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Abstract—Technology scaling has increased concerns about
transient faults due to soft errors and permanent faults due to
lifetime wear processes. Although researchers have investigated
related problems, they have either considered only one of the
two reliability concerns or presented simple recovery allocation
algorithms that cannot effectively use available time slack to
improve soft-error reliability. This paper introduces a framework
for improving soft-error reliability while satisfying lifetime relia-
bility and real-time constraints. We present a dynamic recovery
allocation technique that guarantees to recover any failed task
if the remaining slack is adequate. Based on this technique,
we propose two scheduling algorithms for task sets with differ-
ent characteristics to improve system-level soft-error reliability.
Lifetime reliability requirements are satisfied by reducing core
frequencies for appropriate tasks, thereby reducing wear due to
temperature and thermal cycling. Simulation results show that
the proposed framework reduces the probability of failure by at
least 8% and 73% on average compared to existing approaches.

Keywords—Soft-error reliability; Lifetime reliability; Dynamic
recovery; Real-time embedded system.

I. INTRODUCTION

Since many real-time embedded systems are used in safety
critical applications and may be expensive as well as difficult
to replace, soft-error reliability (SER) due to transient faults
as well as lifetime reliability (LTR) due to permanent faults
are important design considerations. Techniques for reducing
power, energy, and/or temperature through reducing core fre-
quency to improve LTR, however, reduce SER, and vice versa.
Motivated by applications such as infotainment systems [1], we
focus on improving system-level SER while satisfying some
pre-defined LTR and deadline requirements.

Although most existing work either targets SER or LTR [2]–
[8], a few recent papers have examined both [9]–[11]. Das et al.
aimed to maximize the minimum of SER and LTR by mapping
tasks and increasing core frequencies [9]. Ma et al. proposed
to maximize SER subject to LTR constraints on “big-little”
architectures [11]. Both work improve SER while considering
LTR for systems running real-time tasks, but neither leverages
recovery techniques, which are effective methods to further
improve SER. Zhou et al. proposed a technique to maximize
system availability by allowing failed tasks to re-execute and
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increasing core frequencies to improve SER [10]. However,
this greedy approach allocates recovery statically, which is less
effective than dynamically allocate recoveries.

In this paper, we are interested in maximizing SER while
satisfying real-time and LTR constraints. In order to maximize
SER, we introduce a novel dynamic recovery technique where
slack is shared and all failed tasks can be recovered if
there is sufficient remaining slack for executing the tasks.
A task is recovered by executing again from the beginning,
and we assume all tasks are allowed to re-execute. We also
assume faults are detected at the end of each task and that
detection overhead can be ignored [12]. Compared to existing
approaches that limit the number of recoveries [4] or assign
redundancies to tasks statically [7], our technique provides the
highest level of slack sharing flexibility, as will be shown in
Section V. Since the effectiveness of the dynamic recovery
technique depends on the task execution order, we explore
how task scheduling can affect system-level SER and present
two scheduling algorithms to improve the system-level SER
for tasks with different characteristics.

We have developed a soft-error reliability improvement
framework, referred to as RIF, to solve the problem identified
above. RIF is composed of two components. The first one
aims at increasing SER through task scheduling (i.e., deter-
mining the task priorities) and dynamic recovery. If LTR is
lower than a predefined limit, the second component of RIF
is used to increase LTR subject to real-time constraints by
reducing core frequencies for appropriate tasks. We make three
main contributions. (i) We propose a new dynamic recovery
allocation technique and derive the corresponding system-level
SER. (ii) We introduce two scheduling algorithms for task sets
with different characteristics to improve system-level SER. The
first algorithm is computationally efficient and supports the
special case where the execution times of tasks in a task set
are similar and the amount of available slack is small. The
second algorithm is more powerful and handles general task
sets but at a higher time complexity. (iii) We devise a less
costly method to obtain system-level SER if a task set belongs
to the special case in (ii).

We evaluated RIF in a simulator, which is constructed based
on the Nvidia Jetson TK1 board [13] with tasks from the
MiBench benchmark suite [14]. RIF reduces the probability
of failure by at least 8% and 73% on average when compared
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to existing approaches.

II. SYSTEM MODELS AND PROBLEM FORMULATION

In this section, we first introduce the system models. We
then outline the problem of interest and present an overview
of our framework.

A. Task model
We consider a frame-based task set composed of indepen-

dent tasks. Tasks are executed on a DVFS-enabled multicore
processor where each core supports L frequency levels. The
frequency levels are sorted in increasing order such that the
Lth level, lL, has the highest frequency. We assume that tasks
are allocated to cores at design time (similar to partitioned
scheduling [15]) and task migration between cores is not
allowed [4], [11], [15], [16]. We also assume a task and its
recovery should execute on the same core.

A task, τi, is associated with a tuple {fi(li), ci(li), pi}
where fi(li) and ci(li) are the core frequency and worst-case
execution time of τi if the core is running at frequency level
li, respectively. pi is τ ′is priority (a large value for pi denotes a
higher priority), and tasks’ priorities determine their execution
order. Since we aim to guarantee the real-time constraint for
each task, any changes to priorities are acceptable as long as
they do not violate timing requirements. Tasks should complete
their executions by a common deadline, D. The slack is used
to re-execute failed tasks and a core’s slack, s, is defined as
D −∑Π

i=1 ci(li) where Π is the tasks executing on the core.
Since tasks have the same period, we do not need to distinguish
instances (i.e., jobs) of a task.

B. Soft-error and lifetime reliability
The soft-error reliability of a task is the probability that this

task successfully completes. For task τi executing at the core
frequency level li, r

t
i(li) is the probability that no soft error

occurs during its normal execution. rti(li) depends on the core
frequency level and the execution time of τi [2], [9], [10],

rti(li) = e
−λ(li) ci(li)fi(li) , (1)

where λ(li) is the fault arrival rate and

λ(li) = λL10
d×(1−fi(li))

1−fi(l1) , (2)

where l1 is the lowest core frequency level and λL is the
average fault arrival rate when executing at the highest fre-
quency level. d is a hardware specific constant that indicates
the sensitivity of fault rates on frequency scaling.

Lifetime reliability depends on multiple wear-out effects.
Wear due to electromigration, stress migration, and time-
dependent dielectric breakdown is exponentially dependent on
operating temperature. Wear due to thermal cycling depends on
the amplitude (e.g., the difference between the peak and valley
temperature), period, and cycle maximum temperature [17]. To
improve LTR, both the operating temperature and the effects
of thermal cycling should be reduced. We use a Monte Carlo
simulation based modeling tool [17] to obtain system-level
LTR and evaluate our framework, but our work is independent
on the underlying reliability modeling tool.

C. Problem formulation
Given the importance of SER, LTR, and real-time require-

ments, we aim to solve the problem of maximizing system-
level SER for each core, Rsys, while satisfying real-time and
LTR (measured by the mean-time-to-failure (MTTF) [5], [17])
constraints:

∑

τi∈Π
ci(li) ≤ D, (3)

MTTF ≥ MTTFTH , (4)

where MTTFTH is the minimum MTTF that the system must
achieve [16] and Π is the tasks executing on the core. Rsys is
defined as the probability that all tasks complete successfully.
A task is considered to be successful if it encounters no soft
error during its first execution or successfully completes in the
second execution (where the second execution is the recovery).
Hence, Rsys is not only determined by the SER of each
task, but also the recovery technique. We will discuss how to
obtain Rsys with our proposed dynamic recovery technique in
Section III-A. Note that we assume task migration between
cores is not allowed and tasks execute on the same core
with their recoveries. Since the solutions are independent on
different cores, we propose to solve the problem for one core,
and the solution can be applied to other cores.

D. Overview of framework
We propose a soft-error reliability improvement framework

(RIF) to solve the problem defined above. RIF consists of two
components. One focuses on improving system-level SER and
the other on satisfying LTR and real-time constraints. In order
to maximize system-level SER, the first component allows
tasks to run at the highest core frequency and improves system-
level SER through dynamic recovery and task scheduling.
We first derive how to calculate system-level SER with our
dynamic recovery technique and discuss how task scheduling
affects the system-level SER. Then, we describe an efficient
scheduling algorithm for task sets with some special properties
and a more powerful scheduling algorithm for general task
sets. The second component of RIF checks whether the LTR
constraint (in (4)) is satisfied. If not, core frequencies of lower
priority and power-hungry tasks are iteratively reduced until
both the LTR and real-time constraints are satisfied. In the
subsequent sections, we will discuss the details.

III. IMPROVING SOFT-ERROR RELIABILITY

In this section, we first introduce our dynamic recovery
technique and discuss how task scheduling affects system-level
SER. We allow all tasks to run at the highest core frequency,
and then schedule tasks to improve the system-level SER.

A. Dynamic recovery technique
We propose a new approach to dynamically allocate recov-

eries to failed tasks. In our technique, available slack is shared
by all tasks and dynamically assigned on a first-come, first-
serve basis. A recovery is allocated to task τi if the remaining
slack is no smaller than ci(lL). The recoveries are required to
execute at the highest core frequency. Although a recovery may
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still fail due to the occurrence of soft errors, the probability
that both a task and its recovery fail is very low. Therefore,
we only allocate one recovery for each task to prevent a task
from consuming too much slack1. Since a recovery is allocated
only when the remaining slack is adequate, the recovery itself
will not violate the real-time requirement. At the same time,
whether a high priority task consumes slack affects recovery
allocation of a lower priority task since the higher priority
task is executed first. Hence, task scheduling directly impacts
system-level SER.

We now discuss how to obtain the system-level SER with a
given schedule S . For a schedule, rsi (S) denotes the probability
that τi has a recovery and the recovery completes successfully.
Hence, the probability that a task completes successfully is

ri(S) = 1− (1− rti)× (1− rsi (S)). (5)

It follows that the system-level SER is

Rsys(S) =
n∏

i=1

{1− (1− rti)(1− rsi (S))}. (6)

Rsys(S) denotes the system-level SER is determined by S .
The variable rsi (S) is the key to obtain the Rsys(S). We use

a concept called execution pattern to calculate rsi (S). Suppose
S = {τ1, . . . , τn} where task τi has a higher priority than τi+1.
We use the execution pattern, Pi, to indicate the successful and
failed tasks before τi. Inside an execution pattern, τ+k denotes
the successful completion of τk and τ−k indicates that τk has
failed. Since one execution pattern is composed of i−1 tasks,
there are 2i−1 patterns for τi, and we use Pi,j to indicate the
jth pattern. The value of rsi (S) can be determined if we know
the time used by the recovered tasks in each pattern, denoted by
T (Pi,j), and the probability that each pattern appears, denoted
by Prob(Pi,j). Suppose there are m patterns satisfying

T (Pi,j) + ci(lL) ≤ s, (7)

where s is the shared slack. Then rsi (S) can be calculated by

rsi (S) =
{

rti ×
∑m
j=1 P rob(Pi,j), if m > 0,

0, otherwise,
(8)

where m = 0 means that τi can never be recovered.
The key to obtain rsi (S) is to calculate T (Pi,j) and

Prob(Pi,j) for each pattern. T (Pi,j) can be obtained as fol-
lows. A task τi uses slack to recover only when the remaining
slack is larger than ci(lL), so it is possible that a failed task
with large execution time does not use the slack. We search
each failed task in Pi,j and calculate T (Pi,j) iteratively. We
first initialize T (Pi,j) = 0. Then, for each failed task τk in
Pi,j , if ck(lL) ≤ s, update T (Pi,j) = T (Pi,j) + ck(lL) and
s = s − ck(lL). For Prob(Pi,j), note that it simply depends
on the SER of each task included in the pattern. That is,

P rob(Pi,j) =
∏

τ+
k
∈Pi,j

rtk ×
∏

τ−
k
∈Pi,j

(1− rtk). (9)

Based on Eq. (6), task scheduling affects the system-level SER.
We next introduce two scheduling algorithms for task sets with
different characteristics to improve the system-level SER.

1The presented technique can be extended to allow some critical tasks to
receive more than one recovery. The details are left to future work.

B. An efficient scheduling algorithm
We propose an efficient soft-error reliability improvement

scheduling algorithm (ERIS) to improve system-level SER if
the task sets satisfy certain conditions.

The algorithm is built on an observation that a schedule
allowing more tasks to recover does not always leads to a
higher system-level SER. For a given slack, allowing tasks
with short execution time to recover may prevent tasks with
long execution time to re-execute and finally reduce the overall
system-level SER. Only when task sets satisfy the following
conditions, allowing more tasks to recover leads to a higher
system-level SER.

Theorem 1: If a core has n tasks, and the slack, s, satisfies
the following conditions,

(i) s < cmax,
(ii) (n− 1)cmin ≥ 2cmax,

then a schedule allowing more tasks to recover always leads
to a higher system-level SER. cmin and cmax are shortest and
longest execution time when the core frequency at the highest
level, respectively. We omit the proof due to page limit.

Theorem 1 provides some intuition on how to schedule
tasks. That is, the schedule that maximizes the number of
tasks capable of being recovered would maximize the system-
level SER. Observe that a task with a high priority and which
executes earlier has a larger probability of recovering because
less slack is consumed by prior tasks. In order to preserve slack
for later tasks, high priority tasks should have short execution
times. Hence, we propose an efficient scheduling algorithm
(ERIS) that assigns the priority to tasks according to their
execution times. Given a task set that satisfies the conditions
in Theorem 1 and is scheduled according to ERIS, i.e., pi < pj
if ci(lL) > cj(lL), then the system-level SER is maximized.

Since obtaining the system-level SER is useful not only for
evaluating our proposed framework, but also in other work,
e.g., reliability-aware energy management [4], we develop a
method to obtain the system-level SER in pseudo-polynomial
time for task sets that satisfy Theorem 1 and which are
scheduled by ERIS. This method reduces the overhead in
finding the execution patterns satisfying (7). We simplify rsi (S)
to rsi whenever doing so does not introduce ambiguity.

Suppose a schedule of n tasks is S = {τ1, . . . , τn}, where
pi > pi+1 and ci(lL) < ci+1(lL). For τi, we introduce
two concepts: i) heavy set, Ω+

i , is a subset of tasks in
{τ1, . . . , τi−1} where if all tasks in Ω+

i fail, the slack needed
to recover all tasks in Ω+

i is larger than s − ci(lL); ii) light
set, Ω−i , is a subset of tasks in {τ1, . . . , τi−1} where if all
tasks in Ω−i fail, the slack needed to recover is smaller than
or equal to s− ci(lL). Tasks in both Ω+

i and Ω−i are sorted by
decreasing priority. Let Ω−i,j be the jth light set for task τi. If

Ω−i,j = {τ1, τ2}, it means that the combined slack needed by
τ1 and τ2 to recover is smaller than or equal to s − ci(lL).
Based on this definition, one light set coincides with one
execution pattern satisfying (7). Hence, finding all the light sets
is equivalent to finding all the execution patterns satisfying (7),
which can then be used to compute the system-level SER.
We state three lemmas used to find light sets. The proofs are
omitted due to page limit.

Design, Automation And Test in Europe (DATE 2018) 517



Lemma 1: With ERIS, a set Ωi is a heavy set for τi only
when
∑

τj∈Ωi
cj(lL) > s− ci(lL).

Lemma 2: If Ω+
i,j is a heavy set of τi, Ω

+
i,k is also a heavy

set if Ω+
i,k is a super set of Ω+

i,j , i.e., Ω+
i,j ⊂ Ω+

i,k.

Lemma 3: With ERIS, if Ω+
i,j is a heavy set of τi, it is also

a heavy set of τi+1.
For a task τi, we divide all its light sets into groups. Gi,k,

the kth group of τi’s light sets, consists of light sets in which
each set has exactly k tasks. Based on this definition, for task
τi, there are i groups, i.e., Gi,0 to Gi,i−1. Based on Lemmas 1–
3 and the definition of Gi,k, we provide a guideline on how
to find light sets for each task, which will, in turn, help to
maximize system-level SER.

Theorem 2: For task sets that satisfy Theorem 1 and which
are scheduled by ERIS, if a light set, Ω−, in Gi−1,k satisfies∑

τj∈Ω− cj(lL) ≤ s− ci(lL), Ω
− is also a light set in Gi,k. If

Ω− is a light set in Gi−1,k−1, it is also a light set in Gi,k if
ci−1(lL) +

∑
τj∈Ω−(cj(lL)) ≤ s− ci(lL).

We omit the proof of Theorem 2 due to page limit. Based
on Theorem 2, we find all light sets for each task iteratively
following a dynamic programming strategy.

The details of our method is shown in Alg. 1. We initialize
Gi,0 for each task in Lines 2–8. Gi,0 is initialized to {∅} if
ci(lL) ≤ s, which means τi can be recovered if the slack is
not consumed by other tasks. Gi,0 = ∅ means τi can never
be recovered. We construct Gi,k for each task in Lines 9–28.
Based on Theorem 2, Gi,k is first set to ∅ (in Line 11) and
then additional light sets are added to Gi,k in Lines 12–22.
For each light set in Gi−1,k, if it is still a light set for τi, it is
added into Gi,k (in Lines 12–16). Similarly, for each light set
in Gi−1,k−1, we determine whether the set remains light if τi−1

is added (in Lines 17–22). Based on Lemma 2, if Gi,k = ∅,
groups from Gi,k+1 to Gi,i−1 are also equal to ∅ (in Lines 23–
26). Finally we return groups of light sets {Gi,0, . . . , Gi,i−1}
(in Line 29). The complexity of Alg. 1 is O(n × K) where
K(K ≤ 2n) is the number of returned light sets.

C. A general scheduling algorithm

Although ERIS is more efficient and effective in scheduling
tasks satisfying the conditions in Theorem 1, for general task
sets, it may lead to suboptimal schedule. In this subsection, we
present a general soft-error reliability improvement scheduling
algorithm (GRIS) for general task sets where a task’s execu-
tion time can be any arbitrary value. GRIS guarantees the
system-level SER is always higher than the static recovery
techniques [4], [10]. GRIS first finds the optimal solution, set
Φ, for the static recovery allocation problem. It then elevates
the priority of tasks in Φ to further improve SER.

It can be seen that solving the static recovery allocation
problem is the key to GRIS. This static recovery allocation
problem is a variation of the knapsack problem, which can
be solved using dynamic programming. Let Φ{i, s′} be a set
of tasks that achieves the maximum system-level SER where
some tasks in {τ1, τ2, . . . , τi} can be recovered under the
constraint that the slack is less than or equal to s′. Given
this construction, a dynamic program for solving the knapsack

Algorithm 1 Find Light Sets

1: procedure FIND SET(S = {τ1, τ2, . . . , τn})
2: for task τi in {τ1, τ2, . . . , τn} do
3: if ci(lL) ≤ s then
4: Gi,0 = {∅}
5: else
6: Gi,0 = ∅
7: end if
8: end for
9: for task τi in {τ2, τ3, . . . , τn} do

10: for k in {1, 2, . . . , i− 1} do
11: Gi,k = ∅
12: for light set Ω− in Gi−1,k do
13: if

∑
τj∈Ω−(cj(lL)) ≤ s− ci(lL) then

14: Gi,k = {Gi,k ∪ Ω−}
15: end if
16: end for
17: for light set Ω− in Gi−1,k−1 do
18: if ci−1(lL)+

∑
τj∈Ω−(cj(lL)) ≤ s− ci(lL) then

19: Ω− = {Ω− ∪ τi−1}
20: Gi,k = {Gi,k ∪ Ω−}
21: end if
22: end for
23: if Gi,k = ∅ then
24: Gi,k+1 = · · · = Gi,i−1 = ∅
25: break
26: end if
27: end for
28: end for
29: return {Gi,0, . . . , Gi,i−1} for i in {1, 2, . . . , n}
30: end procedure

problem can be leveraged to find the optimal solution, Φ{n, s}.
We omit the details due to space limit.

Based on the solution to the static allocation problem, tasks
in Φ have a higher priority than tasks not in Φ. The priority is
assigned in such a way that if ci(lL) > cj(lL) then pi < pj for
both τi and τj in Φ. With dynamic recovery allocation, this
scheduling algorithm guarantees that tasks in Φ can always
be recovered. Tasks not in Φ can still have a recovery if some
tasks in Φ successfully complete their execution. Hence, GRIS
achieves a higher system-level SER than the optimal solution
to the static recovery allocation problem. Since GRIS is a
variation of knapsack problem, it can be completed in O(n×
K) where K is the number of tasks in Φ{n, s}. Compared to
ERIS, although GRIS is more complicated, simulation results
in Section V show that GRIS is more effective at improving
system-level SER than ERIS in some cases.

IV. SATISFYING LIFETIME RELIABILITY

To improve SER, it is desirable to execute tasks at the
highest core frequency. However, this core frequency may
violate the LTR constraint in (4). To address this problem,
we propose to drop tasks’ core frequencies to guarantee the
LTR requirement. Dropping a task’s core frequency reduces the
power and operating temperature, but in turn may violate tasks’
timing requirements and increase the arrival rate of transient
faults (in Eq. (2)). In order to solve this trade-off problem, we
propose a heuristic to reduce core frequencies for appropriate
tasks. Note that although we reduce core frequencies of tasks,
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recoveries always execute at the highest core frequency. Since
the probability that a task fails is very low, running a recovery
at the highest core frequency does not significantly impact
long-term LTR.

We consider the LTR due to both operating temperature
and thermal cycling. Reducing core frequencies for tasks
is effective in reducing the operating temperature but may
introduce thermal cycles. For the task model and dynamic
recovery allocation technique under consideration, a core is
only active in the earlier part of a period. Hence, if all tasks are
running at the same frequency, there is only one thermal cycle
in each period. However, if the frequency of task τi is lower
or higher than both τi−1 and τi+1, more thermal cycles may
be introduced. Hence, we aim to reduce the core frequencies
of tasks while avoiding additional thermal cycles.

Reducing a task’s core frequency increases its execution
time and reduces both its SER and available slack. This task,
in the end, has a higher failure probability and is more likely
to consume slack for recovery. Since a high-priority task first
consumes slack to recover, and may affect the reliability of
low-priority tasks, we adopt the general principle that high-
priority tasks execute at the highest frequency while lowering
the core frequency of low-priority tasks. We present a method
to choose a task to reduce its core frequency in such a way that
doing so maximizes the power saving and minimizes the in-
fluence on other tasks’ reliability. We define �i(li = j, li = k)
as the power-time ratio of τi when reducing core frequency
from the jth to the kth level,

�i(li = j, li = k) =
ρi(li = j)− ρi(li = k)

ci(li = k)− ci(li = j)
, (10)

where ρi(li = j) and ci(li = j) are power consumption and
worst-case execution time, respectively, when τi running at
the jth frequency level. For a given schedule S = {τ1, . . . , τn}
where τ1 has the highest priority and τn has the lowest one, we
reduce the core frequencies of appropriate tasks (see Alg. 2).
We iteratively reduce tasks’ core frequencies until the MTTF is
larger than a given threshold (in Lines 3–11). In each iteration,
we select the task such that reducing one level of this task’s
core frequency achieves the largest � and does not violate the
deadline constraint. Meanwhile, in order to avoid introducing
more thermal cycles, we only select the task that has a higher
core frequency than low-priority tasks, i.e., fi > fi+1 (in
Line 5). After reducing the selected task’s (i.e., τt’s) core
frequency level, lt, a new MTTF and slack s are calculated
(in Line 10). This algorithm costs at most n× L iterations to
find appropriate frequencies for tasks.

V. EVALUATION

We evaluate the proposed RIF by conducting simulations
and comparing it with existing approaches.

A. Simulation setup
We compared RIF with two representative approaches:

generalized shared recovery approach (GSR) [4] and partial
replication and speedup approach (PRS) [10]. GSR is com-
posed of two modules; one allocates recovery and the other
reduces core frequency to minimize power consumption. We

Algorithm 2 Frequency Reduction

1: procedure FREQ RED(S)
2: �max = 0, τt = τn
3: while MT T Fsys < MT T FTH do
4: for τi ∈ {τ1, . . . , τn−1} do
5: if s > ci(li − 1)− ci(li) and �i(li, li − 1) > �max

and fi > fi+1 then
6: �max = �i(li, li − 1)
7: τt = τi
8: end if
9: end for

10: ft(lt) = ft(lt − 1) and update s and MT T Fsys
11: end while
12: end procedure

kept the first GSR module but replaced the second module with
Alg. 2 to satisfy the LTR constraint. PRS is a greedy algorithm
based approach to maximize the minimum of LTR and SER
by allocating recoveries offline. We evaluated RIF with ERIS
in Section III-B (RIF-ERIS) and with GRIS in Section III-C
(RIF-GRIS). The probability of failure (PoF), which is de-
fined as 1−Rsys, is used as a metric for comparison. We also
set λL = 10−6 and d = 3 (in Eq. (2)) [10]. Note that λL and
d may have different values for different hardware platforms,
but the improvement of RIF is independent of their values.

The comparisons were conducted on a simulator, which
is constructed based on a Nvidia’s Jetson TK1 board [13].
The operating temperature is calculated using an resistance-
capacitance thermal modeling tool and thermal parameters are
extracted from the TK1 board [16]. We specified two different
configurations for the task set. In the first configuration, a task
set is composed of randomly generated tasks whose execution
time is random in the range of 0.75–1.25 seconds. The second
configuration is same as in an existing work [16] where the
task set is composed of tasks from the MiBench [14].

B. Simulation results
We first compared RIF to GSR and PRS when the task

set is composed of 5 randomly generated tasks (see Fig. 1).
RIF-ERIS and RIF-GRIS have similar performance, and
both of them achieve a lower PoF than GSR and PRS in
all cases. Compared to PRS, RIF, either with ERIS or with
GRIS, allocates more recoveries to tasks and the average PoF
of RIF is about of 83%, 0.0009%, 0.0007%, 0.0003%, and
0.0002% of PRS for slack lengths of 1.0 s, 1.5 s, 2.0 s, 2.5 s,
and 3.0 s. Compared to GSR, the average PoF of RIF is about
71%, 0.0007%, 0.0005%, 0.0008%, 48%. This simulation
shows that although very short slack weakens the benefits of
RIF, it achieves a lowest PoF in all cases but GSR is effective
only when the slack is large.

We extended our evaluation of RIF when the workload is
heavy (see Fig. 2(a)) and when a task’s execution time does
not follow any distributions (see Fig. 2(b)). In Fig. 2(a), the
average PoF of RIF is only 75%, 0.005%, 0.004%, 0.001%,
and 19% of GSR, and 91%, 0.006%, 0.005%, 0.002%, and
0.001% of PRS, respectively. In Fig. 2(b), RIF and PRS
achieve similar PoFs since the execution times of some tasks
are very short and both RIF and PRS can allocate recoveries.
Thanks to the dynamic recovery allocation technique, RIF can
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Fig. 1. PoFs when the task set has 5 randomly generated tasks.
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Fig. 2. PoFs when task set is composed of (a) 10 randomly generated tasks;
(b) tasks from MiBench benchmark suite.

allocate recovery to tasks that have longer execution times.
Both Figs. 1 and 2 show RIF is better than GSR and PRS in
terms of SER improvement.

In Fig. 3, we compared RIF-ERIS and RIF-GRIS when
the task set has 5 tasks and the average fault rate is large,
λL = 10−3 [16]. Based on the conditions in Theorem 1,
RIF-ERIS could perform better than RIF-GRIS when the
slack is small, and the PoF is reduced by about 1.15% and
0.24% when the slack is 1 s and 1.5 s, respectively. However,
RIF-GRIS is better when the slack is 2 s, and 2.5 s, as
RIF-GRIS reduces the PoF by about 0.98% and 2.02%,
respectively. Such a difference can lead the system running
without transient fault for more than 20 days. This comparison
shows that although GRIS is more complicated than ERIS, it
is sometime necessary and can achieve a higher SER.

VI. CONCLUSIONS

We proposed a framework to improve the system-level
SER under LTR and hard real-time constraints. The SER is
improved by statistically scheduling tasks and dynamically
allocating recoveries. LTR is satisfied by reducing core fre-
quencies for low priority and power-hungry tasks. Simulation
results show that our approach is effective in improving SER
compared to existing static recovery allocation and shared
recovery allocation approaches without violating real-time and
LTR constraints. As future work, we plan to extend our
approach to more general task models and allowing task
migration between cores.
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