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ABSTRACT

Wireless sensor networks hold the potential to open new
domains to distributed data acquisition. However, such net-
works are prone to premature failure because some nodes
deplete their batteries more rapidly than others due to work-
load variations, non-uniform communication, and heteroge-
nous hardware. Many-to-one traffic patterns are common
in sensor networks, further increasing node power consump-
tion heterogeneity. Most previous sensor network lifetime
enhancement techniques focused on balancing power distri-
bution, based on the assumption of uniform battery capacity
allocation among homogeneous nodes.

This paper gives a formulation and solution to the cost-
constrained lifetime-aware battery allocation problem for
sensor networks with arbitrary topologies and heterogeneous
power distributions. An integer nonlinear programming for-
mulation is given. Based on an energy–cost battery pack
model and optimal node partitioning algorithm, a rapid bat-
tery pack selection heuristic is developed and its deviation
from optimality is quantified. Experimental results indicate
that the proposed technique achieves network lifetime im-
provements ranging from 3–11× compared to uniform bat-
tery allocation, with no more than 10 battery pack energy
levels. The proposed technique achieves 2–5 orders of mag-
nitude speedup compared to a general-purpose commercial
nonlinear program solver, solution quality improves, and lit-
tle approximation error is observed.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms

Wireless Communication, Resource Allocation

Keywords

Wireless Sensor Network, Lifetime, Battery Allocation

1. INTRODUCTION
Wireless Sensor Networks (WSN) are distributed data ac-

quisition systems consisting of numerous wireless sensor nodes.
They have the potential to allow sensing in applications and
environments where it was previously impossible or pro-
hibitively expensive. For example, WSNs may be used in
weather monitoring, security, tactical surveillance, disaster
management, and intelligent traffic control applications [1].
Infrastructure-free operation is one of their primary advan-
tages. However, this beneficial attribute exacts a penalty.
Distributed infrastructure-free operation in remote locations
makes replacing batteries expensive. Energy constraints are
therefore extremely tight.

WSN lifetime depends on the distribution of power among
nodes in addition to average power consumption. There is
a large body of work on reducing node power consumption.
The most frequently described techniques are power state
control [2], [3], hardware-software co-design [4], [5], as well
as clustering and compression [6]–[8].

Past work has also attempted to balance power consump-
tion among nodes. Much of this work exploits spatial and
temporal data correlation. Work attempting to spatially
balance power consumption allocates sensing, computation,
and communication tasks more evenly among sensor nodes,
e.g., via power-balanced routing [9]–[11] or non-uniform node
deployment [12]. Work on balancing power consumption
via temporal changes multiplexes the assignment of tasks to
nodes, e.g., by periodically adjusting cluster heads [13] or
mobile or multiple sinks [14], [15].

Past work on lifetime extension has focused on distribut-
ing power consumption evenly among sensor nodes based
on the assumption that homogenous nodes with equal bat-
tery capacities are used. However, real WSN deployments
may use heterogenous sensor nodes. For example, Hou et
al. [16] deployed heterogeneous sensor nodes to construct
a two-tier infrastructure to prolong WSN lifetime. Fur-
thermore, the locations of sensor nodes are often carefully
controlled in real deployments in order to reduce the cost. It
is feasible to equip nodes with battery packs with different
capacities, based on their computation and communication
requirements.

Distributed battery configuration has the potential for
both cost and energy efficiency in WSNs with heteroge-
neous spatial power consumption distributions. Conven-
tional power balancing can be inconsistent with energy ef-
ficiency because some tasks and communication events re-
ally are spatially heterogeneous: there is a cost to balancing
power by moving tasks and communication events from lo-
cations that were otherwise optimal. Heterogeneous battery
allocation has the potential to reduce cost by reducing bat-
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tery capacity for lightly loaded nodes and to increase WSN
lifespan by allocating more energy to heavily loaded nodes.
Battery allocation might also be used in future ad-hoc net-
works composed of sensor nodes and other computing de-
vices such as notebooks and mobile phones. In summary,
heterogeneous battery allocation has the potential to im-
prove network lifespan and cost.

Sichitiu and Dutta [17] were the first to report that equip-
ping sensor nodes with different battery capacities can pro-
long WSN lifespan. However, their battery allocation formu-
lation is specific to circular communication topology WSNs
with homogenous nodes. Their formulation minimizes bat-
ter energy instead of cost. Since battery volume is discrete
and battery cost is highly non-linear in energy capacity, a to-
tal energy based cost function has drawbacks for real-world
applications.

This paper makes the following contributions.

1. Given a set of battery types with different energy ca-
pacities and costs, we solve the cost-constrained bat-
tery allocation problem for a WSN with arbitrary topol-
ogy and spatial power consumption distribution. An
integer nonlinear programming (INLP) formulation is
given, which allows the problem to be solved by general
optimization packages.

2. We provide and prove an upper bound on WSN life-
time improvement via energy allocation and indicate
the properties of node partitions resulting in maxi-
mal lifetime. Furthermore, we propose an approxi-
mate method to obtain the node partitioning. We also
provide an energy–cost model for battery packs based
on real data, which permits us to calculate the corre-
sponding energy under different battery pack configu-
rations given a specific budget.

3. Based on the optimal node partitioning and energy-
cost model for battery packs, we proposed a heuristic
to solve the cost-constrained WSN energy allocation
problem. Experimental results indicate that the pro-
posed technique can prolong lifetime by 4–13× with no
more than 10 battery pack levels, compared with the
uniform battery allocation approach. Furthermore,
the heuristic achieves 2–5 orders of magnitudes speedup
and better results than a general-purpose commercial
INLP solver. Solution quality remains within 1% of
optimal.

After we discuss the motivation of this work in the fol-
lowing section, the cost-constrained WSN battery allocation
problem is formulated as an INLP problem in Section 3. The
problem is solved in Section 4 and the errors of the proposed
method are analyzed in Section 5. Section 6 presents the ex-
perimental results. We conclude the work in Section 7.

2. MOTIVATION
This section first discusses the power distribution char-

acteristics of WSNs and defines network lifetime. It then
explains the motivation of the proposed battery allocation
method.

2.1 Power Distribution and Lifetime in WSN
Even in homogenous-node WSNs, the spatial heterogene-

ity of power consumption due to gathering, processing, and
communicating data leads to unequal power consumptions
for different WSN nodes. The flow of data from many leaf
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Figure 1: Uniform vs 2-level battery allocation.

nodes to a sink node results in heterogeneous data trans-
mission rates and therefore power consumptions. In het-
erogenous WSN, the power imbalance is further increased
by dramatic differences in workloads and communication for
different node types. Substantial work has been done to
balance power distribution in WSNs [9]–[11], [13]–[15]. How-
ever, energy balancing techniques often impose substantial
costs by forcing data to take longer routes or moving data to
redistribute computation. The many-to-one traffic patterns
in WSNs also complicate energy balancing [12]. Comple-
mentary techniques, such as heterogenous battery alloca-
tion, have the potential to efficiently extend WSN lifetimes.

Gandham et al. describe several WSN lifetime metrics [14].
In this paper, we will use the time to first node battery de-
pletion lifetime metric. It should be noted that the proposed
method is not limited to this metric. For example, by assign-
ing various weights to the power consumptions of different
sensor nodes, it can be easily extended to deal with a WSN
lifetime metric based on the expiration of a set of critical
nodes.

2.2 Battery Allocation in WSN
This section describes the motivation of lifetime-aware

battery allocation for WSNs with arbitrary topologies, node
configurations, and power distributions. Figure 1 shows a
typical WSN power distribution in which compression and
clustering techniques are used [18], assuming that the total
energy is denoted as Etot and it is assigned to all n sensor
nodes. Given uniform battery allocation, each sensor node
is equipped with a battery containing Etot/n energy. The
first sensor node failure time Tlife is Tlife = Etot/(n · pmax ),
where pmax is the maximum power consumption of any sen-
sor node. The doted line indicates the power level at which
the maximum-power (pmax ) sensor node depletes its battery.
The batteries of the sensor nodes located in the wasted re-
gion have unused energy when the network fails.

Using 2-level battery allocation, it is possible to divide
the total energy into two parts: EHv and ELv (Etot = EHv +
ELv ). nH sensor nodes use high-volume batteries, each of
which has a capacity of EHv/nH . The other nL sensor nodes
have low-volume batteries wit ELv/nL capacity. We denote
the sets composed of sensor nodes with high- and low-volume
batteries as SH and SL. The lifetime for this system is
Tlife = min{EHv/(nH · pH), ELv/(nL · pL)}, where pH and
pL are the maximum power consumption value among the
sensor nodes in set SH and SL, respectively. The 2-level
battery allocation approach increases network lifetime by
moving energy capacity from low power consumption nodes
to high power consumption nodes.

Figure 2 shows an example of energy allocation using dif-
ferent battery packs. Node A is allocated more energy be-
cause it transmits more data. Leaf nodes C and E are al-
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Figure 2: Battery allocation to extend the lifetime
of WSN.

located less energy. This example motivates the primary
research questions addressed in this paper: Given a budget
of energy cost for a WSN with arbitrary topology and power
distribution, how should battery energy be assigned to sensor
nodes to maximize the network lifetime given a constraint
on total cost and on the number of different battery pack
types? The solution should include the lifetime-aware node
partitioning to enable battery pack capacities and battery
allocations to be determined.

3. PRACTICAL BATTERY ALLOCATION
This section describes battery allocation methods for re-

alistic situation when several battery pack energy levels and
their costs are given. An integer nonlinear program (INLP)
problem formulation is given.

3.1 General INLP Formulation
Although batteries can be combined into packs in numer-

ous ways, fabricating and deploying many different types of
battery packs is complex and expensive. In practice, it is ex-
pected that a few battery pack types will be used, and that
this will be sufficient to significantly improve WSN lifetime.
Therefore, we formulate the battery allocation problem with
a constraint on the number of pack levels in addition to a
cost constraint. The objective is to achieve a maximum net-
work lifetime under these constraints.

Let P = (p1, p2, . . . , pn) be the power distribution of the
n−node network. There are m types of batteries with energy
capacities E1, E2, . . . , Em and costs C1, C2, . . . , Cm. The re-
lationship between energy and cost is represented as follows:
Ci = f(Ei), i = 1, . . . , m. By combining battery units into
packs, M types of battery pack levels Epk{1}, Epk{2}, . . . , Epk{M}

are achieved. If ω(i, k) denotes the number of battery units
k assigned to battery pack i, then Epk{i} =

∑m

k=1 ω(i, k)·Ek.
Each node is equipped with one battery pack. The problem
is formulated as follows: given a cost constraint Ctotal ≤
Ccons and the number of battery pack levels M , determine
the numbers of the battery units in the M levels allocated
to different nodes to maximize the network lifetime. To do
the allocation, the sensor nodes are divided into M sets:
L1, L2, . . . , LM . Each Li has Ni nodes, and each node in Li

is assigned a battery pack Epk{i}, i = 1, 2, . . . , M .
The working time of node set Li is

Ti =
Epk{i}

gi

=

∑m

k=1 ω(i, k) · Ek

gi

, i = 1, . . . , M (1)

where gi is the power of the most consuming node in Li.
The lifetime of the system is therefore

T =
M

min
i=1

Ti (2)

Figure 3: Proposed Method Flow: Optimal Parti-
tion and CLPS Algorithm.

The total cost can be represented as

Ctotal =
M
∑

i=1

(

Ni ·
m

∑

k=1

ω(i, k) · f(Ek)

)

(3)

The optimization objective is now formulated as follows:

T =
M

min
i=1

(
∑m

k=1 ω(i, k) · Ek

gi

)

→ max (4)

subject to the following constraints:

1.
∑M

i=1

(

Ni ·
∑m

k=1 ω(i, k) · f(Ek)
)

≤ Ccons and

2. ω(i, k) is a nonnegative integer, i = 1, . . . , n and k =
1, . . . , M .

Given a capacity-price function Ci = f(Ei), i = 1, . . . , m,
the maximum working time optimization problem is for-
mulated as an INLP that can be solved by standard INLP
solver, such as LINGO.

3.2 Complexity Analysis
The time cost of running a general INLP solver on large

problem instance of the battery energy allocation problem
is excessive. Any node can be equipped with a mix of bat-
teries of different types, making search space large. For a
test case with n nodes and m battery types, the size of the
search space is at least O((Dim + 1)m×n), where Dim is
a constant specifying the maximum number of batteries of
each type assigned to each battery pack. For example, if
Dim = 3, 0–3 batteries may be assigned to each pack. The
time complexity could therefore be as high as

(

CM
4m

)n
. In

the case when m = 5, M = 10, and n = 100, the search
space could have 102300 points. Although intelligent search
algorithms can reduce the visited search space, our experi-
mental results in Section 6 indicate that a general-purpose
commercial solver fails to solve the formulation in 24 hours
for networks with more than 64 nodes. Section 4 therefore
describes an efficient heuristic.

4. PROPOSED ALGORITHM
This section proposes a fast heuristic for the battery pack

energy assignment problem.

4.1 Overview of Heuristic
Figure 3 illustrates the proposed algorithm. The first step

is shown in the dotted block, in which the sensor nodes are
partitioned into M sets to allow the lifetime of the wireless
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sensor network to be optimized in the second step. Based
on the partitioning, the second step presents a Cost Lim-
ited Pack Select (CLPS) heuristic to choose proper battery
pack configurations for each set. Finally, the node set parti-
tion, the corresponding battery pack configuration, and the
lifetime of wireless sensor network are produced.

4.2 Optimal Partition for Maximal Lifetime
This section describes a technique to divide the sensor

nodes into M sets to achieve the maximal lifetime improve-
ment. It should be noted that given the spatial power distri-
bution and a bound on the number of energy levels, Theo-
rem 1 shows that the optimal node partition is independent
on the total energy Econs . As the capacity–cost model in
Section 4.3.1 has shown, there is a nearly linear relationship
between cost and energy for battery packs. It will permit
us to find the optimal node partition independently under
given cost constraints.

We now present Theorem 1 to bound the network lifetime
extension for a given node partition based on the energy
constraint and the condition to achieve the optimal node
partition.

Theorem 1. Given an energy constraint Econs and the
power distribution p1, p2, . . . , pn, if Econs can be continuously
allocated, the network lifetime under any node partition of
M sets will at most be

T =
Econs

∑M

i=1(gi · Ni)
, (5)

where gi is the maximum value of the power consumption in
set Li, and Ni is the number of nodes in Li.

Theorem 1 is proven in [19]. It gives the maximum lifetime
of a given node partition under ideal energy allocation, as-
suming that continuous energy allocation is permitted. This
assumption provides the lifetime upper bound in Section 6,
however it can not be met in most real cases with discrete
battery capacities. According to Equation 5, the maximum
lifetime is obtained when the appropriate gi and Ni in the
optimal node partition minimize

∑M

i=1(gi ·Ni). It is obvious
that the partition is independent on the total energy Econs .
Next, we will formulate the optimal partition problem as an
INLP problem and state how to solve it.

By sorting p1, p2, . . . , pn in ascending order as q1, q2, . . . , qn,
the optimization objective is

Vdisc =

M+1
∑

i=2

(qxi
× (xi − xi−1)) → min, (6)

where xi is the objective variable and i = 1, 2, . . . , M + 1
represent locations for the partitioning points in the sorted
power distribution q1, q2, . . . , qn. The constraint conditions
follow:

1. xi is a nonnegative integer, i = 1, . . . , M + 1,

2. x1 = 0, xM+1 = n, and

3. xi > xi−1, i = 2, . . . , M + 1.

This INLP problem differs from traditional nonlinear pro-
gramming because the objective variables are the subscripts
of a discrete mapping. The objective function (Equation 6)
cannot be expressed as an elementary function, prevent-
ing standard solution techniques. It should be noted that
the power consumption sequence q1, q2, . . . , qn is monotoni-
cally increasing. If the discrete mapping is represented as a
piecewise-continuous function (x), without the integer con-
straint on objective parameters, the problem can be solved
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Figure 4: Optimal 4-level Energy Allocation for a
100-node Network.

by a standard INLP solver. The regressive function (x) is
defined as:

(x) = q⌊x⌋ + (q⌊x⌋+1 − q⌊x⌋)(x − ⌊x⌋), (7)
where ⌊x⌋ is the floor of x. The optimization objective is
therefore

Vcont =

M+1
∑

i=2

( (xi) × (xi − xi−1)) → min (8)

subject to

1. x1 = 0, xM+1 = n and

2. xi − xi−1 ≥ 1, i = 2, . . . , M + 1.

Now that the optimization is described as a standard non-
linear programming problem, it is amenable to classical al-
gorithms and tools, e.g., LINGO and MATLAB.

After obtaining the optimal xi of the continuous objective
function, the near-optimal discrete solution is produced by
rounding each xi to [xi]. The rounded solution is defined as:

Vround =

M+1
∑

i=2

( ([xi]) × ([xi] − [xi−1])) → min, (9)

where xis are the solution of the continuous problem (Equa-
tion 8), and [xi] is the rounded values of xi. We use the
solution of Equation 9 to approximate that of Equation 6.
Rounding error is discussed in Section 5.

The above statement provides a method of obtaining the
energy-constrained node partition, which we used to approx-
imate the cost-constrained partition. An example of the par-
tition result is shown in Figure 4, with a 100 node network
and 4 energy levels.

It should be noted that the above INLP node partitioning
problem can be solved much faster than the battery alloca-
tion problem in Section 3 because (a) the search space of the
node partitioning is much smaller and (b) the proper initial
value of node partition can be easy given by average node
sets, while that of the battery allocation is hard to deter-
mine. Section 6 will show the execution time of the battery
allocation by a commercial solver is extremely high.

4.3 Heuristic Method to Select Battery Pack
The previous section provided an algorithm to obtain the

optimal node partition and the relative energy partition ra-
tio for each set. This section will present a Cost Limited
Pack Selection (CLPS) algorithm to transform the energy-
constrained solution to a cost-constrained battery pack al-
location. This section is organized as follows. First, we
present a cost model for battery packs is built based on
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data from battery vendors. Second, we present a method
to allocate battery packs to node sets based on the energy
ratios described in the previous section. Finally, the CLPS
algorithm is designed based on the battery pack cost model
and energy assignment procedure.

4.3.1 Energy-Cost Model for Battery Pack
Compared with manufacturing a specific battery with cus-

tomer specified capacity, battery packs provide a less expen-
sive way to acquire batteries with various volumes under a
cost constraint. Many standard batteries, such as alkaline,
lithium, and NiMH batteries are available. By using stan-
dard batteries, battery packs with different capacities can be
obtained. In order to build an energy–cost model for bat-
tery pack, a battery capacity–price list may be used. In this
paper, we adopted a real capacity–price model for NiMH
AAA batteries from the website of PowerStream [20], which
is listed in Table 1. Note that our modeling method also ap-
plies to other battery packs consisting of alkaline or lithium
batteries. We observed similar capacity-price trends in the
alkaline or lithium battery packs [20].

Algorithm 1 BatComb

Input: Dim, BatUni , CostUni
Output: PackLev , Cost , Comb
1: PackLev = null (empty set)
2: Cost = null
3: for i1 = 1 to Dim do
4: for i2 = 1 to Dim do
5: . . .
6: for im = 1 to Dim do
7: Pick (i1, i2, . . . , im) batteries of each unit type

from BatUni , calculate its cost.
8: Add (i1, i2, . . . , im) into Comb, along with its en-

ergy into PackLev and its cost into Cost .
9: end for

10: . . .
11: end for
12: end for
13: Sort PackLev and Cost in increasing order.
14: Remove dominated combinations.

Next, we propose an algorithm to build the energy-cost
model for the battery pack. Algorithm 1 is designed to
find all non-dominated battery combinations for all possi-
ble battery packs. A battery combination for a pack is
non-dominated if no other battery combination has both the
same or lower price and the same or higher energy capac-
ity. The input Dim denotes the maximum number of each
kind of battery type in one pack. If Dim = 3, the num-
ber of each type of battery in a pack can range from 0–3.
Line 3–12 show the process of enumeration of all possible
combination given Dim. After achieving all possible levels,
the dominated battery combinations are removed (Line 14).
The Pareto curve of energy-cost relationship for all battery
combinations with 6 battery types and Dim = 3 is shown in
Figure 5.

As Figure 5 has shown, the Pareto energy–cost relation-
ship for battery pack is near-linear in most ranges. The
battery with the lowest price per energy unit is used as
much as possible, while other types of batteries are seldom
used. Therefore, the energy–cost Pareto curve can be ap-
proximated by a linear function C = a + b · E. The fitting
error is analyzed and evaluated in Section 5 and Section 6,
which validates the accuracy of this approach. This property
greatly simplifies optimization, allowing the cost constraint
to be transformed into an energy constraint.
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from the Battery Unit Combinational Usage.

4.3.2 Energy Assignment and Quantization

Algorithm 2 PackAssign

Input: Ref , PackLev , Cost , G
Output: T , TotCost , Alloc
1: Assign PackLev(Ref ) to each node in set LM .
2: for each node set Li �= LM do

3: Assign ⌈ G(i)
G(M)

· PackLev(Ref )⌉ to each node in Li.

4: end for
5: Calculate T and TotCost , record the allocation Alloc.

Given the maximum battery pack and relative energy ra-
tio from node partitioning, the energy assignment proce-
dure allocates proper battery packs with various capacities
to each node set. The sensor nodes in each set are equipped
with battery packs having the same capacity. The input
of Algorithm 2 contains the combinational energy capacity
vector PackLev , the corresponding price vector Cost from
Algorithm 1, the reference index Ref , and the power vector
G, where each G(i) refers to the maximum power consump-
tion of sensor node in separate node sets Li, i = 1, 2, . . . , M .
In Line 1, the reference level PackLev(Ref ) is assigned to the
most power consuming node set LM . For each other node
set, their energy capacity values are given out by multiply-

ing the energy ratio G(i)
G(M)

given by the energy-constrained

partition (Section 4.2). In order to map those energy capac-
ity values to real battery packs, the pack with the nearest
energy capacity from PackLev is chosen. The output of the
algorithm includes the network lifetime T , the total battery
price TotCost , and the battery allocation result Alloc.

4.3.3 Cost Limited Pack Selection
Based on the energy-cost model and energy assignment

procedure, CLPS (Algorithm 3) solves the entire battery al-
location problem to achieve the maximum network lifetime
and limits the total cost to Ccons . The first phase of Algo-
rithm 3 determines the maximum number of each type of
battery in one pack Dim (Line 1–11). The algorithm be-
gin its search from Dim = 1. By calling Algorithm 1, the
combinational energy capacity vector PackLev and the cor-
responding price vector Cost are obtained. Those vectors
are given to Algorithm 2, which generates a battery pack al-
location. If the cost of the allocation is less than Ccons , Dim
is increased. The second phase determines the final alloca-
tion (Line 12–15). By reducing Ref incrementally, a cost
just below and close to the cost constraint Ccons is achieved.
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Table 1: Capacity-Price Relationship of PowerStream NiMH AAA Battery
Capacity (Amp-Hours) 0.10 0.12 0.30 0.65 0.70 0.80 00 .90

Unit Price ($)
Quantity = 100 0.90 0.94 1.12 1.22 1.36 1.54 1.68
Quantity = 1000 0.76 0.79 0.94 1.01 1.13 1.28 1.39

The battery energy allocation Alloc and the battery combi-
nation Comb are produced.

Algorithm 3 CLPS

1: Dim ← 1.
2: while 1 do
3: (PackLev ,Cost ,Comb) ←

BatComb (Dim,BatUni ,CostUni).
4: Ref ← index of the Maximum PackLev .
5: (T,TotCost ,Alloc) ←

PackAssign (Ref , G,PackLev ,Cost).
6: if TotCost > Ccons then
7: Break.
8: else
9: Dim ← Dim + 1.

10: end if
11: end while
12: while TotCost > Ccons do
13: Ref ← Ref − 1.
14: (T,TotCost ,Alloc) ←

PackAssign (Ref , G,PackLev ,Cost).
15: end while
16: Output Alloc and Comb.

5. ERROR ANALYSIS
In order to control execution time, the proposed method

makes three approximation that may introduce errors.

5.1 Node Partition Error Bound
When we interpolate the power distribution vector to do

node partitioning, the relative error has an upper bound.

Theorem 2. For the battery allocation problem defined
as Equation 6, the minimum value of the objective function
satisfies the following constraint:

|
Vround − Vdisc

Vround

| ≤ |
Vround − Vcont

Vround

|, (10)

where Vcont and Vround are defined in Equation 8 and Equa-
tion 9.

Theorem 2 is proven in [19]. It provides an error bound
for the proposed node partitioning method. Experimental
results in Section 6 show that the rounding error for the
continuous solution is small. Therefore, Equation 9 well
approximates Equation 6.

5.2 Linear Fitting Error
The battery pack modeling phase is subject to error as a

result of energy–cost linear fitting. Simulations show that
most battery packs are found in the linear region of Figure 5.
This is also validated in Section 6. Note that this might not
hold for some sets of batteries.

5.3 Energy Level Quantization Error Bound
The optimal node and energy partition makes the lifetime

of each node set equivalent. However, in practice designers
are limited to discrete battery pack levels. The quantization
of energy level thus introduces error. The lifetime can be

compared with the (ideal) continuous-energy lifetime, yield-
ing the following expression:

R =
|Treal − Tcont |

Tcont

, (11)

where Treal and Tcont denote the network lifetime for the
discrete and continuous cases. Based on Equations 1 and 2,
Treal can be represented as minM

i=1 Epk{i}/gi. By assuming
that the first failure node is in set Lt, the relative error can
be rewritten as

R =
|Epk{t}/gt − E′

pk{t}/gt|

E′
pk{t}/gt

=
|Epk{t} − E′

pk{t}|

E′
pk{t}

, (12)

where E′
pk{t} is the energy assigned to every node in set Lt

in the continuous case. The numerator of the fraction is the
quantization error, which could not be larger than the energy
of the minimum battery pack difference Edmin . Treal should
be no more than Tcont , so Epk{t} ≤ E′

pk{t}, the relative error
is therefore bounded as

R ≤
Edmin

Epk{t}

, (13)

where Edmin is the minimum battery pack difference, Epk{t}

is the energy assigned to the first failed node.

6. EVALUATION
This section describes our experimental setup and com-

pares the battery allocation approach with uniform battery
approach. The proposed algorithm is then compared with a
standard INLP solver and deviation from optimality for the
CLPS algorithm is evaluated.

6.1 Experimental Setup
To evaluate the proposed CLPS algorithm, we assumed a

µAMPS-1 node [21] based WSN platform [18] when deter-
mining sensor node power distribution and network model.
The number of sensor nodes ranges from 36–900. The av-
erage node-to-node distance d0 is 20m, and the transmis-
sion parameters are extracted from a real hardware plat-
form [21]. Adaptive clustering and compression techniques
are considered and the data aggregation model is obtained
from differential compression and real data [22]. Based on
these configurations, we obtained the power distribution of
the WSN, P = (p1, p2, · · · , pn). For the WSN containing
100 nodes, the difference between the maximum and mini-
mum single node power consumptions varies by 2–3 orders
of magnitude in our experiments, which can be observed in
Figure 4. The energy–cost model for battery packs is built
based on the data in Table 1. Six type batteries are con-
sidered in our experiments. The proposed CLPS method is
implemented in MATLAB running on a PC with a 2.67 Ghz
Intel processor with 2GB RAM.

6.2 Network Lifetime Impact
This section discusses the impact of the proposed tech-

nique on network lifetime. The cost budget is converted to
an energy budget as described in Section 6.4.2 and the refer-
ence strategy is defined as the continuous energy allocation
with the continuous node partition (Equation 8), which is
unreachable in reality. The reference solution obtains equal
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Figure 7: Lifetime difference in different nodes of
uniform and 10 battery pack levels in a 400-node
network.

lifetimes for each node set. Simulations are run on networks
with different sizes and numbers of battery pack levels.

Figure 6 illustrates the impact of battery pack level count
(1–40) on the network lifetime compared with the traditional
uniform battery allocation. Network sizes ranging from 64
to 900 nodes are considered. Given a cost budget, the net-
work lifetime (normalized by that of uniform-level battery)
increased by up to 13×. The benefit increases with network
size. The normalized lifetime increase for a WSN ranges
from 3.55× (for 64 nodes) to 13.35× (for 900 nodes). This
results from the greater node power consumption hetero-
geneity in larger networks.

The differences between the discrete and continuous meth-
ods in Figure 6 are small: discretization leads to only small
deviations from optimality. Increasing the number of bat-
tery pack levels M initially has an large effect on lifetime
but this effect saturates. In our experiments, 10 battery
pack levels were sufficient to improve lifetime from 3–11×,
depending on network size. It implies that a reasonable
number of battery pack level would be enough for real sen-
sor deployment.

Theorem 1 indicates that the ideal battery allocation would
lead to the equal lifetime for each node set. Figure 7 shows
the lifetime difference of each sensor node in a 20×20 net-
work with 10 battery pack levels. Lifetime differs by nearly
7 orders of magnitude from node to node if only a single
battery pack levels is used. The proposed method with 10

Table 2: Time & Performance Comparisons between
CLPS and LINGO

Network Normalized Lifetime Execution Time (s)
Size CLPS LINGO Ref CLPS LINGO
36 3.22 1.93 3.26 0.004 125
49 3.31 1.99 3.38 0.004 405
64 3.59 3.13 3.70 0.015 1.06×10

100 5.63 N/A 5.80 0.010 N/A
400 9.58 N/A 10.43 0.014 N/A
900 15.11 N/A 15.59 0.067 N/A

battery pack levels largely balances the node lifetimes.

6.3 Performance Comparisons with LINGO
As stated in Section 3.2, the time to solve the problem

using a general-purpose INLP solver was excessive. We now
compare the proposed algorithm with LINGO, a popular
solver for linear and nonlinear programming. The best-case
continuous-level results are also provided to bound devia-
tion from optimality. Since LINGO could not handle node
partitioning, we do not limit the number of the battery pack
types in the comparison. A branch-and-bound solver and a
default iteration number are used in LINGO. The results are
listed in Table 2.

For the settings in Table 2, the proposed CLPS method
gains an up to 2–5 orders of magnitude speedup over LINGO.
Furthermore, our approach can solve the battery energy al-
location problem for WSNs with 400 nodes in than 0.02
seconds while LINGO fails to find the local optimal solu-
tions after 24 hours. In the small cases, our approach gives
even better solutions than the locally optimal solutions by
LINGO; LINGO does not necessarily provide the globally
optimal solutions. Our approach considers the characteris-
tics of solution to reduce the search space. It may be possible
to provide LINGO other configurations to get a better result
using more execution time. However, this comparison pro-
vides evidence that straight-forward use of a general-purpose
INLP solver is inappropriate for the WSN battery energy
allocation problem, and that the proposed solution rapidly
produces high-quality results.

6.4 Error Analysis
In this section, we experimentally quantify the sources

of suboptimality for the proposed technique, which are de-
scribed in Section 5.

6.4.1 Error Bound in Node Partition
Theorem 2 states that the relative error of the rounded so-

lution Vround and the discrete solution Vdisc is no more than
that between the rounded solution Vround and the continu-
ous solution Vcont . We can therefore bound the error of the
approximate method to between Vround and Vcont . The rela-
tive errors in a wide range of network sizes and energy levels
are listed in Table 3. The less than 2‰ error implies that
the approximate partitioning method is accurate enough to
solve the INLP problem.

6.4.2 Error of Battery Pack Energy-Cost Fitting
The relationship between battery packs and their costs are

fitted by a linear function C = a+ b ·E, permitting some er-
ror. A least squared error fitting algorithm is used [23]. The
resulting correlation coefficients are listed in Table 4, where
the maximum number of each battery type Dim ranges from
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Table 3: Relative Error Bound of Partition(‰)
Network Size 36 49 64 100 400 900

5 0.66 0.15 0.83 0.18 0.14 0.40
Energy 10 0.93 0.56 0.45 0.47 0.18 1.25
Level M 15 0.23 0.19 0.11 0.35 0.34 0.82

20 0.24 0.58 0.10 0.71 0.13 0.23

Table 4: Energy-Cost Model Parameters and Linear
Correlation Coefficient

Dim 3 4 5 6
a 0.0077 -0.0018 -0.0161 0.0319
b 1.8983 1.8925 1.8906 1.8777

Coef. r 0.9994 0.9999 0.9998 0.9999

3 to 6. The linear fitting relative coefficients are close to 1,
which means characterizing the energy–cost relationship as
a linear function is reasonable.

6.4.3 Error Bound in Discrete Battery Pack Level
Selection

The error bound between the discrete battery pack levels
and continuous energy levels is discussed in Section 5. From
Figure 6, we found that the lifetime difference between the
proposed method and the continuous (ideal case) method
is much less than the error bound given in Equation 13.
The error bounds and the errors in simulations are shown in
Table 5.

7. CONCLUSIONS
Energy budgets are tight for low-cost battery-powered

WSN nodes. Unbalanced power distributions due to the
intrinsic many-to-one traffic in WSNs results in uneven bat-
tery depletion and short WSN lifetimes. Previous energy
balancing techniques considered homogeneous node WSNs
with uniform battery capacities. This paper formulates the
cost-constrained heterogenous WSN battery allocation prob-
lem as an INLP and provides a fast heuristic that produces
near-optimal solutions. Experimental results show that the
proposed techniques can provide 3–11× lifetime improve-
ment with no more than 10 battery pack levels compared
with uniform battery allocation. Compared with popular
INLP solver, the proposed method not only gains a 2–5 or-
ders of magnitude speed improvement and produces better
results.
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