔✕✔ 2 ✠ FS ✣ . The refinement mapping we
consider is the function ✉ : Σπ➤ ✠ Σ ➢ defined as

let ❲♠➤ ∆✦✵✆❈❾♥✧ sv ✧ π ✎ in❺Ï❲♠➤⑨❁ Σπ : ✉ ✆❇❲♠➤✗✎ ∆✦✵✆❈❾♥✧❈▼ sv ✛ 1 ✣✷✧ sv ✛ π ✣➛◗✮✎
By definition ✉ preserves the external part and sets the first element of sv ➢ to sv ✛ 1 ✣ and
the second to sv ✛ π ✣ , i.e.,

sv ➢ ✛ 1 ✣↔✦ sv ✛ 1 ✣
sv ➢ ✛ 2 ✣↔✦ sv ✛ π ✣

In order to prove that ✉ is a refinement mapping, it is sufficient to show that ✉
satisfies conditions Õ 1 ➧ Õ 4 as shown in Abadi and Lamport’s paper [1]. We list theÕ 1 ➧ Õ 4 conditions from that paper for the reader’s convenience.
R1. For all ❲ ➤ ❁ Σπ : Π ä✍✆ ✉ ✆❇❲ ➤ ✎✮✎❘✦ Π ä✍✆❃❲ ➤ ✎ .
R2. ✉ ✆✷❖ π ✎❂❙❥❖✝➢ .
R3. If ▼❃❲ ➤ ✧✘Þ ➤ ◗❶❁ N π then ▼ ✉ ✆❃❲ ➤ ✎✪✧ ✉ ✆❇Þ ➤ ✎✘◗❶❁ N ➢ or ✉ ✆❃❲ ➤ ✎❼✦ ✉ ✆❇Þ ➤ ✎ .
R4. ✉ ✆ P π ✎❂❙❥P ➢ , where P π is the property defined by ❑ π➤ .
Lemma 3. Function ✉ is a refinement mapping from ❑ π➤ to ❑♦➢
PROOF SKETCH: We prove the lemma by showing that ✉ satisfies properties Õ 1 ➧ Õ 4.
PROOF:

1. R1 is satisfied by the definition of ✉ .



PROOF:Let ❲ ➤ ∆✦❚✆✘❾♠✧ sv ✧ π ✎ be any element in Σπ, then❺❂❲♠➤❶❁ Σπ : ❦ Π ä ✆❃❲♠➤✿✎❘✦❚✆✘❾♠✧ sv ✛ 1 ✣➛✎ (4)❦ ✉ ✆❃❲❷➤✿✎✴✦❚✆✘❾♠✧❈▼ sv ✛ 1 ✣✷✧ sv ✛ π ✣➛◗✮✎ (5)✆ 5 ✎✴➻å❺❂❲♠➤✐❁ Σπ : Π ä ✆ ✉ ✆❃❲❷➤❈✎✘✎❘✦ Π ä ✆✮✆✘❾♠✧❈▼ sv ✛ 1 ✣✥✧ sv ✛ π ✣➛◗✮✎✘✎❘✦✵✆❈❾♠✧ sv ✛ 1 ✣✟✎✴✦ Π ä ✆❃❲♠➤✗✎✑☎
2. R2 is satisfied by construction of ❑ ➢ .
PROOF:By construction ❖ ➢ ✦ Π ä➳✆✷❖ π ✎✜❯ × ❖ π

sv ➄ 1 ➅ ❯⑤❖ π
sv ➄ 2 â â ✲ ➅ Ø , where ❖ π

sv ➄ 1 ➅ , ❖ π
sv ➄ 2 â â ✲ ➅

are the sets of possible initial values of sv ✛ 1 ✣ and possible initial values of the elements
in SV ❸ , respectively. For any state ❲❷➤❶✦✵✆❈❾♥✧ sv ✧ π ✎ it holds❺❂❲ ➤ ❁♣❖ π : ✉ ✆❃❲ ➤ ✎✴✦❚✆✘❾♠✧✘▼ sv ✛ 1 ✣✥✧ sv ✛ π ✣➛◗✮✎
Since ❲♠➤⑧❁➲❖ π and π ❁ 2 ✔✕✔ ✂ , ❾✬❁ Π ä ✆✥❖ π ✎ , sv ✛ 1 ✣✴❁➲❖ π

sv ➄ 1 ➅ , and sv ✛ π ✣❼❁❆❖ π
sv ➄ 2 â â ✲ ➅ .

Therefore, ✉ ✆❇❲❷➤✿✎➳❁▲❖✝➢ . We proved that ❺❼❲❷➤♦❁▲❖ π : ✉ ✆❃❲❷➤✿✎✍❁❆❖✝➢ . This implies that✉ ✆✥❖ π ✎❶❙Ú❖✝➢ . ☎
3. Rules T0

➧
T4 imply R3 is satisfied by f.

PROOF:For any ▼❃❲♥✧✘Þ✘◗➳❁ N π there must exist action απ ❁❆❱ π created by one of the

rules ➵ π3 ✔ 0- ➵ π3 ✔ 4, such that ▼❇❲♥✧ απ ✧✘Þ✘◗ is a transition of ❑ π➤ . There are four cases
based on which rule was used for the creation of απ.

3.1. CASE: Actionαπ is created by rule ➵ π3 ✔ 0. Then there exists an action α̃ created
by rule ➵ 0, such that ▼ ✉ ✆❃❲❨✎✗✧ α̃ ✧ ✉ ✆❇Þ❈✎✮◗ is a transition of ❑ ➢ .

PROOF: Action απ modifies only the value of π (by construction). After the action

sv ✛ π ❳ ✣ can have any value ➯ in FS. There is an action α̃ ❁ Ã created by ➵ 0, which
leaves all variables unchanged and sets sv ➢❅✛ 2 ✣✼❳✽✦②➯ . Since α̃ is always enabled, it is

enabled in ✉ ✆❇❲✽✎ . Its effect is to leave ❾ and sv ➢❷✛ 1 ✣ unchanged and set sv ➢✤✛ 2 ✣✻❳✚✦❏➯➀✦
sv ✛ π ❳➞✣ . Therefore, the next state is ✉ ✆✮Þ✘✎ . Consequently, ▼ ✉ ✆❇❲✽✎✗✧ α̃ ✧ ✉ ✆✮Þ✘✎✮◗ is a transition
of ❑✍➢ . ☎
3.2. CASE: Actionαπ is created by rule ➵ π3 ✔ 1. Then there exists an action α̃ created

by rule ➵ 1, such that ▼ ✉ ✆❃❲❨✎✗✧ α̃ ✧ ✉ ✆❇Þ❈✎✮◗ is a transition of ❑ ➢ .
PROOF: Action απ can modify only the values of ❾ , sv ✛ 1 ✣ to ❾❨❳ , sv ✛ 1 ✣✻❳ (by construc-
tion). In order for απ to be in ❱ π, there must exist α an action of ❑ with the same
precondition and effect on ❾♠✧ sv ✛ 1 ✣ . Because of rule ➵ 1 an action α̃ exists in Ã with

the same precondition and effect on ❾♠✧ sv ✛ 1 ✣ . Therefore,▼✮✆✿❾♠✧✘▼ sv ➢❷✛ 1 ✣✷✧ sv ➢✤✛ 2 ✣➛◗✮✎✤✧ α̃ ✧✽×❈❾ ❳ ✧❈▼ sv ➢✤✛ 1 ✣ ❳ ✧ sv ➢✤✛ 2 ✣✟◗✘Ø✹◗❘✦❚▼ ✉ ✆❃❲❨✎✗✧ α̃ ✧ ✉ ✆❇Þ❈✎✮◗
is a transition of ❑ ➢ . ☎
3.3. CASE: Actionαπ is created by rule ➵ π3 ✔ 2. Then there exists an action α̃ created

by rule ➵ 2, such that ▼ ✉ ✆❃❲❨✎✗✧ α̃ ✧ ✉ ✆❇Þ❈✎✮◗ is a transition of ❑♦➢ .
PROOF: In this case απ accesses variable sv ✛ ❉✚✣ with ❉⑤❁ 2 ✔✕✔ ✂ . Action απ cannot

modify any of the elements of sv because of the restriction Λ1. Moreover, by con-
struction απ cannot modify π. In order for απ to be enabled in ❲ , π ✦❡❉ . So, this
action modifies ❾ to ❾✽❳ by accessing sv ✛ π ✣ . For this action to be constructed by rule➵ π3 ✔ 2, there must exist action α of ❑ . Therefore, because of rule ➵ 2, there must
exist α̃ ❁ Ã with the same precondition and effect as α, except that sv ✛ ❉✚✣ is replaced
by sv ➢ ✛ 2 ✣ . However, in ✉ ✆❇❲✽✎ by the definition of ✉ , sv ➢ ✛ 2 ✣✜✦ sv ✛ π ✣ . Consequently,
α̃ has the same precondition and effect on ❾ as απ. Since neither sv ➢ ✛ 1 ✣ nor sv ➢ ✛ 2 ✣
changes, the next state after the execution of α̃ in ✉ ✆❃❲❨✎ is ✉ ✆❇Þ❈✎ . This means that▼ ✉ ✆❃❲✽✎✪✧ α̃ ✧ ✉ ✆❇Þ✘✎✘◗ is a transition of ❑ ➢ . ☎



3.4. CASE: Actionαπ is created by rule ➵ π3 ✔ 3. Then there exists an action α̃ created

by rule ➵ 3, such that ▼ ✉ ✆❃❲❨✎✗✧ α̃ ✧ ✉ ✆❇Þ❈✎✮◗ is a transition of ❑ ➢ .
PROOF: Action απ modifies element sv ✛ π ✣ . Moreover, because of the restriction
Λ1, it cannot read any sv variable. Therefore, the new value is a function of the state❾ . It must be independent of π, since the effect of απ is the same as the effect of α
based on which απ was created. Based on α and because of rule ➵ 3 α̃ is created.

Action α̃ has the same precondition and the same effect except that instead of

sv ✛ ❉✚✣ , sv ➢✤✛ 2 ✣ is modified. Therefore, α̃ is enabled in ✉ ✆❇❲✽✎ . Moreover, for any value
that απ can assign to sv ✛ π ✣ as a function of ❾ , α̃ can assign that value to sv ➢ ✛ 2 ✣ as
a function of ❾ . Changes to ❾ are the same for the two actions as they are taken
from α. Consequently, ▼✮✆✿❾♠✧✘▼ sv ✛ 1 ✣✷✧ sv ✛ π ✣➛◗✮✎❝✧ α̃ ✧❈✆❈❾ ❳ ✧❈▼ sv ✛ 1 ✣✥✧ sv ✛ π ✣ ❳ ◗✘✎✘◗✐✦➃▼ ✉ ✆❃❲✽✎✪✧ α̃ ✧ ✉ ✆❇Þ✘✎✘◗
is a transition of ❑ ➢ . ☎
3.5. CASE: Actionαπ is created by rule ➵ π3 ✔ 4. Then there exists an action α̃ created

by rule ➵ 4, such that ▼ ✉ ✆❃❲❨✎✗✧ α̃ ✧ ✉ ✆❇Þ❈✎✮◗ is a transition of ❑ ➢ .
PROOF: In order for απ to exist in ❱ π, there must be an action α ❁➦❱ , such that
α ✦ prec ✆ α ✎♠❦❭✓✴✆❈❾♥✧✿❾✹❳❃✧ sv ✛ ↕↔✆✘❾❨✎✷✣➛✎ for a state function ↕↔✆✘❾❨✎❶❁ 1 ✔✻✔ ✂ . Then there exists
action α̃ ❁ Ã defined by rule T4. For a state pair ▼❃❲♥✧✘Þ✘◗ satisfying απ we have▼❃❲♥✧✘Þ✘◗✑③ ✦çæ ① prec ✆ α ✎✤❦ π ❳✚✦ π ❦★✓❘✆✘❾♠✧❈❾✹❳➚✧ sv ✛ 1 ✣➛✎✤❦✈↕↔✆❈❾✽✎❼✦ 1①Ò↕↔✆✘❾❨✎❼✦ π ❦ prec ✆ α ✎✤❦★✓❘✆✘❾♠✧❈❾✹❳✷✧ sv ✛ ↕↔✆✘❾❨✎✷✣➛✎✤❦ π ❳♠✦ π è ➻æ ①➬▼❃❲♥✧✘Þ✘◗✐③ ✦✵✆ prec ✆ α ✎✤❦ π ❳♥✦ π ❦★✓❘✆✘❾♠✧❈❾✹❳➍✧ sv ✛ 1 ✣✟✎✤❦★↕↔✆✘❾❨✎❘✦ 1 ✎①➬▼❃❲♥✧✘Þ✘◗✐③ ✦✵✆✏↕↔✆✘❾❨✎❂✦ π ❦ prec ✆ α ✎✤❦★✓❘✆✘❾♠✧✿❾✹❳➍✧ sv ✛ ↕↔✆✘❾❨✎✷✣➛✎✤❦ π ❳♠✦ π ✎✚è Λ1➻éê ①➬▼❃❲♥✧✘Þ✘◗✑③ ✦❚✆ prec ✆ α ✎✤❦ π ❳♥✦ π ❦★✓❘✆✘❾♠✧✿❾✺❳✥✧ sv ✛ 1 ✣➛✎❷❦★↕↔✆✘❾❨✎❘✦ 1 ❦ sv ❳♥✦ sv ✎①➬▼❃❲♥✧✘Þ✘◗✑③ ✦ æ ❦➙↕↔✆✘❾❨✎❼✦ π ❦ prec ✆ α ✎✤❦★✓❘✆✘❾♠✧❈❾✹❳✷✧ sv ✛ ↕↔✆✘❾❨✎✷✣➛✎❦ π ❳♥✦ π ❦ sv ❳♥✦ sv ❦ sv ✛ ↕↔✆❈❾✽✎❃✣❝✦ sv ✛ π ✣ è

ëì ➻éê ①➬▼❇❲♥✧✮Þ❈◗✐③ ✦❚✆ prec ✆ α ✎✤❦★✓❘✆✘❾♠✧❈❾✹❳✥✧ sv ✛ 1 ✣➛✎✤❦✈↕↔✆✘❾❨✎❘✦ 1 ❦ sv ✛ π ❳ ✣✻❳♠✦ sv ✛ π ✣✹✎①➬▼❇❲♥✧✮Þ❈◗✐③ ✦ æ ❦❄↕↔✆❈❾✽✎❂✦ π ❦ prec ✆ α ✎✤❦✝✓✴✆❈❾♥✧✿❾✹❳➍✧ sv ✛ ↕↔✆❈❾✽✎❃✣✟✎❦ sv ✛ π ❳ ✣ ❳ ✦ sv ✛ π ✣✹❦ sv ✛ ↕↔✆❈❾✽✎❃✣❝✦ sv ✛ π ✣ è
ëì ➻

æ ①➬▼ ✉ ✆❃❲❨✎✗✧ ✉ ✆✮Þ✘✎✮◗✐③ ✦❽✆ prec ✆ α ✎❷❦✝✓✴✆❈❾♠✧❈❾✹❳✥✧ sv ➢✤✛ 1 ✣✟✎✤❦★↕↔✆✘❾❨✎❘✦ 1 ❦ sv ➢✤✛ 2 ✣✼❳♥✦ sv ➢✤✛ 2 ✣✹✎①➬▼ ✉ ✆❃❲❨✎✗✧ ✉ ✆✮Þ✘✎✮◗✐③ ✦❽✆✽↕↔✆❈❾❨✎♦✩✦ 1 ❦ prec ✆ α ✎❷❦✝✓✴✆❈❾♠✧❈❾✹❳✥✧ sv ➢❅✛ 2 ✣➛✎❷❦ sv ➢✤✛ 2 ✣✼❳♥✦ sv ✛ 2 ✣✹✎➫è ➻▼ ✉ ✆❃❲✽✎✪✧ ✉ ✆❇Þ✘✎✘◗✑③ ✦ α̃

Therefore, ▼ ✉ ✆❃❲❨✎✗✧ α̃ ✧ ✉ ✆❇Þ✘✎✘◗ is a transition of ❑♦➢ . ☎☎
4. R4 is satisfied by construction of P⑨➢ .
PROOF:We prove that R4 holds by case analysis on the type of liveness conditions.

4.1. CASE: If σπ belongs to P ✆✮❑ π ✎ , then ✉ ✆ σπ ✎ satisfies all weak fairness conditions
of P ➢ .

PROOF:Suppose σπ belongs to P ✆❇❑ π ✎ , but ✉ ✆ σπ ✎ violates the weak fairness con-
dition of an action α̃. We prove that this leads to contradiction. In order for α̃ to

belong to W̃ , there must exist α in ❱ , such that α ❁ W . Since σπ ❁ P ✆❃❑ π ✎ , the
behavior σπ must satisfy the weak fairness condition of α,

σπ ③ ✦Ó✆✥☎●☛✐✇ prec ✆ α ✎❈✎❂①❥✆✥☎●☛♦▼ eff ✆ α ✎✘◗✮✎
4.1.1. CASE: If σπ ③ ✦②☎●☛✐✇ prec ✆ α ✎ , then ✉ ✆ σπ ✎✑③ ✦②☎●☛✐✇ prec ✆ α̃ ✎ .



PROOF:Because of rules T1-T3 and conditionΛ3, it holds that prec ✆ α ✎✜í prec ✆ α̃ ✎ .
This condition holds for any T4 action α̃ as well, since in this case

prec ✆ α̃ ✎✡í ✆ prec ✆ α ✎❷❦★↕↔✆✘❾❨✎❼✦ 1 ✎✤①♣✆ prec ✆ α ✎✤❦✈↕↔✆❈❾❨✎♦✩✦ 1 ✎✡í prec ✆ α ✎
Moreover, because of condition Λ3, the assertion prec ✆ α ✎ is a function of only
the ❾ part of the state. Since the two sequences σπ and ✉ ✆ σπ ✎ agree on ❾ in each
state, for all ❀ with ❀❂✯ 0✆ σπ ✧✘❀✷✎⑨③ ✦②✇ prec ✆ α ✎❘➻î✆ ✉ ✆ σπ ✎✗✧✘❀✷✎➳③ ✦❧✇ prec ✆ α̃ ✎
Consequently,

σπ ③ ✦❍☎●☛✐✇ prec ✆ α ✎❘➻ ✉ ✆ σπ ✎✑③ ✦❍☎●☛✐✇ prec ✆ α̃ ✎
4.1.2. CASE: If σπ ③ ✦②☎●☛♦▼ eff ✆ α ✎✘◗ , then ✉ ✆ σπ ✎✐③ ✦②☎●☛♦▼ eff ✆ α ✎❈◗ .
PROOF:For the proof we need to consider 4 cases, depending on the rule that

was used to generate α̃ from α.
4.1.2.1. CASE: If α̃was generated fromα by using rule T1, thenσπ ③ ✦➙☎●☛♦▼ eff ✆ α ✎❈◗

implies ✉ ✆ σπ ✎✑③ ✦❍☎●☛♦▼ eff ✆ α̃ ✎✘◗ .
PROOF:In this case eff ✆ α ✎❶í eff ✆ α̃ ✎ by construction. Moreover, since eff ✆ α ✎
is a function of only the ❾ part of the behavior, for all ❀❂✯ 0 it holds✆❈✆ σπ ✧✮❀❃✎❅✧❈✆ σπ ✧✮❀♠❻ 1 ✎❇✎⑨③ ✦❚▼ eff ✆ α ✎✮◗❂➻✆❈✆ ✉ ✆ σπ ✎✗✧✘❀✷✎❋✧✘✆ ✉ ✆ σπ ✎✪✧✮❀❷❻ 1 ✎❇✎⑨③ ✦❚▼ eff ✆ α̃ ✎✘◗
Therefore,

σπ ③ ✦❍☎●☛♦▼ eff ✆ α ✎✘◗❘➻ ✉ ✆ σπ ✎✑③ ✦❍☎●☛♦▼ eff ✆ α̃ ✎✮◗
4.1.2.2. CASE: If α̃was generated fromα by using rule T2, thenσπ ③ ✦➙☎●☛♦▼ eff ✆ α ✎❈◗

implies ✉ ✆ σπ ✎✑③ ✦❍☎●☛♦▼ eff ✆ α̃ ✎✘◗ .
PROOF:Assume that α̃ accesses variable sv ✛ ❉♥✣ . It holds that
σπ ③ ✦➙☎●☛♦▼ eff ✆ α ✎✘◗✜➻ σπ ③ ✦➙☎●☛✝✆✮▼ eff ✆ α ✎❈◗✤❦ π ✦❆❉✤✎➳① σπ ③ ✦➙☎●☛★✆✮▼ eff ✆ α ✎✘◗✤❦ π ✩✦▲❉❷✎
We prove that either case implies ✉ ✆ σπ ✎✑③ ✦❍☎●☛♦▼ eff ✆ α̃ ✎✮◗ .▼ 5 ◗ 1. CASE: σπ ③ ✦②☎●☛✝✆✘▼ eff ✆ α ✎❈◗✤❦ π ✦❆❉✤✎❼➻ ✉ ✆ σπ ✎✑③ ✦②☎●☛♦▼ eff ✆ α̃ ✎✮◗ .
From rule T2 we know that✆ sv ✛ ❉✚✣❅✦ sv ➢ ✛ 2 ✣✟✎✴✠î✆ eff ✆ α ✎❘í eff ✆ α̃ ✎✮✎ (6)

In the states of σπ in which π ✦❥❉ , we have sv ✛ π ✣↔✦ sv ✛ ❉♥✣ . Moreover, for
each ❀✐✯ 0, the value sv ✛ π ✣ in state ✆ σπ ✧✮❀❃✎ equals the value sv ➢✤✛ 2 ✣ of state✆ ✉ ✆ σπ ✎✗✧✘❀✷✎ . Therefore, for every ❀❘✯ 0, for any value ➯✬❁ FS:✆ σπ ✧✮❀❃✎⑨③ ✦❚✆ π ✦▲❉✐❦ sv ✛ ❉✚✣❝✦➫➯✤✎❘➻☞✆ ✉ ✆ σπ ✎✗✧✮❀❃✎⑨③ ✦ sv ➢ ✛ 2 ✣❅✦➫➯
Then because of (6) and the fact that eff ✆ α ✎ is a function only of ❾ and
sv ✛ ❉✚✣ , it holds that❺❶❀✴✯ 0 : ✆✘✆ σπ ✧✮❀❃✎❝✧❈✆ σπ ✧✮❀❷❻ 1 ✎❇✎✐③ ✦❚✆✘▼ eff ✆ α ✎❈◗✤❦ π ✦❆❉✤✎❘➻✆✘✆ ✉ ✆ σπ ✎✗✧✘❀✷✎❝✧✘✆ ✉ ✆ σπ ✎✪✧✮❀❷❻ 1 ✎❇✎✐③ ✦❚✆✘▼ eff ✆ α̃ ✎✮◗✮✎
and because of that

σπ ③ ✦②☎●☛★✆❈▼ eff ✆ α ✎✘◗✤❦ π ✦▲❉❷✎❼➻ ✉ ✆ σπ ✎✑③ ✦❍☎●☛♦▼ eff ✆ α̃ ✎✘◗▼ 5 ◗ 2. CASE: σπ ✩③ ✦②☎●☛✝✆✘▼ eff ✆ α ✎❈◗✤❦ π ✦❆❉✤✎❼➻ ✉ ✆ σπ ✎✑③ ✦②☎●☛♦▼ eff ✆ α̃ ✎✮◗ .
Since σπ ③ ✦➁☎●☛♦▼ eff ✆ α ✎✘◗ , there must be actions that simulate the effect
of action α infinitely often. Because of restriction Λ4a, these actions can
only be actions accessing one of the variables in SV ❸ . Because there is



a finite number of actions, there must exist action β ❁✡❱ , which accesses
variable sv ✛ ➈✤✣ , such that, σπ ③ ✦➫☎●☛✝✆✮▼ eff ✆ β ✎✮◗✤❦ π ✦②➈✍❦➟✆ eff ✆ β ✎✴✠ eff ✆ α ✎✮✎❈✎ .
Then there must exist action β̃ in Ã. With the same reasoning as for case▼ 5 ◗ 1, we can prove that ✉ ✆ σπ ✎❘③ ✦➙☎●☛♦▼ eff ✆ β̃ ✎✮◗ . Suppose eff ✆ α ✎❋✦➙✓✴✆❈❾♥✧✿❾✹❳✥✧ sv ✛ ❉✚✣➛✎
and eff ✆ β ✎❼✦❏✓✴✆❈❾♠✧❈❾✹❳✥✧ sv ✛✢➈❷✣➛✎ are syntactically equivalent logic actions, then
eff ✆ α̃ ✎✴✦❍✓❘✆✘❾♠✧❈❾✹❳✷✧ sv ➢✤✛ 2 ✣➛✎ and eff ✆ β̃ ✎❘✦②✓✴✆❈❾♥✧✿❾✹❳➍✧ sv ➢❅✛ 2 ✣➛✎ . Therefore, eff ✆ α̃ ✎❘í
eff ✆ β̃ ✎ , which implies that❺❂❀❼✯ 0 : ✆✘✆ ✉ ✆ σπ ✎✗✧✘❀✷✎❝✧✘✆ ✉ ✆ σπ ✎✪✧✮❀❷❻ 1 ✎❇✎✐③ ✦❽▼ eff ✆ β̃ ✎✮◗✴➻✆✘✆ ✉ ✆ σπ ✎✗✧✘❀✷✎❝✧✘✆ ✉ ✆ σπ ✎✪✧✮❀❷❻ 1 ✎❇✎✐③ ✦❽▼ eff ✆ α̃ ✎✮◗
Consequently, if α and β are syntactically equivalent

σπ ③ ✦②☎●☛✝✆✘▼ eff ✆ α ✎❈◗❷❦ π ✩✦▲❉❷✎❂➻ ✉ ✆ σπ ✎✑③ ✦❍☎●☛♦▼ eff ✆ α̃ ✎✮◗
What is left is the case in which α and β are not syntactically equivalent. In
this case, because of restriction Λ4b, in order for eff ✆ β ✎❂✠ eff ✆ α ✎ to hold,
the value of the variable sv ✛ ➈✤✣ accessed by β must be equal to the value of
sv ✛ ❉✚✣ , in all pairs of states that satisfy eff ✆ β ✎❶✠ eff ✆ α ✎ . Because of that in
the corresponding states of ✉ ✆ σπ ✎ , sv ➢✤✛ 2 ✣❋✦ sv ✛✢➈❷✣❫✦ sv ✛ ❉✚✣ . However, since✆ sv ✛ ❉♥✣✤✦ sv ➢✤✛ 2 ✣✟✎✴✠☞✆ eff ✆ α ✎❘í eff ✆ α̃ ✎✘✎ by construction of α̃,❺❂❀❘✯ 0 : ✆✮✆ σπ ✧✘❀✷✎❋✧✘✆ σπ ✧✘❀❷❻ 1 ✎❇✎✐③ ✦❚✆✘▼ eff ✆ β ✎✮◗✤❦ sv ✛ ➈✤✣✤✦ sv ✛ ❉♥✣✹❦ π ✦❍➈✍❦➟✆ eff ✆ β ✎❘✠ eff ✆ α ✎✘✎✘✎❘➻✆✮✆ ✉ ✆ σπ ✎✪✧✮❀❃✎❅✧❈✆ ✉ ✆ σπ ✎✗✧✘❀❷❻ 1 ✎❇✎✐③ ✦❚▼ eff ✆ α̃ ✎✮◗
Consequently, in the case α and β are not syntactically equivalent

σπ ③ ✦②☎●☛✝✆✘▼ eff ✆ α ✎❈◗❷❦ π ✩✦▲❉❷✎❂➻ ✉ ✆ σπ ✎✑③ ✦❍☎●☛♦▼ eff ✆ α̃ ✎✮◗
Since in either case ✉ ✆ σπ ✎⑨③ ✦②☎●☛♦▼ eff ✆ α̃ ✎✘◗ holds, the proof is complete.
4.1.2.3. CASE: If α̃was generated fromα by using rule T3, thenσπ ③ ✦➙☎●☛♦▼ eff ✆ α ✎❈◗

implies ✉ ✆ σπ ✎✑③ ✦❍☎●☛♦▼ eff ✆ α̃ ✎✘◗ .
PROOF:The proof is based again on two cases. The first is σπ ③ ✦❡☎●☛✝✆✘▼ eff ✆ α ✎❈◗✤❦ π ✦✡❉✤✎
and the second σπ ③ ✦❏☎●☛✝✆✘▼ eff ✆ α ✎❈◗❷❦ π ✩✦✡❉❷✎ , where sv ✛ ❉✚✣ is the variable writ-
ten by action α. We show that in both cases ✉ ✆ σπ ✎✑③ ✦②☎●☛♦▼ eff ✆ α̃ ✎✮◗ .▼ 5 ◗ 1. CASE: σπ ③ ✦②☎●☛✝✆✘▼ eff ✆ α ✎❈◗✤❦ π ✦❆❉✤✎❼➻ ✉ ✆ σπ ✎✑③ ✦②☎●☛♦▼ eff ✆ α̃ ✎✮◗ .
From rule T3 we know that× sv ✛ ❉✚✣❝✦ sv ➢❅✛ 2 ✣✹❦ sv ✛ ❉✚✣ ❳ ✦ sv ➢✤✛ 2 ✣ ❳ Ø➳✠☞✆ eff ✆ α ✎❘í eff ✆ α̃ ✎✘✎ (7)

In the states of σπ in which π ✦✡❉ , we have sv ✛ π ✣❷✦ sv ✛ ❉♥✣ and sv ✛ π ✣✟❳✏✦ sv ✛ ❉♥✣✼❳ .
Moreover, for each ❀✐✯ 0, the value sv ✛ π ✣ in state ✆ σπ ✧✮❀❃✎ equals the value
sv ➢❅✛ 2 ✣ of state ✆ ✉ ✆ σπ ✎✗✧✮❀❃✎ . Therefore, for every ❀❂✯ 0, for any value ➯❭❁ FS:✆ σπ ✧✮❀❃✎⑨③ ✦❚✆ π ✦▲❉✐❦ sv ✛ ❉✚✣❝✦➫➯✤✎❘➻☞✆ ✉ ✆ σπ ✎✗✧✮❀❃✎⑨③ ✦ sv ➢ ✛ 2 ✣❅✦➫➯
Then because of (7) and the fact that eff ✆ α ✎ is a function only of ❾ and
sv ✛ ❉✚✣ , it holds that❺❶❀✴✯ 0 : ✆✘✆ σπ ✧✮❀❃✎❝✧❈✆ σπ ✧✮❀❷❻ 1 ✎❇✎✐③ ✦❚✆✘▼ eff ✆ α ✎❈◗✤❦ π ✦❆❉✤✎❘➻✆✘✆ ✉ ✆ σπ ✎✗✧✘❀✷✎❝✧✘✆ ✉ ✆ σπ ✎✪✧✮❀❷❻ 1 ✎❇✎✐③ ✦❚✆✘▼ eff ✆ α̃ ✎✮◗✮✎
and because of that

σπ ③ ✦②☎●☛★✆❈▼ eff ✆ α ✎✘◗✤❦ π ✦▲❉❷✎❼➻ ✉ ✆ σπ ✎✑③ ✦❍☎●☛♦▼ eff ✆ α̃ ✎✘◗▼ 5 ◗ 2. CASE: σπ ✩③ ✦②☎●☛✝✆✘▼ eff ✆ α ✎❈◗✤❦ π ✦❆❉✤✎❼➻ ✉ ✆ σπ ✎✑③ ✦②☎●☛♦▼ eff ✆ α̃ ✎✮◗ .
Since σπ ③ ✦➁☎●☛♦▼ eff ✆ α ✎✘◗ , there must be actions that simulate the effect
of action α infinitely often. Because of restriction Λ4a, these actions can



only be actions writing on one of the variables in SV ❸ . Because there is
a finite number of actions, there must exist action β ❁❄❱ , which writes
variable sv ✛ ➈✤✣ , such that, σπ ③ ✦➫☎●☛✝✆✮▼ eff ✆ β ✎✮◗✤❦ π ✦②➈✍❦➟✆ eff ✆ β ✎✴✠ eff ✆ α ✎✮✎❈✎ .
Then there must exist action β̃ in Ã. With the same reasoning as for case▼ 5 ◗ 1, we can prove that ✉ ✆ σπ ✎✑③ ✦❍☎●☛♦▼ eff ✆ β̃ ✎✘◗ . Note that if ➈❭✦▲❉ then there
is a contradiction, since we assumed that it cannot be the case that π ✦❄❉
infinitely often when ▼ eff ✆ α ✎✮◗ is satisfied by σπ. Therefore, ➈★✩✦♣❉ . However,
that implies thatσπ ③ ✦➙☎●☛✝✆✮▼ eff ✆ α ✎✮◗✤❦ π ✦②➈✍❦ sv ✛✢➈❷✣✼❳♠✦ sv ✛✢➈❷✣✹❦ sv ✛ ❉✚✣✼❳♠✦ sv ✛ ❉✚✣✹❦➟▼ eff ✆ β ✎✘◗✮✎ .
Otherwise, a change in sv ✛ ➈✤✣ would not satisfy eff ✆ α ✎ . Suppose eff ✆ α ✎✑✦✓✴✆❈❾♥✧✿❾✹❳➍✧ sv ✛ ❉✚✣✷✧ sv ✛ ❉✚✣✼❳✕✎ and eff ✆ β ✎✜✦❡✓❘✆✘❾♠✧✿❾✹❳➚✧ sv ✛✢➈❷✣✷✧ sv ✛✢➈❷✣✼❳✕✎ are syntactically equiv-
alent actions, then eff ✆ α̃ ✎❋✦➙✓❘✆✘❾♠✧❈❾ ❳ ✧ sv ➢ ✛ 2 ✣✥✧ sv ➢ ✛ 2 ✣ ❳ ✎ and eff ✆ β̃ ✎✜✦❡✓❘✆✘❾♠✧✿❾ ❳ ✧ sv ➢ ✛ 2 ✣✷✧ sv ➢ ✛ 2 ✣ ❳ ✎ .
Therefore, eff ✆ α̃ ✎✴í eff ✆ β̃ ✎ , which implies that❺❂❀❼✯ 0 : ✆✘✆ ✉ ✆ σπ ✎✗✧✘❀✷✎❝✧✘✆ ✉ ✆ σπ ✎✪✧✮❀❷❻ 1 ✎❇✎✐③ ✦❽▼ eff ✆ β̃ ✎✮◗✴➻✆✘✆ ✉ ✆ σπ ✎✗✧✘❀✷✎❝✧✘✆ ✉ ✆ σπ ✎✪✧✮❀❷❻ 1 ✎❇✎✐③ ✦❽▼ eff ✆ α̃ ✎✮◗
Consequently, if α and β are syntactically equivalent

σπ ③ ✦②☎●☛✝✆✘▼ eff ✆ α ✎❈◗❷❦ π ✩✦▲❉❷✎❂➻ ✉ ✆ σπ ✎✑③ ✦❍☎●☛♦▼ eff ✆ α̃ ✎✮◗
What is left is the case in which α and β are not syntactically equiva-
lent. In this case, because of restriction Λ4b, in order for eff ✆ β ✎❼✠ eff ✆ α ✎
to hold, the value of the variable sv ✛ ➈✤✣✟❳ , which is equal to sv ✛ ➈✤✣ , must
be equal to the value of sv ✛ ❉✚✣✟❳ , which is equal to sv ✛ ❉✚✣ , in all pairs of
states that satisfy eff ✆ β ✎✑✠ eff ✆ α ✎ . Because of that in the corresponding
states of ✉ ✆ σπ ✎ , sv ➢ ✛ 2 ✣❷✦ sv ✛ ➈✤✣✤✦ sv ✛ ❉♥✣ and sv ➢ ✛ 2 ✣✼❳❨✦ sv ➢ ✛ 2 ✣ . However, since✆ sv ✛ ❉♥✣✤✦ sv ➢ ✛ 2 ✣✹❦ sv ✛ ❉✚✣ ❳ ✦ sv ➢ ✛ 2 ✣ ❳ ✎✐✠➮✆ eff ✆ α ✎❘í eff ✆ α̃ ✎✮✎ by construction of
α̃,❺❂❀❘✯ 0 : ✆✮✆ σπ ✧✘❀✷✎❋✧✘✆ σπ ✧✘❀❷❻ 1 ✎❇✎✐③ ✦❚✆✘▼ eff ✆ β ✎✮◗✤❦ sv ✛ ➈✤✣✤✦ sv ✛ ❉♥✣✹❦ π ✦❍➈✍❦➟✆ eff ✆ β ✎❘✠ eff ✆ α ✎✘✎✘✎❘➻✆✮✆ ✉ ✆ σπ ✎✪✧✮❀❃✎❅✧❈✆ ✉ ✆ σπ ✎✗✧✘❀❷❻ 1 ✎❇✎✐③ ✦❚▼ eff ✆ α̃ ✎✮◗
Consequently, in the case α and β are not syntactically equivalent

σπ ③ ✦②☎●☛✝✆✘▼ eff ✆ α ✎❈◗❷❦ π ✩✦▲❉❷✎❂➻ ✉ ✆ σπ ✎✑③ ✦❍☎●☛♦▼ eff ✆ α̃ ✎✮◗
The two results above complete the proof.

4.1.2.4. CASE: If α̃was generated fromα by using rule T4, thenσπ ③ ✦➙☎●☛♦▼ eff ✆ α ✎❈◗
implies ✉ ✆ σπ ✎✑③ ✦❍☎●☛♦▼ eff ✆ α̃ ✎✘◗ .

PROOF:Following the same reasoning as abovewe assume thatσπ ③ ✦➙☎●☛✑✓❘✆✘❾♠✧❈❾✹❳➚✧ sv ✛ ↕↔✆❈❾✽✎❃✣✟✎ .
Since the range of ↕↔✆✘❾❨✎ is 1 ✔✻✔ ✂ , which is a finite set for all ✂ , we have

σπ ③ ✦②☎●☛✑✓❘✆✘❾♠✧❈❾ ❳ ✧ sv ✛ 1 ✣✟✎✐①❡➴❨❉❭❁ 2 ✔✕✔ ✂ : σπ ③ ✦②☎●☛✑✓❘✆✘❾♠✧✿❾ ❳ ✧ sv ✛ ❉✚✣➛✎
In the case of σπ ③ ✦➫☎●☛✑✓❘✆✘❾♠✧❈❾✹❳✥✧ sv ✛ 1 ✣✟✎ , we have that for all ❀❶✯ 0, ✆ σπ ✧✮❀❃✎ and✆ ✉ ✆ σπ ✎✪✧✮❀❃✎ agree on e and sv ✛ 1 ✣ . Because of that❺❂❀❘✯ 0 : ▼✮✆ σπ ✧✮❀❃✎✗✧✘✆ σπ ✧✮❀❷❻ 1 ✎✮◗❶③ ✦❏✓✴✆❈❾♠✧❈❾ ❳ ✧ sv ✛ 1 ✣➛✎✴✠▼✮✆ ✉ ✆ σπ ✎✗✧✮❀❃✎✗✧❈✆ ✉ ✆ σπ ✎✪✧✮❀❷❻ 1 ✎✮◗❶③ ✦②✓✴✆❈❾♥✧✿❾ ❳ ✧ sv ➢❷✛ 1 ✣➛✎
Therefore,

σπ ③ ✦②☎●☛✑✓✴✆❈❾♠✧❈❾ ❳ ✧ sv ✛ 1 ✣➛✎✡➻ ✉ ✆ σπ ✎⑨③ ✦②☎●☛✑✓❘✆✘❾♠✧❈❾ ❳ ✧ sv ➢❅✛ 1 ✣✟✎
In case ➴✏❉❹❁ 2 ✔✕✔ ✂ : σπ ③ ✦❽☎●☛✑✓✴✆❈❾♠✧❈❾✹❳➍✧ sv ✛ ❉♥✣✟✎ , we can split in two cases, i.e.,
π ✦❡❉ and π ✩✦➙❉ , and follow the same reasoning as in step 4.1.2.2 to prove
that ✉ ✆ σπ ✎✐③ ✦❍☎●☛✑✓❘✆✘❾♠✧❈❾✹❳✥✧ sv ➢ ✛ 2 ✣➛✎ .



From all the above cases, it was shown that if σπ ③ ✦②☎●☛♦▼ eff ✆ α ✎✘◗ , then ✉ ✆ σπ ✎✑③ ✦☎●☛♦▼ eff ✆ α ✎✘◗ .
Since both cases, i.e., σπ ③ ✦❽☎●☛✐✇ prec ✆ α ✎ and σπ ③ ✦❚☎●☛♦▼ eff ✆ α ✎❈◗ , lead to contra-
diction, we conclude that ✉ ✆ σπ ✎ satisfies all weak fairness conditions of P⑨➢ , when
σπ belongs to P ✆❃❑ π ✎ .
4.2. CASE: If σπ belongs to P ✆❃❑ π ✎ , then ✉ ✆ σπ ✎ satisfies all strong fairness condi-

tions of P✑➢ .
PROOF:This case will be proven similarly to step 4.1. More specifically, suppose

that there exists σπ in P ✆❃❑ π ✎ and there exists α̃ in S̃ , such that ❲ ✉ ✆ α̃ ✎ is not satisfied
by ✉ ✆ σπ ✎ . We prove that this leads to a contradiction. In order for α̃ to belong to

S̃ , there must exist α in S , such that σπ ③ ✦❏❲ ✉ ✆ α ✎ . Equivalently,
σπ ③ ✦➪☛✑☎●✇ prec ✆ α ✎❂①❄☎●☛♦▼ eff ✆ α ✎✮◗⑨➻

σπ ③ ✦➃☛✑☎●✇ prec ✆ α ✎➀① σπ ③ ✦➘☎●☛♦▼ eff ✆ α ✎✮◗
For both cases we can prove that✉ ✆ σπ ✎✡③ ✦➪☛✑☎●✇ prec ✆ α̃ ✎❂①➲☎●☛♦▼ eff ✆ α̃ ✎✮◗
which is a contradiction.

4.2.1. CASE: If σπ ③ ✦❍☛✑☎●✇ prec ✆ α ✎ , then ✉ ✆ σπ ✎✑③ ✦❍☛✑☎●✇ prec ✆ α̃ ✎ .
PROOF:Because of rules T1-T3, it holds that prec ✆ α ✎⑨í prec ✆ α̃ ✎ . Moreover,
because of condition Λ3, the assertion prec ✆ α ✎ is a function of only the ❾ part
of the state. Since the two sequences σπ and ✉ ✆ σπ ✎ agree on ❾ in each state, for
all ❀ with ❀❘✯ 0 ✆ σπ ✧✘❀✷✎⑨③ ✦②✇ prec ✆ α ✎❘➻î✆ ✉ ✆ σπ ✎✗✧✘❀✷✎➳③ ✦❧✇ prec ✆ α̃ ✎
Consequently,

σπ ③ ✦❧☛✑☎●✇ prec ✆ α ✎❘➻ ✉ ✆ σπ ✎✑③ ✦❧☛✑☎●✇ prec ✆ α̃ ✎
4.2.2. CASE: If σπ ③ ✦②☎●☛♦▼ eff ✆ α ✎✘◗ , then ✉ ✆ σπ ✎✐③ ✦②☎●☛♦▼ eff ✆ α ✎❈◗ .
PROOF:This is already proven in step 4.1.2.

Therefore, if σπ satisfies ❲ ✉ ✆ α ✎ , the sequence ✉ ✆ σπ ✎ satisfies ❲ ✉ ✆ α̃ ✎ , which is a
contradiction.

4.3. CASE: If σπ belongs to P ✆❇❑ π ✎ , then ✉ ✆ σπ ✎ satisfies all constant value fairness
conditions of P ➢ .

PROOF:In this case we need to prove that σπ ❁ P ✆✮❑ π ✎ implies that ❺ α ❁ C :✉ ✆ σπ ✎Ö③ ✦➬➾ ✉ ✆ α ✎ . We prove this by contradiction. Assume that σπ ❁ P ✆❃❑ π ✎ and
there exists α ❁ C such that ✉ ✆ σπ ✎➳✩③ ✦❽➾ ✉ ✆ α ✎ . There are two cases; either α belongs

toW , or α belongs to S .
4.3.1. CASE: α ❁ W ➻ ✉ ✆ σπ ✎✑③ ✦❚➾ ✉ ✆ α ✎
PROOF:Since σπ is in P ✆❃❑ π ✎ , it must hold that σπ ③ ✦ t❝✉ ✆ α ✎ . Equivalently, it
holds that

σπ ③ ✦②☎●☛✐✇ prec ✆ α ✎Ö① σπ ③ ✦❍☎●☛♦▼ eff ✆ α ✎✘◗
We prove that each disjunct implies ✉ ✆ σπ ✎✑③ ✦❚➾ ✉ ✆ α ✎ .
4.3.1.1. CASE: σπ ③ ✦②☎●☛✐✇ prec ✆ α ✎❘➻ ✉ ✆ σπ ✎✑③ ✦❽➾ ✉ ✆ α ✎
PROOF:Since prec ✆ α ✎ is only a function of ❾ :❺❶❀✴✯ 0 : ✆ σπ ✧✮❀❃✎⑨③ ✦❧✇ prec ✆ α ✎❘➻Ó✆ ✉ ✆ σπ ✧✘❀✷✎✘✎⑨③ ✦❍✇ prec ✆ α ✎
Therefore,

σπ ③ ✦❍☎●☛✐✇ prec ✆ α ✎⑨➻ ✉ ✆ σπ ✎✑③ ✦❍☎●☛✐✇ prec ✆ α ✎



➻ ✉ ✆ σπ ✎✑③ ✦❚➾ ✉ ✆ α ✎
4.3.1.2. CASE: σπ ③ ✦②☎●☛♦▼ eff ✆ α ✎✮◗❼➻ ✉ ✆ σπ ✎⑨③ ✦❽➾ ✉ ✆ α ✎
PROOF:

σπ ③ ✦②☎●☛♦▼ eff ✆ α ✎✮◗⑨➻ σπ ③ ✦❍☎●☛⑧➾♠✆✘❾♠✧✿❾ ❳ ✧ sv ✛ ➈✤✣✟✎➻ σπ ③ ✦❍☎●☛⑧➾♠✆✘❾♠✧✿❾ ❳ ✧✮➯ ➆ ✎
The condition ➾♠✆✘❾♠✧✿❾✹❳✥✧✮➯ ➆ ✎ is specified only on the ❾ part of the state. There-
fore, ❺❶❀✴✯ 0 : ✆✮✆ σπ ✧✮❀❃✎✗✧❈✆ σπ ✧✘❀❷❻ 1 ✎✮✎❶③ ✦❚➾♠✆✘❾♠✧❈❾ ❳ ✧✮➯✤➆♠✎✴➻✆✮✆ ✉ ✆ σπ ✎✤✧✘❀✷✎❋✧✘✆ ✉ ✆ σπ ✎✤✧✘❀❷❻ 1 ✎❃✎✑③ ✦❚➾♠✆✘❾♠✧✿❾ ❳ ✧✮➯❅➆♥✎
Consequently,

σπ ③ ✦❍☎●☛⑧➾♠✆✘❾♠✧❈❾ ❳ ✧✮➯✤➆♥✎⑨➻ ✉ ✆ σπ ✎✑③ ✦❍☎●☛⑧➾♠✆✘❾♠✧✿❾ ❳ ✧✮➯❅➆♥✎➻ ✉ ✆ σπ ✎✑③ ✦❍☎●☛⑧➾♠✆✘❾♠✧✿❾ ❳ ✧✮➯❅➆♥✎
This completes the proof for α ❁ W .
4.3.2. CASE: α ❁ S ➻ ✉ ✆ σπ ✎✑③ ✦❚➾ ✉ ✆ α ✎
PROOF:Since σπ is in P ✆❇❑ π ✎ , it must hold that σπ ③ ✦Ò❲ ✉ ✆ α ✎ . Equivalently, it
holds that

σπ ③ ✦❍☛✑☎●✇ prec ✆ α ✎Ö① σπ ③ ✦❍☎●☛♦▼ eff ✆ α ✎✘◗
For the first case we can follow a similar argument as for α ❁ W , and for the
second the argument is identical to the case α ❁ W , to prove that ✉ ✆ σπ ✎❘③ ✦②➾ ✉ ✆ α ✎ .
Therefore, we have a contradiction.

Since α must be either inW or in S , the proof is completed.
4.4. CASE: If σπ belongs to P ✆✮❑ π ✎ , then ✉ ✆ σπ ✎ satisfies all justice and compassion

requirements of P ➢ .
PROOF: Since for any justice requirement ☎●☛❘✞ , the assertion p is expressed only
on variables in Σ ➉✽➊➍➋ and sv ✛ 1 ✣ , we have❺❶❀❘✯ 0 : ✆ σπ ✧✮❀❃✎✑③ ✦➙✞➟í☞✆ ✉ ✆ σπ ✎✗✧✘❀✷✎➳③ ✦❡✞❆➻× σπ ③ ✦②☎●☛❘✞ïØ➳íð× ✉ ✆ σπ ✎✑③ ✦②☎●☛❘✞ïØ
The same result can be derived for any compassion requirement ☎●☛⑧⑦❭✠î☎●☛✍✌ ,
since ⑦ and ✌ are assertions expressed on Σ ➉✽➊✥➋ and sv ✛ 1 ✣ . Therefore,

σπ ③ ✦②P✐➂✑➻ ✉ ✆ σπ ✎✑③ ✦❍P✑➂
Since σπ belongs to P ✆❇❑ π ✎ , we have that σπ ③ ✦❏P✐➂ and, therefore, ✉ ✆ σπ ✎ satisfiesP✐➂ , which is the conjunction of all justice and compassion requirements of P✍➢ .
From Lemmas 2 and 3, Theorem 1 follows.
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➫➉❧✄⑥ Ö ➌❰➓ ❧✄⑥➻❚❞❝ ❿ ❚✌×❞❡➴Ø ➓ ❬✃➈❪➝ ➌Ù➍ t➁❫♥➂❢♠ Ð ➏✫➝

➵❰➫➦❬✃➈ ➌ ➆❖➇✣➂
➫➉❧✄⑥ Ö ➌❰➓ ❧✄⑥➻❚❞❝ ❿ ❚✌×❞❡➴Ø ➓ ❬✃➈❪➝ ➌Ù➍ ➆❖➇✣➂❢♠ Ð ➏❅➝

➫Û✇❖Ö ➌ ❬✃➈
➫➜◗✓❣ ❿ ➧❢②✗❣❘Ü✗❚✌P ➍ ❵✆❩ ⑥❃❨❃❴✱❧❯♠✓❩✥❾ ⑥❃❨❃❴✱❧●➏

❮ ❜✆❦✫❬✃⑨❃❩ ➟ ➊➌
➫ßs ✇ ➌ ✇
➫Û⑩ ➓ ❬✃➈❻➝✣➔ Ð ↔➒↔❯➅à➬➯❼
➫ ➵❶Ò✛➠á➫❶⑧✯⑨●⑨❃❦ ➓ ❬✃➈❪➝ ➌ ➆❖➇✣➂

➫➦s ⑧✯⑨●⑨❃❦ ➌ ➆❖➇✣➂✌➢
➵ ➵➻s ⑩ ➌ ⑩➄➃r❫✥➅

➵ ➫❶⑩ ➓ ❬✃➈❻➝➁➺➌ ⑩➚➃r❫✹➅
➫➦s ⑩â➺➌ ⑩➚➃✈❫✥➅
➫❶⑩ ➓ ❬✃➈❻➝➁➺➌ s ⑩Ù➘Ñ❼

➫ ➵ ➫➻s ⑩➳➔➯➭✵➅➀♠✳⑩➚➃r❫✥➅➩➲
➫❺❧✄⑥ Ö ➌➷➓ ❧✄⑥❺❚✌❝ ❿ ❚✌×✌❡➴Ø ➓ ❬✃➈❪➝ ➌Ù➍ s ⑧✯⑨●⑨❃❦✆♠✳⑩➚➃r❫✥➅➻➏❇➝

➵ ➫➻s ⑩➳➔ Ð ↔☎↔❯➅à➬➣❼
➫❺❧✄⑥ Ö ➌➷➓ ❧✄⑥❺❚✌❝ ❿ ❚✌×✌❡➴Ø ➓ ❬✃➈❪➝ ➌Ù➍ s ⑧✯⑨●⑨❃❦✆♠❢s ⑩Ù➘➴❼✵➏✫➝

➫Û◗✓❣ ❿ ➧❢②✗❣✗Ü❘❚✌P ➍ ❵☎❩ ⑥❃❨❃❴✱❧■♠✓❩♥❾ ⑥❃❨❃❴✱❧■♠✥✇❈➏

❮ ❜✆❦✫❬✃⑨❃❩ ➟ ✉➁⑨❃❩✳❧
➊➌
➫ãs ✇ ➌ ✇
➫➜Ò✛➠✧s ✇ä➔➯➭✵qr⑨❉❦✂q⑦❵✆❬❁❭✵❽✌❾✱⑨❉❴❊qr⑨●➈■❵■➲✵➢
➫➜⑩ ➓ ❬✃➈❪➝✣➔ Ð ↔☎↔❯➅å➬➣❼
➫ ➵➜✐✄❧✧q⑦⑨❃❦➸➆✜♦☎♣✳❨❃s✫❫✹⑨☎⑧⑦✉➁⑨❃❩✳❧❯➠✩⑧❍⑨➒⑨❉❦ ➓ ❬✃➈❻➝✫♠✓s ⑧✯⑨●⑨❃❦❛➢

➵ ➫ãs ⑩➼➔ Ð ↔☎↔❯➅
➫➜⑩ ➓ ❬✃➈❪➝✷➔ Ð ↔☎↔❪➅
➫➜⑩ ➓ ❬✃➈❪➝✣➺➌ s ⑩➷➘Ñ❼

➵ ➫ãs ⑩ ➌ ⑩➄➃r❫✥➅
➫➜⑩ ➓ ❬✃➈❪➝✷➔ Ð ↔☎↔❪➅

➫ ➵ ➫➦s ⑩➼➔➯➭✵➅❲♠✳⑩➄➃r❫✥➅➩➲
➫➉❧✱⑥ Ö ➌❰➓ ❧✄⑥➻❚❞❝ ❿ ❚✌×❞❡➴Ø ➓ ❬✃➈❻➝ ➌➷➍ s ⑧❍⑨➒⑨❉❦✆♠✳⑩➄➃r❫✥➅➻➏✧➝

➵ ➫➦s ⑩➼➔ Ð ↔☎↔❪➅➾➬➣❼
➫➉❧✱⑥ Ö ➌❰➓ ❧✄⑥➻❚❞❝ ❿ ❚✌×❞❡➴Ø ➓ ❬✃➈❻➝ ➌➷➍ s ⑧❍⑨➒⑨❉❦✆♠❢s ⑩➷➘➴❼✵➏❅➝

➫➜◗✓❣ ❿ ➧❢②✗❣❘Ü✗❚✌P ➍ ❵✆❩ ⑥❃❨❃❴✱❧❯♠✓❩✥❾ ⑥❃❨❃❴✱❧■♠♥✇❈➏

❮ ❜✆❦✫❬✃⑨❃❩ Þ ➠❊♣✹➢ ➊➌
➫ãs ✇ ➌ ♣
➫ ➵ ➫Û✐✱❧❛t❘❵✄❧✱❧❯❫♥❽✌❨❃❩❻⑧❥➠✩⑧✯⑨●⑨❃❦ ➓ ❬✃➈❪➝❅♠✓s ⑧❍⑨➒⑨❉❦❛➢

➫ßs ⑩➨➔ Ð ↔➒↔❯➅å➬➯❼

æ



➵ ➫Û⑧✯⑨●⑨❃❦ ➓ ❬✃➈❪➝ ➌ s ⑧✯⑨●⑨❃❦
➫ ➵Û⑩ ➓ ❬✃➈❪➝ ➌ ⑩➄➃r❫✥➅

➵ ➫Ô⑩ ➓ ❬✃➈❪➝✷➔ Ð ↔➒↔❯➅
➫➉s ⑩➨➔ Ð ↔☎↔❯➅à➬➣❼
➫➉s ⑩ç➘Ñ❼✞è➴⑩ ➓ ❬✃➈❻➝

➫ ➵ ➫➦s ⑩➨➔Õ➭❃➅➀♠✳⑩➚➃✈❫✥➅➩➲
➫➉❧✄⑥ Ö ➌❰➓ ❧✱⑥❺❚❞❝ ❿ ❚✌×❞❡ÝØ ➓ ❬✃➈❪➝ ➌Ù➍ s ⑧❍⑨➒⑨❉❦✆♠✹⑩➚➃r❫✹➅➉➏❅➝

➵ ➫➦s ⑩➨➔ Ð ↔➒↔❯➅å➬➯❼
➫➉❧✄⑥ Ö ➌❰➓ ❧✱⑥❺❚❞❝ ❿ ❚✌×❞❡ÝØ ➓ ❬✃➈❪➝ ➌Ù➍ s ⑧❍⑨➒⑨❉❦✆♠✓s ⑩➷➘Ñ❼●➏❇➝

➫Û✇ Ö ➌ s ✇
➫➜◗✓❣ ❿ ➧✓②✗❣✗Ü❘❚✌P ➍ ❵☎❩ ⑥✵❨❉❴✱❧■♠✗❩♥❾ ⑥✵❨❉❴✱❧●➏

❮ ❜✆❦✫❬✃⑨❃❩ Þ ✉➁⑨❃❩✳❧❯➠✧♣✥➢
➊➌
➫ßs ✇ ➌ ♣
➫ ➵ ➫➜✐✄❧❊t❘❵✆❧❀❧❯❫♥❽✌❨❉❩❪⑧⑦✉➁⑨❃❩✳❧❯➠✩⑧❍⑨➒⑨❉❦ ➓ ❬✃➈❻➝✫♠✓s ⑧✯⑨●⑨❃❦❛➢

➫ãs ⑩➨➔ Ð ↔☎↔❯➅å➬➣❼
➵ ➫➜✐✄❧❊➆→♦✆♣✳❨❉s✫❫✳⑨➒⑧⑦✉✎⑨❉❩✌❧❯➠✫⑧✯⑨●⑨❃❦ ➓ ❬✃➈❪➝❅♠✗s ⑧❍⑨➒⑨❉❦❛➢

➫ ➵ ➫✻⑩ ➓ ❬✃➈❪➝ ➌ ⑩➄➃r❫✥➅
➫➉s ⑩➳➔ Ð ↔➒↔❯➅à➬➯❼

➵ ➫✻⑩ ➓ ❬✃➈❪➝✣➔ Ð ↔☎↔❯➅
➫➉s ⑩➳➔ Ð ↔➒↔❯➅à➬➯❼
➫➉s ⑩Ù➘Ñ❼❖è➴⑩ ➓ ❬✃➈❪➝

➫ ➵ ➫➉s ⑩➼➔➯➭✵➅➀♠✳⑩➚➃r❫✥➅➩➲
➫➻❧✄⑥ Ö ➌Ù➓ ❧✄⑥❶❚✌❝ ❿ ❚✌×✌❡ÑØ ➓ ❬✃➈❪➝ ➌➷➍ s ⑧✯⑨●⑨❃❦☎♠✳⑩➄➃r❫✥➅➻➏❅➝

➵ ➫➉s ⑩➼➔ Ð ↔☎↔❯➅å➬➣❼
➫➻❧✄⑥❪Ö ➌Ù➓ ❧✄⑥❶❚✌❝ ❿ ❚✌×✌❡ÑØ ➓ ❬✃➈❪➝ ➌➷➍ s ⑧✯⑨●⑨❃❦☎♠❢s ⑩➷➘➴❼✵➏❅➝

➫Ú✇ Ö ➌ s ✇
➫Û◗✓❣ ❿ ➧❢②✗❣✗Ü❘❚✌P ➍ ❵☎❩ ⑥❃❨❃❴✱❧■♠❘❩✥❾ ⑥❃❨❃❴✱❧●➏

❮ ❜✆❦✫❬✃⑨❃❩ æ ➠❁➪❪➢ ➊➌
➫ßs ⑧✯⑨●⑨❃❦ Ö ➌ ❧✄⑥ ➓ ➪❉➝ ➓ ❼☎➝
➫ßs ⑩ Ö ➌ ❧✄⑥ ➓ ➪❉➝ ➓ ➟ ➝
➫ßs ✇❖Ö ➌ ❭❉❧✱⑥✥➠❇❧✄⑥ ➓ ➪❉➝➸➢
➫Û◗✓❣ ❿ ➧❢②✗❣✗Ü❘❚✌P ➍ ❵☎❩ ⑥❃❨❃❴✱❧■♠❢❧✄❦ ⑥✵❨❉❴✱❧●➏

qr❵❀é❯❦
➊➌ ➵ ❮ ❜☎❦✫❬✃⑨❃❩☛❼

➵ ❮ ❜☎❦✫❬✃⑨❃❩☛❼✳✉➁⑨❃❩✳❧
➵ ❮ ❜☎❦✫❬✃⑨❃❩ ➟
➵ ❮ ❜☎❦✫❬✃⑨❃❩ ➟ ✉➁⑨❃❩✳❧
➵❶ê❖♣➦➔➣➭❃qr❵☎❬❁❭●❽✳❾❀⑨❉❴❛t☛❹❺❬✕❩✳♣❻❧❯❼■♠✹q⑦❵✆❬❁❭✵❽✌❾✱⑨❃❴❛t❘⑨❃❴✱❹➉⑨❉❴❛❵■➲⑦ë ❮ ❜✆❦✫❬✃⑨❃❩ Þ ➠❊♣✹➢

ì



➵❶ê❖♣➦➔➣➭❃qr❵☎❬❁❭●❽✳❾❀⑨❉❴❛t☛❹❺❬✕❩✳♣❻❧❯❼■♠✹q⑦❵✆❬❁❭✵❽✌❾✱⑨❃❴❛t❘⑨❃❴✱❹➉⑨❉❴❛❵■➲⑦ë ❮ ❜✆❦✫❬✃⑨❃❩ Þ ✉➁⑨❉❩✌❧❯➠❊♣✹➢
➵❶ê☛➪➤➔ ➟ ↔☎↔❪q➼ë ❮ ❜☎❦✩❬✃⑨❉❩ æ ➠➹➪❻➢

▼❖◆✗P❘◗✓❙❯❚➩➶✠❴❛⑨●❜✱❵✄❧✱❧❛t✛❷✛❴✱❹➉⑨❃❴❛❵

✟❘❆✧✲✩✪✭✬✄✮✵★
❮ ❜✆❦✫❬✃⑨❃❩☛❼❯➠❁➪❪➢

➊➌
➫ÛÒ✥➪➻➔Õ❱❢❵✆❦❀❷❢❸❊t☛❹❺❬✕❩✳♣❻❧❯❼●qr❵☎❬❁❭✵❽✌❾✱⑨❃❴✱❧
➫Û❙❯❚❞❡Ñ❩✥❵☎í ⑥✵❨❉s➹♣✳❵ ➊➌ ❿ ➧✗◆☛◆☛❤☎❚➯❨❶➔➣➠❊s❘↔➒↔❯➅➑î➉➭✵⑩➚➃r❫✹➅➀➲✵➢✷ë■❡❢③✹◗✗❚

④✕❣
❧✄⑥ Ö ➌❰➓ ❧✱⑥❺❚❞❝ ❿ ❚✌×❞❡ÝØ ➓ ➪❉➝ ➌❰➍ ➆❈➇➁➂❢♠✓❩✥❵☎í ⑥❃❨❃s➹♣✳❵✵➏✧➝

➫Û◗✓❣ ❿ ➧❢②✗❣✗Ü❘❚✌P ➍ ❵☎❩ ⑥❃❨❃❴✱❧■♠✗❩✥❾ ⑥❃❨❃❴✱❧■♠✥✇❈➏

❮ ❜✆❦✫❬✃⑨❃❩ ➟ ➠❁➪❪➢
➊➌

➫ÛÒ✥➪➻➔Õ❱❢❵✆❦❀❷❢❸❊t☛❹❺❬✕❩✳♣❻❧❯❼●qr❵☎❬❁❭✵❽✌❾✱⑨❃❴✱❧
➫Û❙❯❚❞❡Ñ❩✥❵☎í ⑥✵❨❉s➹♣✳❵ ➊➌ ❿ ➧✗◆☛◆☛❤☎❚➯❨❶➔➣➠ Ð ↔☎↔❯➅➑î➻➭✵⑩➚➃r❫✥➅➩➲✵➢✠ë■❡❢③✥◗✓❚

④✕❣
❧✄⑥ Ö ➌❰➓ ❧✱⑥❺❚❞❝ ❿ ❚✌×❞❡ÝØ ➓ ➪❉➝ ➌❰➍ t✣❫✥➂❢♠✓❩✥❵☎í ⑥❃❨❃s➹♣✳❵✵➏❊➝

➫Û◗✓❣ ❿ ➧❢②✗❣✗Ü❘❚✌P ➍ ❵☎❩ ⑥❃❨❃❴✱❧■♠✗❩✥❾ ⑥❃❨❃❴✱❧■♠✥✇❈➏

qr❵❀é❯❦
➊➌ ➵Ûê☛➪❺➔ ➟ ↔➒↔❯q➼ë ❮ ❜☎❦✩❬✃⑨❉❩❘❼❪➠➹➪❻➢

➵Ûê☛➪❺➔ ➟ ↔➒↔❯q➼ë ❮ ❜☎❦✩❬✃⑨❉❩ ➟ ➠➹➪❻➢

✇➁❱ ➊➌ ➭ ➍ ➆❖➇✣➂♥♠✓s✥➬➣❼●➏✱➲✷î➉➭ ➍ t➁❫♥➂♥♠❉➪❻➏✛ë✆➪❺➔✿➠ Ð ↔➒↔❯➅ïî➻➭❃⑩➄➃r❫✥➅➩➲❃➢✱➲
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