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Abstract— Camera-based inference techniques can be used to es-
timate PM2.5 concentrations in air based on the aggregate effects
of particles on light scattering and absorption. These techniques
can be spatially fine-grained, operate in real time, and substan-
tially improve accuracy compared to particle counting sensors.
However, existing camera-based techniques fail at night, when
pollution exposure and production remain important. We describe
the first vision-based technique for nighttime PM2.5 concentration
estimation. The design approach differs substantially from that of
daytime systems because the primary source of daytime informa-
tion, progression of color toward “airlight” color with increasing
depth, is much less useful at night and the primary source of night-
time information, the glowing halation regions around artificial light
sources, is insignificant during the day. We describe a night-time
pollution estimation technique that builds upon novel “Illumination Map” feature. We describe an Illumination Map based
Dual-Channel Squeeze-and-Excitation Convolutional Neural Network (DSECNet) is to estimate PM2.5 concentrations. This
method is evaluated on real-world data and images and outperforms the most advanced related existing (daytime) haze
estimation methods, achieving a mean absolute error of 8.65µg/m3, which is 16.99% lower than the state-of-art baseline
method. To the best of our knowledge, this is the first vision-based nighttime nighttime PM2.5 estimation method.

Index Terms— Air Quality Estimation, Dataset, Glow Effect, Nighttime Image, PM2.5 Concentration.

I. INTRODUCTION

PM2.5, or ambient fine particulate matter, is an important
pollutant consisting of particles with diameters less than

2.5 µm. It is a class I carcinogen certified by the World Health
Organization (WHO) – a great threat to human health [1].
Long-term exposure to high concentrations of PM2.5 damage
the cardiovascular and respiratory systems, leading to respi-
ratory disease, heart disease, stroke, and many other health
problems. Long-term exposure to high PM2.5 concentrations
is correlated with increased mortality rate and reduced life
expectancy [2]–[4], hence the importance of systems for large-
scale PM2.5 monitoring [5], [6].

Researchers have long relied on the laboratory results based
on weighing, the micro-oscillation balance method, or the β-
ray method [7] to measure PM2.5 concentrations. Although
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these method are accurate, they have high maintenance costs
and limited coverage, because each sensor can only measure
concentration at one location [8]. Self-contained light scat-
tering based air quality sensor networks have similar cost
limitations [9]. Moreover, remote sensing technology is used
for urban monitoring PM2.5 estimation but is expensive and
requires clear weather conditions [10], [11], e.g., cloud cover
interferes with its use. In contrast, ground-deployed cameras
are inexpensive and widely available and enable for near-
ground PM2.5 monitoring. The scattering and absorption of
light due to atmospheric pollutants influences captured images,
which can be used to estimate pollutant concentrations. There
are several vision-based techniques for daytime air quality
estimation that use spatial contrast, dark channel features,
and variations in sky-earth colors [12], [13] for pollutant
concentration estimation. However, these techniques fail at
night.

At night, global illumination is low, yet the camera’s noise
floor remains constant, pushing pollution-relevant signals be-
low the noise floor. Key image attributes commonly used
in daytime algorithms—such as saturation and brightness,
which are largely determined by sunlight—become unreliable
at night. For example, objects close to the artificial light source
will show significantly increased saturation and brightness at
night. Additionally, flare and halation caused by artificial light
sources require transmission models that are highly spatially
heterogeneous compared to those sufficient in daytime systems
(see Section III for details). These discrepancies render con-
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ventional daytime pollution estimation algorithms ineffective
in nighttime environments.

To address the nighttime vision-based PM2.5 monitoring
problem, we design a technique that uses halation [14], the
glow around (possibly artificial) lights, to estimate PM2.5 con-
centration at night. Halation is common in night-time images
of populated regions, where PM2.5 influences the most people.
Halation results from photons scattering off particles near the
light source one or more times, appearing (from the camera’s
perspective) to come from glowing region surrounding the
light source. The particle concentrations are correlated to the
intensity of halation, making it possible to estimate PM2.5

concentrations by scattered-light intensity (pixel value). Other
features, such as contrast and dark channel, the patch-wise
minimum of all color channels, depend on scene visualization
and are undermined by noise at night, changes in atmospheric
light (moonlight, cloud), and varying artificial light sources.

Specifically, we propose using features related to medium
transmission and luminance attenuation from the source image,
combining them to generate Illumination Map. We designed
a Dual-Channel Squeeze-and-Excitation Convolutional Neural
Network (DSECNet) for nighttime Illumination Map based
pollution estimation. It consists of dual-channel parallel con-
volutional networks that extract features separately. A channel
attention mechanism then uses raw image features as channel
weights to improve accuracy.

The contributions of this work follow.

1) This is the first work solving the problem of vision-
based night-time PM2.5 estimation. The key idea behind
the proposed method is the Illumination Map, which
combines scene radiance transmission and light source
estimation from a single image and uses this feature to
predict the concentration.

2) We describe a Dual-Channel Squeeze-and-Excitation
Convolutional Neural Network (DSECNet) to extract
and fuse information from the raw image and the Illu-
mination Map. It does not require light source brigness
estimates, making the automated application of this
technique practical in real-world scenarios.

3) We collected a dataset containing 11,753 multi-location
images in night scenes with corresponding environment
parameters, including PM2.5, PM10, temperature, and
humidity. This dataset is of high temporal resolution and
has been made publicly available to other researchers.

Experimental results show that, in comparison with the most
advanced related work (which was designed for daytime use),
our method achieves highest PM2.5 accuracy, with an error
of 8.65 µg/m3. This improves on the second-best method, Re-
trained PE-MobileNetV2 [15], by 16.99%.

The rest of this paper is organized as follows. Section II
presents related work. Section III describes details the pro-
posed method. Section IV describes the data collection and
analysis process. Section V presents the experimental results.
Section VI discusses the potential limitations and concludes
this paper.

II. RELATED WORK

Related work can be placed into four categories: PM2.5

monitoring, vision-based air quality estimation, remote sensing
based PM2.5 estimation, and image dehazing.

A. PM2.5 Monitoring

Filter-based air quality sensors can accurately measure
PM2.5 concentration. However, their deployment can be time-
consuming, which limits coverage [16], [17]. Moreover, PM2.5

concentration varies dramatically over time and space [18].
PM2.5 concentration can vary up to 10 µg/m3 within a 10-
minute interval [19]. Therefore, long-term, large-scale, and
real-time monitoring is impractical for this type of sensor.

For large-scale fine-grained monitoring, existing sensor net-
work based approaches use interpolation algorithms to fuse
multi-point environmental information, estimating values at
non-deployed locations or during non-monitoring periods. For
example, Krishan et al. consider the spatial diffusion and
long-term dependence of pollutant concentration and develop
an air quality prediction model based on long short-term
memory (LSTM) [20]. Ma et al. propose a bidirectional LSTM
(BLSTM) model for air quality prediction [21]. Guo et al.
propose an unsupervised PM2.5 estimation method using a
time distributed convolutional gated recurrent unit (TCGRU)
and k-nearest neighbor inverse distance weighted (KIDW)
interpolation to monitor areas without air monitoring sta-
tions [22]. Zhang et al. propose a CNN-LSTM hybrid network
to model the spatio-temporal correlations between haze images
and PM2.5 concentrations [23]. It uses multi-level attention
to forecast PM2.5 concentration. Although these methods im-
prove the spatial or temporal resolution of estimation, they are
not applicable to areas without monitoring station deployment.

B. Vision-Based Air Quality Estimation

Vision-based estimation methods have much higher spatial
resolutions than particle counters. There are a variety of open
datasets available for air quality measurements, but images are
all captured during the daytime, not at night [15], [24]–[26].

Zhang et al. describe a method that uses scattering and
absorption features for the concurrent estimation of multiple
pollutants [27]. Su et al. describe an end-to-end CNN to
estimate multiple atmospheric environmental parameters [28].
Wang et al. developed a dual-channel air quality measurement
method that combines RGB frame and corresponding semantic
segmentation video frames [13]. Yang et al. designed ImgSens-
ingNet, a vision-guided aerial-ground sensing system that con-
sists of unmanned aerial vehicles (UAVs) and a ground sensor
network. It combines vision-based air quality monitoring and
networked terrestial point sensors to improve accuracy [12].

Fang et al. [15] designed a prior-enhanced (PE) framework
that learns from both the input image and its associated prior
maps, including the dark channel (DC) and inverted saturation
(IS). Utomo et al. [29] predict the particle concentration based
on multi-modal information, including the depth domain and
texture domain. However, the feature extractor is trained on
clear images with sufficient airlight, making it unsuitable for
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night scenes with insufficient and uneven lighting. Wang et
al. [30] and Yang et al. [12] fused multi-image feature in their
work to predict PM2.5 concentration. These vision-based haze
estimation methods are built upon designed or learning fea-
tures, with a focus on image structure loss, chroma, and scene
depth. However, existing methods are designed for daytime
images, and are unsuitable for nighttime pollution estimation
because they assume and require bright global illumination,
which does not exist at night. In contrast, our proposed method
makes no such assumption and automatically uses natural and
artificial light sources of varying sizes, intensities, and colors
for pollution estimation. It focuses on the impact of pollutant
concentration on halation effects near (artificial) light sources.

C. Remote Sensing Based PM2.5 Estimation
Remote sensing technology is widely used in urban monitor-

ing. Advanced technologies such as model-data coupling and
semantic segmentation are applied to improve performance
and improve generalization capabilities [31], [32]. In contrast,
our method is expected to achieve easy-to-deploy monitoring
of near-ground PM2.5 concentrations using an inexpensive,
ground-based camera monitoring.

Recent works on nighttime PM2.5 concentration estimation
are based on remote sensing techniques. They rely on homo-
geneous lighting at night, however, they can not be applied in
areas that are not consistently and well lit. Weng et al. propose
to use thermal channel data and aerosol light absorption to
estimate PM2.5 [10]. Wang et al. analyze the relationship be-
tween nighttime light radiance, meteorological elements, and
topographic elements. Then they use multiple linear regression
and random forest methods to develop seasonal and annual
PM2.5 concentration estimation models [11]. However, satel-
lite remote sensing techniques are limited by cost and require
the absence of cloud cover. Our method is expected to achieve
fine-grained monitoring of near-ground PM2.5 concentrations
using an inexpensive, ground-based camera monitoring.

D. Image Dehazing
Image dehazing and vision-based air quality estimation

techniques are closely related since they both process haze
effect in images. Image dehazing aims to remove the haze
effect and enhance image quality, while air quality estimation
quantifies the magnitude of the haze effect.

He et al. propose to use the dark channel prior and global
atmospheric light to estimate transmission in the haze im-
ages [33]. However, although the dark channel is widely used
for daytime air quality estimation [34], [35], it is ineffective
for nighttime images because its premises do not hold. He et
al. attribute the low intensity in the dark channel to visible
factors, such as colorful objects, dark surfaces, or shadows.
In contrast, at night low intensituy is generally due to low
illumination. Li et al. propose to separate the glow from
nighttime images based on a smoothness prior [36]. However,
this method is prone to noise and color shift problems in
the resulting feature maps, reducing accuracy. In contrast, our
nighttime PM2.5 estimation technique is based on the novel
concept of Illumination Map (defined in Section III), which

enables improvements of 10.10% in MAE and 13.36% in MRE
compared with other feature maps, e.g., dark channel, He’s
transmission, and Li’s glow feature.

III. METHODOLOGY

In this section, we first present our nighttime haze imaging
model. Then we describe how to extract halation-related
features and the corresponding model to estimate PM2.5 con-
centration. The flow of our system is shown in Fig. 1.

A. Nighttime Haze Imaging Model
The nighttime haze imaging model can be viewed as a

generalization and extension of the optical daytime model [37],
where the observed intensity at pixel x is modeled as a
linear combination of the direct attenuation [38] D(x) and
the airlight [38] A(x) as follows:

I(x) = D(x) +A(x)
= J (x)t(x) +A[1− t(x)],

(1)

where I(x) is the observed intensity at pixel x, J (x) is
the scene radiance assuming pollution-free air, and A is the
atmospheric light constant. t(x) is the medium transmission
that indicates the portion of scenes reaching the camera. It is
defined as follows:

t(x) = e−βd(x), (2)

where β is the atmosphere scattering coefficient and d is the
scene depth. J (x)t(x) represents the perceived scene radiance
after attenuation, i.e., direct attenuation. A(x) is the airlight
indicating the particle veil induced by the atmospheric light
scattering, which varies with location. In daytime, when the
regional atmospheric light derived from artificial light sources
is insignificant compared with global atmospheric light derived
from sunlight, A(x) is equal to induced by global atmospheric
light.

At night, global atmospheric light, e.g., from the moon,
is intensified and dominated by other regional light sources,
e.g., artificial lights. These regional light sources produce
glowing regions near them. The observed glow effect G
can be modeled as the convolution of a light source with
an atmospheric point spread function (APSF) expressed by
Legendre polynomial [14].

I(x) = D(x) +A(x) +G and (3)

G = AL(x) ∗APSF , (4)

where AL is the active light source and its intensity is
convolved with APSF to derive the G. Glow extraction is
the process of separating glow intensity from a hazy image,
i.e., the elimination of airlight A(x) and direct attenuation
D(x). Note that we distinguish glow and airlight according to
their transmission paths. Specifically, Glow is the scattered
light that reaches the lens from the visible light source.
It is centered at the light source and its intensity changes
exponentially with distance from the source. Airlight is the
perceived intensity excluding direct attenuation and glow. It
is produced by portion of the aggregate of all light sources
in which global source homogeneously influencing the entire
scene and local sources influencing their respective regions.
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Fig. 1. The architecture and forward process of the proposed method. It involves halation-related features extraction (left, Illumination Map) and
network training (right, DSECNet which fuses information from the raw image and Illumination Map). Our method first extracts a refined transmission
map and a light source estimation map from the original image and combines them into an Illumination map. This illumination map is then fed into
the network together with the original image to estimate PM2.5 concentration using the light source glow effect.

B. Feature Maps
As shown in (3), a nighttime hazy image is the combination

of three types of intensity sources: glow, direct attenuation, and
airlight. To eliminate direct attenuation and airlight, we use
refined transmission map and light source estimation map to
restrain the effect of scene radiance and distinguish glow from
airlight. They are then combined to generate the Illumination
Map.

Refined Transmission Map (ReTM): Transmission t(x) is
defined as the proportion of D(x), the direct attenuation
including reflected light and light source direct light, reaching
the lens. 1− t(x) represents the proportion of scattered light,
i.e., A(x) and G. He et al. propose using the dark channel for
transmission map (TM) estimation as follows:

1− t̃(x) = ω min
c∈{r,g,b}

(
min

x′∈Ω(x)

Ic(x′)

Ac

)
, (5)

where x is the pixel index, Ω is a local patch centered at x,
x′ is the location index inside the patch, ω is haze-retention
constant (fixed at 0.95), and Ic(x) is the pixel value at x
position on channel c.

In the case of daytime, A = {Ar, Ag, Ab} is a con-
stant vector modeling the aggregate, homogeneous component
of lighting, called atmospheric light, which is estimated as
the global brightest pixel value. minc(minx′∈Ω(x)

Ic(x′)
Ac ) is

the ratio of the local minimum to the global maximum,
representing the visibility of local patch color (non-white),
and proportion of scattered light, e.g., when scattered light
dominates the patch, the visibility of scene diminishes and the
local minimum is close to the global maximum. This globally
homogeneous component is large during the day, but small
at night making it important to model the light due to each
artificial light source individually. Thus, global atmospheric
light and regional atmospheric light work together to affect
airlight. Treating atmospheric light as a global constant is
inappropriate at night. Modeling (varying) atmospheric light
in small regions is more appropriate.

We define A as the combination of global and regional
atmospheric light, i.e., the maximum in Ω, and refined trans-
mission is

t̃(x) = 1− ωmin
c

(
min

x′∈Ω(x)

Ic(x′)

Ac(x)

)
and (6)

Ac(x) = max
x′∈Ω(x)

Ic(x′). (7)

We use guided image filtering [39] to reduce the halos and
block artifacts introduced by the patch Ω; thus the map can
capture the edges of objects.

At night, the glow effect is negligible in regions distant
from the light source, as expressed in (1). However, in patches
close to the light source, non-uniform illumination signifi-
cantly enhances atmospheric light A, glow G, and attenuates
transmission t(x), making direct attenuation irrelevant, i.e.,
t(x)
Ac → 0. By combining (1) and (3), we have

I(x)
A

=
t(x)

A
J (x) + 1− t(x) +

G

A
. (8)

It can be further approximated as

I(x) ≈ G+A(1− t(x))

≈ G+ a,
(9)

where a is an airlight-related constant vector. Note that each
image patch corresponds to a local region in which there is
typically little scene depth and atmospheric light variation; this
enables A and t(x) to be approximated with constants.

Light Source Estimation Map (LSEM): Light source estima-
tion determines the distance between pixels and their most
closely associated light sources.

In night images, pixels with high values across all three
color channels are generally close to light sources. The channel
values may vary due to light source colors. The channel
difference, which is defined as the gap between the maximum
and minimum values of each color channel at every pixel
position, is used to generate the light source estimation map.
By merging the maximum value and channel difference, we
can derive the light source estimation map as shown in the
following equation.

L(x) = min

(
(2 ∗max

c

Ic(x)
255

−min
c

Ic(x)
255

)γ , 1

)
, (10)

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2025.3525712

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2025 at 02:58:30 UTC from IEEE Xplore.  Restrictions apply. 



XIANG et al.: LIGHT-ILLUM BASED NIGHTTIME PM2.5 ESTIMATION 5

where c ∈ {r, g, b}, γ is a constant to modify the distribution
of the normalized light source estimation map.

Illumination Map (IM): The halation (or glow) effect orig-
inates primarily from nighttime artificial light sources. Near
light sources, glow is the dominant contributor to intensity,
either saturating light sensors or requiring reduced sensitiv-
ity. This reduces the amount of information gathered about
backgrounds near light sources. The refined transmission, t(x),
measures the amount of information as the proportion of direct
attenuation intensity. Therefore, we use Ac(x)(1 − t(x)) to
represent the scattered proportion of light, i.e., airlight and
glow, and eliminate the impact of direct attenuation.

After eliminating scene radiance, we further eliminate
airlight from scattered light based on the exponential atten-
uation characteristics [14] of the glow. Both the Illumination
Map and light source estimation map are used for artificial
light sources, their attenuation patterns remain consistent.
Therefore, we use the light source estimation map to retain the
exponentially varying intensity as glow. The final Illumination
Map follows:

Gc(x) = Ac(x) · (1− t(x)) · L(x), (11)

where x is the location of pixel, c ∈ {r, g, b} is the color
channel.

(a) Raw image (b) Refined Transmission map

(c) Light source estimation map (d) Illum map

Fig. 2. The raw image and its corresponding feature maps described in
III-B. The refined transmission map captures direct attenuation of light

source. The light source estimation map indicates the area in which the
light source has a dominant effect. The Illumination Map eliminates the
effects of direct attenuation and airlight, representing halation.

As shown in Fig. 2, the raw image contains direct attenua-
tion, airlight, and glow simultaneously. The refined transmis-
sion map evaluates direct attenuation of light source, and is
used to eliminate the effects of direct reflected light in the
image. The light source estimation map eliminates airlight
but contains glow intensity. Only the regions with sufficient
light intensity and smooth variation are identified as having
glow feature. Fig. 3 shows the pixel values at the red arrow
locations in Fig. 2. The red line in Fig. 3(a) represents the glow
component, which is in accordance with the visual change of
glow. Fig. 3(b) shows that the variation of glow is consistent
with the raw image. The gap here between the raw image
and the Illumination Map is the airlight related constant a
introduced in (9).
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Fig. 3. Visualization of pixel values along red arrow line in Fig. 2. The
x-axis is the number of pixels away from the arrow tail along the vertical
direction and the y-axis is the corresponding pixels value.

C. Mapping Algorithm

3×3 Convolution 
2×2 Max pooling
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C×H×W

C×H×W

C×1×1

C×1×1 C×H×W

Flatten and Dropout

PM2.5

30
97

6Global Average Pooling

Full Connected Excitation

Fig. 4. Architecture of Dual-Channel Squeeze-and-Excitation Convolu-
tional Neural Network (DSECNet). It employs dual channels to receive
both the raw image and the Illumination Map as inputs, uses an attention
mechanism to enhance feature discrimination, and outputs the PM2.5

concentration.

DSECNet extracts and fuses information from the raw
image and the Illumination Map. As shown in Fig. 4, both
the raw image and extracted Illumination Map are resized to
108 × 192 × 3 to reduce the computation cost. For features
extraction, we set the convolutional kernel size to 3×3 and
2×2 max pooling. The leaky ReLU function is employed as
the activation function to avoid the dying ReLU problem [40].
This Conv-Pool block is repeated three times consecutively.
Raw image and the Illumination Map are processed by two
individual Conv-Pool blocks and are bridged by an attention
block, which uses the raw image channel to boost feature
discriminability [35], [41] in the glow channel. Finally, the
flattened vector is input to a fully connected layer to generate
the concentration of PM2.5. During training, dropout (p=0.5)
is employed for the fully connected layer, to enable learning
more robust and comprehensive feature representations.

IV. DATA COLLECTION AND PROCESSING

Given that this is the first work on halation-based pollution
estimation, evaluating the algorithm required a new dataset.
This section describes our dataset, the deployment of our
sensor network, and data analysis methods.
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A. Overview
The dataset consists of 11,753 nighttime images and the

corresponding particle counter based ground truth pollutant
concentrations collected from Nov. 2022 to Mar. 2023 in west
Hangzhou. The longitude and latitude are 120◦02′49.631′′E,
30◦13′56.022′′N, respectively. Particulate matter is the main
local atmospheric pollutant at night [42]. 75% of the missing
samples were a result of inclement weather. 75% of the
missing samples were a result of inclement weather. The
dataset is used to validate our algorithms. It has been publicly
released for use by other researches.

Our dataset contains frames captured every 5 minutes, with
1,080×1,920 resolution. Due to the high pollutant concen-
tration (PM2.5 >80 µg/m3) only accounting for 2.3% of the
total data, we increase the sampling rate in the high-pollution
subset during training to balance the distribution. The testing
set is of course unchanged. Resampling is only used for
our experiments and has no impact on the released dataset.
Specifically, we set the sampling rate to one per minute from
06:20 P.M. to 08:00 P.M. on Feb. 19, during which the PM2.5

concentration is between 58 µg/m3 and 119 µg/m3.
The overall distribution of image capture time is shown in

Fig. 5. The images are taken between approximately 06:20
P.M. and 05:00 A.M. when the sun has set and the illumination
is low. The experiment lasts for 5 months, from November
to March in the following year. The figure also shows the
PM2.5 concentration distribution during this period. It exhibits
a short-tailed pattern: few readings exceed 80 µg/m3. There are
two methods of evaluating the accuracy of a technique over
a range of actual pollutant concentrations. First, one might
set the pollutant concentration in a controlled environment.
Second, one might compare a new technique against an
existing, accurate measurements in the presence of substan-
tial pollutant variation. Our goal is to determine how well
proposed technique works in the real world, in the presence
of real-world sensing errors and uncertainty. Only the second
evaluation method is applicable for real-world scenarios and
we therefore use it. Our reported accuracy is in the presence of
all real-world sensing errors and uncertainties, e.g., not being
provided with light source intensities and camera noise. The
technique can be expected to perform no worse, and potentially
better, in a laboratory environment in which some uncertainties
and noise sources are eliminated. Again, our primary goal is
to determine its accuracy in real-world use.

B. Data Collection

To collect the ground truth PM2.5 readings and the cor-
responding images, we deploy sensor and camera networks
in downtown Hangzhou, which contains many residential
communities and schools. The cameras are placed along a
main city road, as demonstrated in Fig. 6. Meanwhile, an air
quality sensing platform is placed in the center of the region
to record ground truth pollutant readings.

Previous work [43] has reported that regional pollutants ex-
hibit low spatial variability, e.g., using the chemical transport
model to predict PM2.5 concentration in Pittsburgh in winter,
the maximum concentration value increases from 12.9 µg/m3
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Fig. 5. The time (a, b) and (c) PM2.5 distributions of samples in our
gathered data. Data are collected after sunset.
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Fig. 6. Sensor and cameras locations. The cameras directions are
marked by red arrows. The maximum distance between the sensing
platform and cameras is about 1.0 km.

to 16.4 µg/m3 when the simulation grid increase from 4×4km
to 1× 1km. Therefore, we believe that one air quality sensor
is sufficient for our experimental setup.

We developed a portable sensing platform to collect and
store data, including a Nova particulate matter sensor module,
temperature and humidity sensors, and an Arduino UNO
controller (see Fig. 7). This platform is powered by lithium
batteries and records data once per second.

The deployments and parameters for the Nova PM sensor
are shown in Tables I and II. These sensors measure PM2.5

(0.0-999.9 µg/m3) and PM10 (0.0-1999.9 µg/m3). They operate
between −10 °C to 50 °C and below 70% humidity. They have
1-second measurement response times and detect particles as
small as 0.3 µm, with a ±15% error margin.

We employ five XiaoMi intelligent cameras to capture
videos of the monitored area (see Fig. 7). Further details
regarding the camera parameters can be found in Table II. The
key camera parameters are lens and aperture sizes. Increasing
those sizes allows monitoring of large areas in low-light
conditions. Each camera covers an approximate area of 2 km2,
adopting to spatial variation of PM2.5 concentration [19],
[44], [45]. It is important to note that we use inexpensive,
commodity off-the-shelf camera modules: the technique does
not require specialized sensors. These cameras are strategically
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Fig. 7. Sensing platform and cameras used in our deployment.
Components are marked in numbers, see Table II for more detailed
device parameters.

positioned within buildings situated in university and residen-
tial areas, spanning a distance of approximately 4.8 km along
the main road. Detailed information about the specific camera
locations can be found in Table I and Fig. 6. We adjust the
camera pitch angles to capture comprehensive scenes including
both the ground and the sky.

TABLE I
DEPLOYMENT SPECIFICATIONS FOR ENVIRONMENTAL SENSORS AND

CAMERAS.

Device GPS
Location

Height
(m)

Pitch
Angle

Acquisition
Interval

Camera1 120◦03′16.488′′E
30◦14′15.946′′N 18 20◦ 5 minutes

Camera2 120◦03′12.236′′E
30◦14′12.787′′N 18 10◦ 5 minutes

Camera3 120◦03′21.372′′E
30◦14′08.083′′N 33 5◦ 5 minutes

Camera4 120◦02′38.086′′E
30◦13′47.709′′N 18 20◦ 5 minutes

Camera5 120◦02′34.189′′E
30◦13′45.393′′N 15 5◦ 5 minutes

Sensors 120◦02′53.592′′E
30◦13′54.323′′N 18 - 1 second

C. Nighttime Observations

In theory, the formation, propagation, and dissipation of
PM2.5 are affected by climate and weather conditions. For
instance, low night-time temperatures can cause pollutants to
stay closer to the ground. However, in our experiments, we
found the influence of these environmental factors on PM
concentration to be small. We calculate the R2 correlation
coefficients for the two environmental parameters and discover
that the correlations are weak, as demonstrated in Table III.

Air pollution shows significant temporal variation through-
out the day [46]. In particular, decreased human activities
during the night can lead to reduced pollutant concentration.
The drop in temperature during the night can also cause
atmospheric pollutants to be trapped and accumulate.

To assess the differences in the rate of change of PM2.5

between day and night, we use both absolute and relative
rates of variation. Since a portion of our PM2.5 data does not

TABLE II
PARAMETERS OF PM DEVICE AND CAMERAS.

Nova PM sensor :

Sensor range [PM2.5] 0.0 to 999.9 µg/m3

[PM10] 0.0 to 1999.9 µg/m3

Operating temperature -10 to 50 °C

Maximum operating humidity 70%

The response time 1 second

Serial port data output frequency 1 Hz

Minimum resolution particle size 0.3 µm

The relative error Max. ±15% and ±10µg/m3

(Note: 25 °C,50%RH)

Standard certification CE/FCC/RoHS

Camera :

Lens FOV: 110°

Aperture: f/1.4

Shooting Range: 0.6 m to ∞

Video Resolution 1080× 1920, MP4 (H.265/HEVC)

Operating temperature -10 to 45 °C

TABLE III
CORRELATION WITH ENVIRONMENTAL FACTORS

PM2.5 PM10 Temperature Humidity

PM2.5 1.0 0.758 0.325 0.349

PM10 0.758 1.0 0.253 0.302

Temperature 0.325 0.253 1.0 0.787

Humidity 0.349 0.302 0.787 1.0

cover a full 24-hour period, we select 13 days that contain 24-
hours of data and calculate their average. The absolute rate of
variation va and the relative rate of variation vr are calculated
as follows:

va =
1

N

N∑
t=1

|pt+1 − pt| and (12)

vr =
1

N

N∑
t=1

|pt+1 − pt|/pt, (13)

where N = A
s represents the length of the sequence, A is the

number of data points covering 24 hours, s is the sampling
interval, and pt denotes the PM2.5 concentration at the t-th
sampling point.

The results are presented in Fig. 8, which clearly demon-
strates that the level of PM2.5 varies less at night than during
the day.

D. Glow Effect

We first design an algorithm, as shown in Algorithm IV-D,
to determine the attenuation rate of light intensity near the light
source, which is closely related to the PM2.5 concentration.
Specifically, we put a 101 × 101 gray-scale image patch P
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Fig. 8. Diurnal difference in PM2.5 variation rate. Daytime, nighttime,
and all the time are marked in different colors. Absolute (a) and relative
(b) rates of variation. The level of PM2.5 varies less at night than during
the day.

Algorithm 1 Calculation of Light Source
Input: an image patch P ; coordinates set X
Output: light source binary map M ; light source central

coordinate xc

1: Init 1: X255 ← {x | x ∈ X, P (x)=255},
2: M ← O101×101

3: Init 2: xc ← Average(X255), M(xc)← 1
4: Step 1: Create 1-D array A s.t. ∀ 1 ≤ i < j ≤ |A| and

E(A(i),xc) ≤ E(A(j),xc)
5: for (i← 2;x← A(i), i ≤ |A|; i++) do
6: Step 2.1:
7: if P (x)=255 and x̂ ∈ A and M(x̂) ∗H(x̂,x)=1 then
8: M(x)← 1 // identified as light source
9: end if

10: Step 2.2:
11: if i > 200 and

∑i
j=i−199 M(xj) < 20 then

12: break
13: end if
14: end for
15: Step 3: xc ← Average(XM ),
16: XM ← {x | x ∈ X,M(x)=1}
17: return M,xc

in a Cartesian coordinate system and use x = (x1, x2) as the
pixel coordinate. X is the coordinates set of all pixels. We first
initialize the light source central coordinate xc by the average
coordinates of saturated pixels. The light source binary map
M is initialized with zeros, with the M(xc) set to 1. A is
the ordered array of elements in X sorted by their Euclidean
distance to xc. Subsequently, we traverse the coordinates in
A and mark it as the light source in M if it is saturated and
satisfies the Euclidean distance (E(·)) and the Hamiltonian
distance (H(·)) requirement. We terminate this process when
more than 200 pixels are traversed and there are less than 20
pixels marked as the light source in the last traversal step. In
the end, we update xc by M .

We use the light source located in Fig. 9 to evaluate the
correlation between the glow effect and PM2.5 concentration.
1,000 images are selected randomly and divided into four sets
based on their concentration ranges. The region with a gray-
scale pixel values of 255 is defined as the light source. We

About glow
take the intensity of red line pixels
and plot they.

Fig. 9. Light source of location 3 (see Fig. 6). The red arrow represents
the transmission direction for attenuation analysis.

verified that all images contain such regions and did not use
normalization. We indicate the region 200 pixels away from
the edge of the light source for illustration; at this distance,
there is generally little glow. We plot the pixel values as a
function of distance away from the edge of the light source
along the red arrow.
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Fig. 10. Attenuation of the glowing region: (a) The x-axis is the number
of pixels away from the light source along the horizontal direction and
the y-axis is the corresponding pixel value; (b) The x-axis is PM2.5

concentration value of each line and the y-axis is pixel value 100-pixels
from the light source edge. The stratification (a) and linear relationship
(b) illustrate the existence of a correlation between PM2.5 concentration
and light source glow.

As shown in Fig. 10(a), each line represents an image,
and its color indicates the corresponding PM2.5 range. There
is an obvious layering by color, indicating that the pixel
values decreased more rapidly with a decrease in PM2.5

concentration, thus confirming the correlation between the
glow effect and PM2.5 concentration. Specifically, using pixels
100 pixels away from the light source (along the horizontal
direction) as an example, Fig. 10(b) shows that the average
dependence of intensity on PM2.5 is 0.63 pixel intensity units
every µg/m3 when the concentration is lower than 50 µg/m3.
Note that the red portion does not exhibit this trend, possibly
due to increased PM2.5 increasing the overall brightness and
the intelligent camera decreases the exposure automatically.
Moreover, the most significant attenuation in pixel values
occurred within a distance of 100 pixels. This guides our
selection of hyperparameters in later experiments.

We make no assumption that users will provide actual
brightnesses of artificial light sources.
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V. EXPERIMENTAL RESULTS

In this section, we introduce the experimental setup and the
corresponding experimental design and results.

A. Experimental Setup
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Fig. 11. Distribution of experimental data. There are 534 samples from
highly polluted environments (PM2.5 > 80 µg/m3) after replication. After
correction, the distribution of the training set is more balanced.

We select the data obtained in Feb. and Mar., which
contains 8,829 images. After sorting by capture time, they
are divided 3:2 into training and testing data sets. For the
training set, since there were few high-concentration samples
(PM2.5 >80 µg/m3), we resample the training set to balance
the distribution (see Section IV). Fig. 11 shows the sample
distribution of the training set and testing set. The algorithm is
developed using PyTorch (version 1.11.0, CUDA 10.2), Adam
optimizer with a batch size of 128 [47], and mean squared
error loss function. We employ multi-step learning rate decay
strategy, where the learning rate is initialized to 5 e−3 and
stepped down to 1 e−5 in 400 epochs.

The model is trained on a server equipped with a Tesla
V100 GPU and 2.30 GHz Intel(R) Xeon(R) Gold 5218 CPU.
As suggested in [48], we use the mean absolute error (MAE),
mean relative error (MRE), and rooted mean squared error
(RMSE) as the evaluation metrics.

MAE =
1

N

N∑
i=1

|yi − ŷi|, (14)

MRE =
1

N

N∑
i=1

|yi − ŷi|
yi

, (15)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (16)

where N is the total number of samples, ŷi is the predicted
value of i-th sample, and yi is the ground truth value.

B. Evaluation of Illumination Map Based Model
Our work is the first on nighttime vision-based pollution

estimation. We compare our technique with the most closely
related state-of-the-art PM2.5 estimation techniques, which
were developed for daytime use. As shown in Table IV, our

method outperforms all daytime methods consistently. The
poor performance on the pre-trained PE-MobileNetV2 [15] in-
dicates that the vision-based daytime model cannot be directly
applied to night scenarios. Compared with the SOTA daytime
methods, our technique reduces MAE by 16.99% and MRE
by 8.02%.

TABLE IV
COMPARISON WITH EXISTING (DAYTIME) METHODS (µg/m3)

Method MAE MRE RMSE

Our Method 8.65 16.74% 11.02
Pre-trained PE-MobileNetV2 [15] 18.15 40.04% 22.77

Re-trained PE-MobileNetV2 [15] 10.42 18.20% 13.73

Utomo [29] 12.44 21.81% 16.16

MIFF [30] 11.13 21.97% 14.27

ImgSensingNet [12] 10.96 22.83% 13.98

C. Ablation Analysis

We argue that the glow feature is key enabler of accurate
image-based nighttime pollution estimation. Using the same
architecture, we compare the proposed Illumination Map and
popular feature maps to determine its impact. The Illumination
Map is replaced by baseline features in the network, including
Li’s glow feature [36], dark channel, and transmission [33]. As
shown in Table V, our method, which uses refined transmission
and light source estimation for glow extraction, ourperforms
other methods, indicating the benefit of using Illumination
Map features. Compared with the second-best feature (Dark
Channel), our technique reduces MAE by 13.33% and MRE
by 10.10%.

The effectiveness of the transmission map-based method is
diminished at night [49], as it tends to mistakenly identify
artificial light sources as light sources at infinity. This issue
arises due to the uneven distribution of brightness caused
by low illumination and artificial light sources. Consequently,
many regions in the transmission map exhibit pixel values that
are either close to 0 (black regions) or 255 (white regions).
This disrupts the overall relationship between transmission and
scene depth, resulting in poor transmission map performance.

On the other hand, the dark channel-based method seeks the
minimal value of RGB channels within a patch to generate a
coarse output. However, this approach neglects a significant
amount of valuable image information.

Li’s approach addresses the color shift problem by imposing
a global RGB channel constraint and extracting a smooth layer
using a spectrum-based algorithm. However, when dealing
with large images containing multi-color lights, unexpected
color shifts can occur, and object edges may exist. Compared
with Li’s method, which relies on statistical prior knowledge
that the gradient histogram of the smooth layer has a short
tail distribution, our Illumination Map estimates the proportion
of radially scattered light in a raw image based on physical
imaging model. Experimental results demonstrate that our
Illumination Map improves MAE by 25.56% relative to the
“Glow Map” described by Li et al.
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TABLE V
COMPARISON OF DIFFERENT FEATURES USING OUR MODEL (µg/m3).

Method MAE MRE RMSE

DSECNet + IM 8.65 16.74% 11.02
DSECNet + Raw image 10.30 18.88% 13.06

DSECNet + He’s dark channel [33] 9.98 18.62% 12.92

DSECNet + Li’s glow feature [36] 11.62 21.18% 14.93

DSECNet + TM [33] 10.09 19.45% 12.51

DSECNet + LSEM 10.79 19.34% 13.65

DSECNet + ReTM 9.17 17.09% 11.57

One limitation of our method is that it is most accurate when
trained on data from the deployment location. We evaluate its
generalizability in unseen places by dividing the test set and
training set according to location, that is, images collected
in a specific location are used for testing and the other four
locations are for training. The results are shown in Table VI,
where we select models from 25 and 100 training epochs to
test under the case of preliminary fitting and sufficient fitting.
It indicates the error of our model increases significantly when
applied to unseen places. In the worst case, the MAE is
40.12 µg/m3 in Location3.

TABLE VI
GENERALIZATION IN DIFFERENT LOCATIONS (µg/m3)

The Epoch is 25 The Epoch is 100
MAE RMSE MAE RMSE

Location1 10.68 13.97 13.93 19.97

Location2 27.29 30.33 25.06 29.42

Location3 40.12 42.49 17.53 21.17

Location4 9.57 12.99 17.08 22.47

Location5 9.37 13.42 19.25 26.87

D. Receptive Field
Fig. 10(a) shows that the attenuation rate of the light

intensity ranges from 47.75% to 79.41% within a 100 pixels
radius. Therefore, we expect the receptive field of the neuron
in the final Conv-Pool block to cover an area of approximately
200×200 pixels in the original image. To test this hypothesis,
we train models with varying input sizes and evaluate each
case, as shown in Table VII. We use a scaling factor (γ) that
ranges from 4 to 40, to scale down the original 1, 080×1, 920
image. The results indicate that the best input size is (108,192)
with the corresponding receptive field of (220,220), i.e., neu-
rons of the last layer have a field of view that approximates
(220,220) in the original image. The receptive field size (RFS)
is calculated as follows:

RFS = (((1 ∗ 2 + 2) ∗ 2 + 2) ∗ 2 + 2)/γ, (17)

where sf is the scaling factor and other constants are deter-
mined by the network structure. Increasing the input resolution
beyond that point leads to a decrease in the receptive field
and an increase in MAE and MRE. Moreover, decreasing
the input resolution causes a loss of image details and also
a deterioration in network accuracy.

TABLE VII
IMPACT OF VARYING INPUT SIZE AND RECEPTIVE FIELD

Input size Receptive field MAE (µg/m3) MRE Flops Parameters

(252,448) (94,94) 9.54 18.05% 2.19G 395,137

(216,384) (110,110) 9.34 16.97% 1.58G 341,889

(180,320) (132,132) 9.43 17.17% 1.08G 291,969

(144,256) (165,165) 9.83 18.85% 675.17M 256,129

(108,192) (220,220) 8.65 16.74% 365.37M 225,665

(81,144) (293,293) 9.46 16.53% 192.54M 211,073

(54,96) (440,440) 11.35 20.21% 79.26M 201,089

(27,48) (880,880) 12.06 22.28% 13.59M 195,201

E. Sky Region Impact

The sky is crucial in estimating daytime PM2.5 concentra-
tion in outdoor environments [11], [13], [15], [29]. Typically,
the daytime airlight is assumed to be the intensity of the sky
region at an infinite distance. However, sky-based estimation
is much less effective at night due to reduced illumination.

(a) Illu map (b) Grad-CAM of the Illum map

(c) Raw image (d) Grad-CAM of the raw image

Fig. 12. Grad-CAM of the first convolution layer of Illu map and raw
image. Compared to the raw image, the Illu Map places less emphasis
on the non-light source regions, airlight, and background, while focusing
more on the glow itself.

To investigate the impact of the sky, we partition the
image into two regions: the sky and non-sky. As shown in
Table VIII, training the model using only the sky region results
in an additional error of 5.965 µg/m3 compared to using both
regions. Removing the nighttime sky region has little impact
(MAE is 1.98 µg/m3) on the overall model accuracy.

TABLE VIII
EVALUATION OF SKY AND NON-SKY REGIONS

sky region non-sky region sky + non-sky

MAE (µg/m3) 14.62 10.63 8.65
MRE (%) 27.65% 19.65% 16.74%

RMSE (µg/m3) 18.54 13.17 11.02

We then use gradient-weighted class activation mapping
(Grad-CAM) [50] to visualize the network attention on in-
put images. Grad-CAM generates a heatmap of each pixel’s
contribution to the final prediction by using back-propagation
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of gradients. Since the resolution of the Grad-CAM heatmap
is consistent with the target hidden layer, we select the first
convolution layer to illustrate the fine-grained details of the
image. As shown in Fig. 12, the network focuses its attention
on the glow of light sources. In comparison to the raw image,
the Illumination Map pays less attention to the non-light source
region, airlight, and background while focusing more on the
glow itself.

F. Performance on PM10

As shown in Fig. 13, the Pearson correlation coefficient
between PM2.5 and PM10 in the testing set is 0.9594, indi-
cating a strong positive correlation. When the experimental
data are replaced with PM10, the proposed method achieves
a RMSE of 24.73 µg/m3, a MRE of 20.07%, and a MAE of
19.88 µg/m3. Notably, the MRE is comparable to the model’s
performance on PM2.5, suggesting that the proposed method
is also effective for PM10 estimation.

The increase in MAE and RMSE for PM10 compared to
PM2.5 is attributed to the broader range of PM10 values, which
reaches over 140 µg/m3. Despite this, the model remains robust
across both particle size measurements.
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Fig. 13. The correlation between PM2.5 and PM10 in the testing set,
where the Pearson coefficient is 0.96. The strong positive correlation
suggest that the proposed method is also effective for PM10 estimation.

Fig. 14. Color light extraction results. The first row is the mask for non-
color and color light, while the second row is the original images after
applying masks.

TABLE IX
IMAPCT OF COLOR

RMSE MAE MRE

Non-color (µg/m3) 13.76 11.59 20.14

Color (µg/m3) 14.68 11.97 20.44

G. Impact of Color

The color of artificial light sources can vary, which differs
from the daytime pollution estimation problem in which
sunlight is the primary source of illumination. We therefore
evaluated the effect of color on estimation accuracy. In our
dataset, we distinguish the intensity of glow color by the
Saturation (S) in HSV space. The poor uniformity of the RGB
color space makes it inappropriate to define color difference
as the distance between RGB color vectors. HSV Saturation
indicates the purity and intensity of a color. Specifically, we
first select the light source area according to the brightness
map (B¿0.7), then convert this area into HSV to calculate the
saturation value S, where S equals 0 indicates that the area is
non-colored. Finally, we distinguish the colored area according
to whether the S value is greater than 0.

As shown in Fig. 14, we use a black mask to get colored and
non-colored light data. The impact of color on performance is
shown in Table IX, the predictions on the colored data are
slightly less accurate than the non-colored ones. This may
be because white (non-colored) light has a wider spectrum
than colored light and therefore contains more information.
Whether particular (coarse, given the RGB representation)
wavelengths are better suited to vision-based pollution es-
timation remains an open question. However, our reported
accuracies were for data containing color variation in a real-
world environment, so the approach appears to be robust to
this variation.

VI. CONCLUSION AND DISCUSSIONS

We have described a nighttime PM2.5 concentration es-
timation technique based on light source Illumination Map
extraction. We have also presented a publicly released dataset
including PM2.5 and PM10 concentrations, humidity, and
temperature. The experimental results demonstrate that our
Illumination Map based approach enables a 16.99% improve-
ment in MAE compared to the existing daytime methods.

During deployment, due to the relatively low pollution
level in Hangzhou, most PM2.5 values are under 80 µg/m3.
Moreover, rainy weather sometimes prevented data collection.
Our method is designed for use at night and does best when
artificial light sources are present within the scene. Therefore,
it may not work well during the day, at dawn, or at dusk
when the sun dominates artificial light sources; under these
conditions, existing (daytime) approaches are adequate.

Future work includes considering other environmental pa-
rameters, such as wind and rain, to improve the accuracy of
PM2.5 concentration estimation. Moreover, collecting a more
diverse and larger-scale nighttime image dataset might enable
further improvements in model accuracy.
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DATA AVAILABILITY

Our dataset is available at https://github.com/Kaihua-
Zhang/Light-Illum based-Nighttime-PM2.5-Estimation.

The following files are available free of charge:
• image dataset and corresponding environment labels and
• code for Illumination Map implementation in Python.
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