
Intelligent Scene Caching to Improve Accuracy for Energy-Constrained

Embedded Vision

Benjamin Simpson

University of Michigan

bssimps@umich.edu

Ekdeep Lubana

University of Michigan

eslubana@umich.edu

Yuchen Liu

University of Michigan

lyuchen@umich.edu

Robert Dick

University of Michigan

dickrp@umich.edu

Abstract

We describe an efficient method of improving the perfor-

mance of vision algorithms operating on video streams by

reducing the amount of data captured and transferred from

image sensors to analysis servers in a data-aware man-

ner. The key concept is to combine guided, highly hetero-

geneous sampling with an intelligent Scene Cache. This en-

ables the system to adapt to spatial and temporal patterns

in the scene, thus reducing redundant data capture and pro-

cessing. A software prototype of our framework running

on a general-purpose embedded processor enables superior

object detection accuracy (by 56%) at similar energy con-

sumption (slight improvement of 4%) compared to an H.264

hardware accelerator.

1. Introduction

Machine vision is a key component of many economi-

cally important technologies, with applications in the fields

of smart infrastructure, autonomous vehicles, healthcare,

surveillance, and more. However, its generally high energy

demands limit its use in battery-powered, embedded sys-

tems. In contrast, human vision is energy efficient in similar

scenarios [9].

Standard cameras sample data in a spatially and tempo-

rally constant manner, i.e., with fixed frame resolutions and

rates. However, the human vision system’s (HVS) sampling

and processing are spatially and temporally heterogeneous.

The photoreceptive structures of the HVS react to changes

in light intensity, producing output signal spikes when a

threshold is exceeded. Since neuron energy consumption

is correlated with signaling [2], this temporal method im-

proves energy efficiency. In the HVS, photoreceptors are

arranged heterogeneously, with their density varying from

50 µm−2 at the center to only 1.6 µm−2 on the periphery.

This reduces energy consumption relative to uniform, high-

resolution sampling, but requires guidance based on end

goals and scene content.

Modern image sensors support operations for both sub-

sampling and region-specific sampling, supporting hetero-

geneous spatial capture [14]. We describe a sensing method

that combines heterogeneous sampling with an intelligent

cache of prior samples. Comparing low-resolution captures

with the cache identifies changes/moving regions, allowing

the system to modulate spatial capture. This method allows

standard machine vision systems to use guided sampling

like the HVS, a process we name Scene Caching.

Scene Caching is compatible with any standard machine

vision algorithm. Since its updates are change-based, it

will be most efficient if few pixels change, making it well

suited for use with stationary cameras. We thus evaluate

the Scene Cache for object detection/surveillance tasks. We

quantify accuracy using a variant of mean average preci-

sion (mAP) [5] that we call weighted mAP (WmAP) and

compare energy consumption with industry-standard H.264

compression.

This paper makes the following contributions: 1) it

demonstrates the design of a Scene Cache that uses het-

erogeneous spatial capture, temporal buffering, and multi-

round capture to allow machine vision systems to use

guided sampling to improve accuracy without energy penal-

ties; 2) it presents a new video object detection dataset; and

3) it describes an energy model for embedded machine vi-

sion systems. The model is calibrated to a Raspberry Pi 3B+

and accounts for wireless transmission and H.264 video en-

coding energy, but can be easily adapted to another embed-

ded system. The Scene Cache fits seamlessly into existing

pipelines and permits dynamic trade-offs between data rate

and image quality. In comparison to hardware-based H.264

compression, the software-based Scene Cache notably im-

1



proves object detection by 55.7% (as measured by WmAP),

while reducing energy consumption by 3.6%.

2. Related Work

Reduced Camera Data Transfer: Lubana and

Dick [14] previously described heterogeneous sampling

mechanisms for single frame captures. Their work uses

row/column decoders in image sensors to capture arbi-

trary rectangular regions of chosen resolution in a static

scene. By using a multi-round heterogeneous capture–

analysis process in single frame scenarios, the authors re-

duced energy consumption by 5× with only 0.65% loss in

accuracy. However, their work only analyzes single-frame

captures. Modeling a system capturing videos significantly

differs from single frame captures because the idle time of

the system and transfer time of the video dominate time and

energy consumption. This change in energy-accuracy trade-

off and the opportunities opened by temporal sequences dif-

ferentiate the single frame and video variations of this prob-

lem.

Event Cameras: Event cameras are specialized image

sensors that sample a spatial signal in response to change

in intensity. This method was inspired by the human vi-

sual system and naturally avoids temporally redundant sam-

pling. Event cameras are rarely used and the tools and

algorithms for processing their output stream are not di-

rectly compatible with regular video. Converting their out-

put stream to work with standard machine vision algorithms

reduces the energy savings offered by event-based sens-

ing [1].

Reduced Application Algorithm Computation: Eu-

phrates is a low-energy hardware/software co-designed sys-

tem for object detection [15]. It uses custom hardware to

estimate the motion of regions of interest, thus reducing the

number of frames requiring expensive object detection. Eu-

phrates reduces application-level analysis energy by 66%

with 1% reduction in detection accuracy. In contrast, our

work does not require hardware augmentation because the

required operations are already supported by the camera

pipeline.

Video Compression: Video compression algorithms ex-

ploit temporal correlation within a signal for efficient video

encoding. Our work shares that philosophy. However,

by focusing on inference, rather than video aesthetics and

reconstruction, we are able to achieve higher application

performance, while consuming similar amounts of energy.

For example, our framework improves object detection by

55.7% and reduces energy consumption by 3.6% relative

to a hardware-based H.264 compression baseline (see Sec-

tion 6).

Figure 1: Scene Cache in image signal processing pipeline.

3. Scene Cache Design

Figure 1 shows a typical image processing pipeline for

server-based object detection from wireless cameras. The

pipeline consists of a camera that wirelessly transmits video

to a server node, which performs object detection. The

camera node captures raw data and converts it to a stan-

dard video format using the image signal processor. An on-

device encoder compresses the video, which is then trans-

mitted to the server. The server decoder uncompresses

the video before running object detection algorithms on its

application processor. The Scene Cache functions as an

encoder-decoder pair. On the camera, it detects change at

each frame and determines the regions to transmit to the re-

mote inference server. On the server, the cache reconstructs

the transmitted data into a high resolution image.

3.1. Scene Cache Implementation

The Scene Cache detects and transmits change using two

cached images: a low-resolution image at the camera node

for computing which regions to sample and transfer, and a

high-resolution cache at the server, which is provided as in-

put to the analysis algorithm. The update process has four

steps which are described in detail below and visualized in

Figure 2. Two parameters can be used to tune the cache’s

sampling behavior: the downsample rate and the difference

threshold. The parameters themselves are described in the

update process, while the tuning process is described in Sec-

tion 6.1.

3.2. Cache Update Process

Low-resolution sampling: The Scene Cache uses a

low-resolution image to estimate the amount of motion be-

tween frames. A low-resolution image can be acquired from

the image sensor by skipping rows/columns or pixel bin-

ning, which is commonly availible. The amount of decima-

tion is controlled by the downsample rate. A downsample

rate of 2 means that each pixel of the low-resolution image

represents one 2×2 square in the high-resolution image, a

downsample rate of 4 means each low-resolution pixel cor-

responds to a 4×4 high-resolution region, etc.

Motion estimation: The difference image is the

element-wise difference between the low-resolution cache

from the previous frame and the low-resolution version of

the current frame, taking the L2 norm across the three color



Figure 2: Scene Cache in action. Images taken from the DAVIS 2017 dataset [10, 11].

channels, and normalizing each pixel’s value to be between

0 and 255. The resulting one-channel, 8-bit image has low

values in the pixels where little change has occurred and

high values where large change has occurred.

Difference Thresholding: The Scene Cache selects re-

gions to be updated. All pixels of the difference image

with a value above a specified difference threshold are re-

sampled. The cache obtains the bounding box coordinates

for the regions using OpenCV’s findContours() and

boundingRect() functions.

High-Resolution update: The regions to be updated are

sampled at high resolution from the image sensor using the

bounding box coordinates of the previous step. These high-

resolution regions are then transmitted to the remote server

to update the cache, and the low resolution version of the

frame is updated at the camera node.

4. Energy Model

We evaluate the energy consumption of our model on an

embedded machine vision platform. Specifically, we de-

velop an energy model for a Raspberry Pi 3B+ augmented

with a Sony IMX219 image sensor. The model presumes a

pragmatic scenario where nodes collect and transmit video

data wirelessly to a server for object detection as shown in

Figure 1. Note that such a setup is standard for surveil-

lance applications, which were estimated to generate more

than 859 petabytes per day in 2017 [3]. While prior work

had reported energy models for vision platforms, it focused

on single frame capture [14]. In contrast, our model is de-

signed for a continuous video stream and takes into account

inter-frame energy consumption as well as time and energy

consumption for data transmission from the platform to a

server. As we show below, the particulars of video energy

consumption are significantly different from single frame

captures. Note that the model can be adapted to other em-

bedded platforms by measuring or calculating the appropri-

ate parameters (see Table 2).

The model uses a state-based methodology to estimate

the energy consumed by components in the pipeline. Our

baseline for comparison is the capture and transfer of a

video encoded by the on-board H.264 accelerator. We also

include results for uncompressed video transfer. All videos

are captured at 15 fps. Figure 3 shows the pipeline stages for

both a conventional camera network and one using Scene

Caching.

Power States and Idle Energy Consumption: The sys-

tem’s idle power consumption (Psys,idle) is measured with

the device on, but not running any processes. We model

all remaining power consumptions with respect to this base

idle power because we can only measure the change in

power as a component goes from one state (e.g., idle) to

another (e.g., active). This allows for easy modeling of sys-

tem energy as a function of state changes and durations. In

net, if the system has a set of components C and takes time

Tframe to completely process a single frame, the system

energy can be written as follows:

Enet = Psys,idle · Tframe +
X

i∈C

P∆i,active · Ti,active, (1)

where P∆i,active is the increase in system power con-

sumption when the ith component becomes active, while

Ti,active is the time it remains active for.

Image Sensor (a, b, c): Likamwa et al. show image sen-

sor power consumption increases quadratically with respect

to frame resolution [8] and is independent of sensor expo-

sure time (Texp). Since the time consumed by reading a

frame is the inverse of the frame rate (f ), this results in the



Figure 3: Pipeline timing for conventional vs. Scene Cache frameworks. For parameter and variable values, see Table 2 and

Table 3, respectively.

Table 1: Energy consumed by conventional and Scene Cache frameworks. For symbol definitions, see Table 2 and Table 3.

Framework Energy model

Conventional aR2

f
+ bR

f
+ cTexp +Psys,idle · (Tframe) +P∆GPU · (TISP ) + (e1 ·Rcompress + e2) +P∆TX · (TTX) +

P∆comm · (1 + h)
⇣

pR
BR

+ 24R
BR

⌘

Scene Cache a
⇣

R2

d

f
+

R·Rpatch

f

⌘

+ b
⇣

Rd

f
+

Rpatch

f

⌘

+ cTexp + Psys,idle · (Tframe) + P∆GPU · (TISP ) + P∆CPU ·

(Tcache) + P∆TX · (TTX) + P∆comm · (1 + h)
⇣

p(Rd+Rpatch)
BR

+
24(Rd+Rpatch)

BR

⌘

following energy model:

Esensor = a
R2

f
+ b

R

f
+ cTexp. (2)

Here a, b, and c are model coefficients specific to the em-

bedded system used, and R is the captured frame’s reso-

lution. We use the Sony IMX219’s datasheet to determine

coefficients for a quadratic power model by relating the sen-

sor’s power consumption at different capture resolutions to

the corresponding image sizes. The exposure time is set to

a constant value.

The conventional pipeline captures frames at a fixed

resolution (R). Scene Cache—being a multi-round

framework—requires a frame at a downsampled resolution

(Rd) to determine the region of interest and a frame of

variable resolution (Rpatch) corresponding to the patch that

contains the region of interest.

Image Signal Processor (TISP , P∆GPU ): We use the

Raspberry Pi’s open source PiCamera framework to deter-

mine the amount of time spent by the image signal proces-

sor (ISP) to process the captured frame. This duration is

linearly related to the frame resolution, as shown by prior

work [14]. The increase in power when the ISP activates is

determined by running an OpenGL program directly on the

ISP. Note that the ISP, on a Raspberry Pi, is an embedded

GPU and we therefore call its power consumption P∆GPU .

Therefore, the change in system energy if the ISP takes time

TISP to process a frame is as follows:

EISP = P∆GPU · (TISP ) . (3)

Scene Cache (Tcache, P∆CPU ): The Scene Cache runs

on the CPU. The increase in CPU power consumption

(P∆CPU ) is determined by measuring the increase in sys-

tem power consumption when running a large random num-

ber generator. This power consumption is multiplied by

the amount of time required by the Scene Cache operations

(Tcache) to determine the regions of change (Tcache1) and

update the cache (Tcache2). These time values are measured

for each frame by running the framework on a Raspberry

Pi, but can be modeled on the specific embedded platform

of choice. The change in system energy if the CPU takes

time Tcache = Tcache1 + Tcache2 to run Scene Cache spe-

cific operations is as follows:

Ecache = P∆CPU · (Tcache) . (4)

Compression Energy (e1, e2): The energy consump-

tion for compressing frames using H.264 is determined by

evaluating the energy consumption of the on-chip encoder

module in the Raspberry Pi ISP at a constant frame rate and

variable resolution. We relate energy consumed per frame

to resolution with a linear model. The estimated model has a



Pearson’s correlation of 0.99 with the actual energy, indicat-

ing high confidence. We use this linear model to calculate

energy consumption in our experiments:

Ecompress = (e1 ·Rcompress + e2) . (5)

Transmission Energy (P∆TX , TTX ): To model the

transmission energy, we set up an 802.11n Wi-Fi network

and transmit UDP packets from one Raspberry Pi to an-

other. We find that the transmission power consumption

(P∆TX ) is linearly related to the number of packets trans-

mitted per second. This is consistent with previous observa-

tions on modeling power consumption for embedded Wi-Fi

transmitters [6]. We keep the transmission time per packet

(TTX ) constant by fixing the packet size. This results in the

following energy model:

ETX = P∆TX · (TTX) . (6)

Communication Energy (P∆comm, BR): Communi-

cating an image involves transfer of 24 bits per pixel (8 bits

each for 3 channels) which were extracted from a RAW

image that had p bits per pixel, where p is usually 12 or

14. The communication time for system commands (e.g.,

wake, sleep, etc.) usually imposes a 20–50% overhead on

data transfer. A variable h is used to denote this overhead.

Given the bit rate (BR) of the system, the energy for com-

municating a frame of resolution R across the system is as

follows:

Ecomm = P∆comm · (1 + h)

✓

p.R

BR
+

24R

BR

◆

. (7)

Net Energy Model: Table 1 summarizes the net energy

models for both a conventional vision framework and our

Scene Cache framework using the variables described in

this section. Note that the conventional model was modified

to the Scene Cache pipeline as shown in Figure 3. Table 2

describes the exact values of the parameters modeled in our

framework. Table 3 summarizes these parameters.

5. Experimental Design

We simulate the client portion of the Scene Cache run-

ning on a Raspberry Pi 3 microcontroller to evaluate its im-

pact on data transferred, energy consumption, and accuracy.

The simulator logs data transfer and processing time, which

are used to evaluate energy consumption of a typical vi-

sion system running the conventional (H.264) vs. the cached

pipeline on batches of videos. This section describes our

evaluation methodology and Section 6 reports the results.

Application Performance: We consider an object de-

tection scenario, and measure accuracy using mean aver-

age precision (mAP) relative to a maximal data rate and

resolution (i.e., uncompressed) base case. mAP assigns

Table 2: Energy Model Parameters (p implies pixel)

Param Value Units Description

a 8.27E-09 W/p Resolution-dependent im-

age sensor active energy

coefficient

b 1.30E-01 W Resolution-independent im-

age sensor active energy co-

efficient

c 1.42E-01 W Image sensor idle power

f 1.20E+07 Hz Image sensor clock fre-

quency

Texp 1.66E-02 s Camera exposure time

Psys,idle 2.429 W System processor baseline

power

P∆GPU 0.335 W Increase in power with ac-

tive GPU

P∆CPU 0.211 W Increase in power with ac-

tive CPU

e1 1.20E-08 J / p Data-dependent H.264 en-

ergy

e2 1.62E-02 J Data-independent H.264 en-

ergy

h 0.25 unitless Inter-chip transmission

overhead

p 14 bits/p Bits per RAW pixel

BR 4.00E+09 bits/s MIPI bit rate

P∆comm 4.07E-02 W MIPI power consumption

Table 3: Energy Model Variables

Data Units Description

R pixels Full resolution image size

Rd pixels Downsampled image size

Rfovea pixels Foveated image size

Rcompress pixels Compressed image size

TISP s Time for ISP to process pixel data

Tcompress s Image compression time

Tcache1 s Difference image calculation and

bounding box generation time

Tcache2 s Downsampled cache update time

TTX s Transmission time

P∆TX W Radio power consumption

Twait s System idle time between frames

Tframe s Time for one video frame

(1/framerate)

equal weights to each class detected, regardless of num-

ber of objects per class detected. Equal weight works fine

for balanced datasets (e.g., an image dataset with a simi-

lar number of objects per class), but poorly for real-world

video datasets, because some objects appear much more fre-

quently than others (e.g., cars are common in videos of in-



tersections). Many of these infrequent object are the result

of classification noise in our automated labeling process for

ground truth; thus, equal weighting creates artificially low

scores that are heavily affected by noise. Therefore, we

perform a weighted average across detected classes with

weights based on the ground truth number of objects in each

class. We call this metric Weighted mAP (WmAP).

H.264 compression is used as an evaluation baseline.

It suffers from high accuracy degradation when its energy

consumption is similar to that of the Scene Cache. It is

important to note that the Scene Cache is implemented as

a software-based solution, while the H.264 baseline uses a

hardware video encoder on our test platform. Custom Scene

Cache hardware may further improve our results.

Energy Consumption: As described in Section 4, we

model energy consumption as a function of per-frame data

transfer, computation time, and hardware-specific parame-

ters. The energy model is used to evaluate the energy im-

plications of using Scene Cache in a practical setup. We

compare it with the H.264 compression baseline.

Datasets: We select clips from the CDW-2012

dataset [7] with no camera motion for tuning the cache. The

evaluated frames range in size from 320×240 to 720×576

pixels and videos range in length from 1,099 to 2,050

frames. We use YOLOv3 [12], a state-of-the-art object de-

tection algorithm, to determine the impact Scene Caching

has on WmAP (see Section 5) in comparison to the H.264

compression baseline. The WmAP values are averaged

across a given video.

We developed our own dataset for evaluating Scene

Cache parameter generalization. This dataset contains

surveillance footage released onto YouTube by Digital Vi-

sion Security (DVS) [4]. The footage in the dataset all come

from a stationary camera pointed at a traffic intersection.

It contains cars, buildings, and pedestrians. We selected

three clips, each capturing the same intersection at daytime,

nighttime, and during rain. There are over 100,000 frames

of 480p video in total. We obtained permission from Digi-

tal Vision Security to redistribute the clips for research pur-

poses. The dataset has been published on the web [13].

H.264 Accuracy Modeling: We estimate the video

quality of the Raspberry Pi’s on-board Broadcom Video-

Core IV H.264 encoder by performing H.264 encoding on

our datasets using FFmpeg. This software-to-software en-

coding is necessary to preserve the locations of the ob-

jects for object detection, but it precludes testing using the

camera-to-software pipeline of the VideoCore IV encoder.

To correlate the settings of the encoders, we play a source

video from one of our datasets on a screen and record it

into an H.264 encoded video using a Raspberry Pi Camera.

We encode the same source video using FFmpeg. In both

the VideoCore IV and FFmpeg, we set the Constant Rate

Factor to a typical value of 23. We select the other FFm-

peg parameters that produce the video with the most similar

bitrate to the video produced by the VideoCore IV.

6. Experimental Results

We evaluate the Scene Cache on the CDW and DVS

datasets. The CDW dataset is used for tuning the cache

parameters; the DVS dataset is used to test their generality.

6.1. Cache Tuning

To tune the cache, we evaluate the detection accuracy

and data transfer of different versions of the cache on the

CDW dataset. Data transfer is positively correlated with

Scene Cache energy consumption and has smaller fixed

overhead, making it easier to compare directly to detection

accuracy. We sweep four downsample rates and eighteen

difference threshold values for a total of 72 different Scene

Caches.

To determine which caches provide the best accuracy-

energy tradeoffs we use a criterial equation to reduce the

multiobjective data transfer vs. detection performance cri-

teria to one dimension:

S = α ∗ (1.0−Dx) + (1.0− α) ∗Acc. (8)

S is the cache score, with higher values corresponding to

better caches. Dx is the ratio of data volume transferred by

the Scene Cache to that transferred by a conventional image

pipeline. Acc is the WmAP score of the cache. α ∈ [0, 1] is

a hyperparameter that trades off the relative importance of

data transfer and classification accuracy. A higher value of

α favors caches that reduce the amount of data transferred

while a lower value of α favors caches that are more accu-

rate.

We sweep α, optimizing S values. Table 4 shows the best

cache for α from 0.1 and 0.9, their values for WmAP, per-

cent data transfer, and energy consumption. The caches are

labeled (d,t), where d is downsample rate and t is difference

threshold. Results for two H.264 encoders and the conven-

tional pipeline with full-resolution video are also shown.

By coincidence, the hardware- and software-based

H.264 encoders had nearly identical energy consumption

for the dataset. Both energy equations are essentially linear

functions of data volume transferred. The hardware encoder

has a higher energy overhead and a lower incremental en-

ergy cost per pixel of data transfer compared to the software

encoder. The results for different videos in this dataset hap-

pen to lie on both sides of their intersection point, making

the final average for each encoder similar to the other.

This table demonstrates that for nearly all included

caches, the Scene Cache achieves better WmAP than H.264.

However, as we approach the compression ratio of the

H.264 encoder, we find that the Scene Cache does not have

a high WmAP. Regardless, the Scene Cache has much bet-

ter WmAP than H.264 for the same energy consumption in



Figure 4: Cache WmAP in relation to energy consumption

for CDW dataset.

almost all cases: 0.61 for the H.264 encoders; 0.95 (55.7%

improvement) for Scene Cache (8, 12) (see Figure 4). Fur-

ther, note that the Scene Cache dramatically reduces energy

consumption in comparison to the uncompressed baseline.

The trend was similar for the DVS data set (see Table 5).

Table 4: Generalized Cache Selection on CDW Dataset

α Cache WmAP % Data Energy

Transfer (J)

0.1 (8,7) 0.96 39.5% 0.195

0.3 (8,12) 0.95 27.9% 0.192

0.5 (8,18) 0.90 19.5% 0.189

0.7 (8,25) 0.80 11.4% 0.188

0.9 (16,80) 0.40 1.34% 0.186

H.264 (Hardware) 0.61 1.15% 0.199

H.264 (Software) 0.61 1.15% 0.199

No Compression 1.00 100% 0.279

6.2. Cache Generalization Testing

We performed testing on the DVS dataset with caches

tuned for CDW to see how well they would work on a

dataset they had not been trained on. We used Scene Caches

(8,12) and (8,18) since both are optimal for multiple values

of α. The energy vs. accuracy results are shown in Table 5

with H.264 encoders and the uncompressed baseline results

for comparison.

In this graph the two caches again achieve better WmAP

than H.264, but they only achieve better energy consump-

tion in some cases. Scene Cache (8,18) has a mAP of 0.78

(20% improvement over H.264) and uses 0.229 J/frame of

energy, which is 2.0% lower than the H.264 software en-

coder but 8.8% higher than the H.264 hardware encoder.

Properties of the datasets influence the results. The DVS

dataset has higher resolution images than CDW, on aver-

age. Therefore, software encoding requires more energy

than hardware encoding. The software encoder has a lower

fixed overhead but higher incremental energy cost per pixel

while the converse is true for the hardware encoder (see Ta-

ble 2); the hardware encoder is therefore more efficient for

large images.

The large image difference does not fully explain why

the hardware encoder has lower energy consumption than

the Scene Caches. The CDW dataset has one test video

(PETS2006) with a frame size slightly larger than DVS.

When energy is analyzed for just that video, the energy con-

sumption for the software and hardware encoders and the

uncompressed baseline are very similar to DVS, but all of

the Scene Caches listed in Table 4 use less energy than ei-

ther of the H.264 encoders. This implies that the frame size

does not explain the discrepancies between the DVS and

CDW results.

Table 5: Scene Cache Performance on DVS Dataset

Cache WmAP Energy (J)

(8,12) 0.86 0.267

(8,18) 0.78 0.229

H.264 (Hardware) 0.65 0.211

H.264 (Software) 0.65 0.234

No Compression 1.00 0.525

A more plausible explanation is that Scene Cache per-

formance depends on image content. The caches that per-

formed well on CDW may not be as optimal for DVS. Re-

tuning the caches on DVS may improve energy consump-

tion results.

While the Scene Cache may not generalize well between

the CDW and DVS datasets, preliminary Scene Cache re-

sults trained on 80% of the CDW data and tested on 20% of

the CDW data showed similar energy and accuracy results

to Table 4. Thus Scene Cache can be trained to work well

with new data in the same application. This is a reason-

able constraint for our problem domain of stationary cam-

eras since the application is generally fixed.

6.3. Energy Breakdown

Figure 5 shows the amount of energy used by each part

of the pipeline for experiments on CDW and DVS for Scene

Cache (8,18). Hardware H.264 encoding and a pipeline us-

ing no compression are shown for comparison. Transmis-

sion, compression, ISP, and system idle energy consump-

tion dominate.

The qualitative difference between the Scene Cache and

H.264 encoder is a tradeoff between transmission and com-



Figure 5: Energy consumption breakdown & WmAP

scores.

pression energy. Since transmission energy is correlated

with data volume, this implies a tradeoff between the benefit

of data compression and its energy cost. Both hardware and

software H.264 encoders achieve high enough compression

ratios that their transmission energies are negligible. The

Scene Cache imposes very little overhead and is more accu-

rate, but does not reduce transmissions as much as H.264.

It is important to note that the Scene Cache produces higher

WmAP scores than H.264 at similar energy cost.

The system idle energy is constant for both the Scene

Cache and the other compression algorithms, often domi-

nating the energy cost per frame. This reduces the flexibil-

ity of system designers in making compression tradeoffs to

save energy.

The Scene Cache reduces the amount of data processed

by the sensor and ISP. This results in reduced sensor en-

ergy, which has little impact at the system level since the

sensor already consumes little energy in the base case. The

energy increase of the ISP is due to the multi-round nature

of the Scene Cache incurring the data-independent energy

overhead twice. This could be improved through more ex-

tensive redesign of the ISP for multi-round image sensing.

Communication energy is not visible in the plot as it con-

sumes less than 0.1% of the system energy.

7. Conclusion

We demonstrated Scene Cache, a novel, application spe-

cific compression framework for embedded machine vision

systems. Without specialized hardware, it achieves signif-

icantly better object detection results than hardware-aided

H.264 at similar or improved levels of energy consump-

tion. A new energy model and video dataset aid in evalua-

tion. When tuned on a dataset, Scene Caching improves ob-

ject detection WmAP by 0.34 (55.7% improvement) while

enabling slightly (3.6%) lower energy consumption than

H.264. When generalized to datasets it was not tuned on,

Scene Cache still improves object detection by 0.13 (20%

improvement) while using similar energy to H.264 (8.8%

higher than hardware and 2.0% lower than software).

Overall, the Scene Cache enables the tradeoff of sys-

tem energy consumption for application performance in ma-

chine vision systems. The low computational cost of the

Scene Caching leaves room for further improvement, such

as making sampling decisions based on statistical impor-

tance of image regions to the machine vision task. Such

improvements would truly enable goal-based sensing for

highly efficient machine vision.

References

[1] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. D.

Nolfo, T. Nayak, A. Andreopoulos, G. Garreau, M. Men-

doza, J. Kusnitz, M. Debole, S. Esser, T. Delbruck, M. Flick-

ner, and D. Modha. A low power, fully event-based gesture

recognition system. In Proc. Conf. on Computer Vision and

Pattern Recognition, pages 7388–7397, July 2017.

[2] Mireille Bélanger, Igor Allaman, and Pierre J. Mag-

istretti. Brain energy metabolism: Focus on astrocyte-neuron

metabolic cooperation. Cell Metabolism, 14(6):724–738,

2011.

[3] Jon Cropley. Top video surveillance trends for 2015. Tech-

nical report, IHS Technology, 2015.

[4] Digital Vision Security, Inc. Digital vision security - video

camera surveillance systems & solutions. https://www.

youtube.com/channel/UCSeMkpNPR7UGFOlBfZ0bRNg,

2014–2020.

[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL visual object classes

challenge 2012 (VOC2012) results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

[6] L. M. Feeney and M. Nilsson. Investigating the energy con-

sumption of a wireless network interface in an ad hoc net-

working environment. In Proc. Joint Conf. of the IEEE Com-

puter and Communications Society, volume 3, pages 1548–

1557 vol.3, April 2001.

[7] N. Goyette, P. Jodoin, F. Porikli, J. Konrad, and P. Ishwar.

Changedetection.net: A new change detection benchmark

dataset. In Proc. Conf. on Computer Vision and Pattern

Recognition Workshops, pages 1–8, June 2012.

[8] Robert LiKamWa, Bodhi Priyantha, Matthai Philipose, Lin

Zhong, and Paramvir Bahl. Energy characterization and op-

timization of image sensing toward continuous mobile vi-

sion. In Proc. Int. Conf. Mobile Systems, Applications, and

Services, pages 69–82, 2013.

[9] Jeremy E. Niven and Simon B. Laughlin. Energy limitation

as a selective pressure on the evolution of sensory systems.

J. of Experimental Biology, 211(11):1792–1804, 2008.

[10] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc

Van Gool, Markus Gross, and Alexander Sorkine-Hornung.

A benchmark dataset and evaluation methodology for video



object segmentation. In Proc. Conf. on Computer Vision and

Pattern Recognition, 2016.

[11] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-

beláez, Alexander Sorkine-Hornung, and Luc Van Gool.

The 2017 DAVIS challenge on video object segmentation.

arXiv:1704.00675, 2017.

[12] Joseph Redmon and Ali Farhadi. Yolov3: An incremental

improvement. arXiv, 2018.

[13] Benjamin Simpson and Yuchen Liu. DVS dataset. http://

ziyang.eecs.umich.edu/tools.html#dvsdata, 2020.

[14] E. S. Lubana and R. P. Dick. Digital Foveation: an

energy-aware machine vision framework. IEEE Trans. on

Computer-Aided Design, pages 2371–2380, Nov. 2018.

[15] Yuhao Zhu, Anand Samajdar, Matthew Mattina, and Paul N.

Whatmough. Euphrates: Algorithm-SoC co-design for low-

power mobile continuous vision. In Proc. Int. Symp. Com-

puter Architecture, pages 547–560, 2018.


