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Abstract: Mobile devices such as smart phones and laptops are in common use and carry a vast amount of
personal data. This paper presents an efficient behavior-based system for rapidly detecting the
theft of mobile devices in order to protect the private data of their users. Our technique uses
spatio-temporal information to construct models of user motion patters. These models are used
to detect theft, which may produce anomalous spatio-temporal patterns. We consider two types
of user models, each of which builds on the relationship between location and time of day. Our
evaluation, based on the Reality Mining dataset, shows that our system is capable of detecting an

attack within 15 minutes with 81% accuracy.

1 INTRODUCTION

Mobile devices such as smart phones, iPhones,
and laptops are used in a number of applica-
tions, including email, text messaging, gaming,
web browsing, navigation, and recording pic-
tures/videos [19]. Such devices are also used for
financial transactions including Mobile Money [5],
which is extensively used in China and Japan.
Mobile computing devices store a lot of personal
information and, if stolen, loss of control over
these data may be even more important than loss
of the mobile device.

Some prior work on mobile device security has
focused on physical aspects and/or access con-
trol (e.g., strong passwords, voice recognition, or
fingerprints). However, such approaches do not
protect the private data on stolen devices in the
post-authentication state. Many mobile devices
(e.g., from Apple, Blackberry, Sony Ericsson, and
Nokia) are equipped with location identification
tools such as association with a cellphone tower
ID, WiFi, Bluetooth, or Global Positioning Sys-
tem (GPS) receivers, which can be used to track
location in case of theft. However, existing work
that uses the GPS-feature for the purpose of pro-
tecting the users (e.g., GadgetTrak [1] and Recov-
eryCop [16]) depend on the owner to report the
theft. It may take hours before the owner discov-
ers the theft of a device, at which point private

data may have already been violated. Even Lap-
top Cop [2], which has the goal of protecting data
on stolen devices by remotely and manually delet-
ing it, requires user intervention to initiate this
process. In addition, these systems require cel-
lular connections to protect the data, while our
system is capable of detecting attacks and react-
ing without cellular access.

Our main goal is to develop efficient tech-
niques for protecting data saved on mobile de-
vices. Our approach is based on detecting the
spatio-temporal behavior of intruders, which may
be anomalous compared to the regular motion
patters of owners. In a previous study [23], we
used network access patterns and file system ac-
tivities to build a behavioral model that permit-
ted attack detection with a latency of 5 minutes
and an accuracy of 90%. We investigate the com-
plementary approach of using spatio-temporal in-
formation and trajectory analysis to model user
behavior and support anomaly detection.

There has been recent research [13, 18, 22| on
mobility-based intrusion detection. To the best
of our knowledge, ours is the first such technique
to use spatio-temporal information and trajectory
analysis to enable detection of an attack in 15
minutes and with 81% accuracy. The simple data
structure used to model the users spatio-temporal
behavior — 2-dimensional and 3-dimensional ma-



trices — enables efficient lookup-based attack de-
tection.

The rest of this paper is organized as follows.
Section 2 describes related work. Section 3 in-
troduces the system architecture and detection
techniques. Section 4 presents evaluation of our
technique. Section 5 concludes the paper and in-
dicates possible directions for future work.

2 RELATED WORK

Spatio-temporal data management and efficient
query processing techniques have been the top-
ics of intensive research in the field of Mov-
ing Objects Databases [11]. In particular, tra-
jectory analysis and similarity detection have
yielded numerous research results in the recent
years [6, 9, 15]. Several results from this arena
have goals similar to ours. For example, Mouza
and Rigaux [7] propose regular expression based
algorithms for detecting mobility patterns. How-
ever, those patterns do not explicitly model the
temporal dimension of the motion, i.e., the fo-
cus is more on routes than trajectories. Had-
jieleftheriou et al. [12] describe efficient indexing
techniques and refinement algorithms for process-
ing spatio-temporal pattern queries. The main
distinction of our work is the use of probabilis-
tic location-in-time patterns, which establish a
threshold for detecting anomalous behavior.

The importance of adding semantic informa-
tion to trajectory data has been previously rec-
ognized. For example, in order to improve appli-
cation awareness during trajectory data analysis,
Alvares et al. [4] proposed adding semantic infor-
mation during trajectory preprocessing. Hung,
Chang, and Peng [14] proposed the complemen-
tary approach of using a probabilistic suffix tree
to measure separation among users trajectories.
Xie, Deng, and Zhou [21] addressed the problem
of predicting social activities based on users tra-
jectories. In addition, Trestian et al. [20] used
association rule mining to investigate the rela-
tionships between geographic locations and use
habits for mobile devices. In this work, we intro-
duce two types of mobility models and combine
them for efficient detection of anomalous use.

Some intrusion detection research has objec-
tives similar to ours, but differs in approach.
Sun et al. [18] proposed mobile intrusion detec-
tion based on the Lempel-Ziv compression algo-
rithm and Markov Chains. The proposed tech-
nique used three-level Markov Chains, and did
not consider the association between time of the

day and the location. Their ability to detect at-
tack using the proposed technique is limited to
the times at which the user is making phone calls
and moving faster than 60 miles per hour. Yan
et al. [22] improved on this work, yet the delay
in detecting attack was 24 hours, since the traces
were obtained once a day, with a sampling pe-
riod of 30 minutes. Our technique has an attack
detection latency of 15 minutes. Hall, Barbeau,
and Kranakis [13] proposed an intrusion detec-
tion method based on mobility traces. Their fo-
cus was on public transportation traces in which
the paths are pre-defined. Their results are inap-
plicable for detecting attacks based on individual
motion patterns.

3 SYSTEM ARCHITECTURE

We now explain the main results of our work.
First, we explain our detection system. We then
describe techniques for data collection and fea-
ture extraction and present two user models for
anomaly detection.

The main objectives of this work are to

1. develop efficient algorithms for deriving user
models from spatio-temporal information and
trajectory analysis;

2. determine the accuracy with which users can
be distinguished using such models; and

3. ideally achieve a high detection accuracy with
low latency and low energy cost.

The methodology proposed in this paper is
based on the following observations:

e most mobile systems have location identifica-
tion tools and can gather location traces;

e cach individual typically has a small set of lo-
cations that are visited with high frequency,
e.g., every day [10]; and

e individuals tend to take the same paths when
moving among particular locations [10].

3.1 System Components

The system for automatic generation of mobility
models and detection of spatio-temporal behav-
ioral anomalies has the following main modules:

1. data collection,

2. feature extraction,

3. user profile building, and
4

. anomaly detection.
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Figure 1: System architecture.

Figure 1 illustrates the integration of these
modules into the system architecture, which con-
sists of the following sub-systems.

e (ICS) — the information capturing system, re-
siding on the mobile device, which contains an
application to track the device location, regis-
ter it periodically, and save it in a new log file
every T minutes. It also contains the feature
extraction module.

e (IMS) — the information management sys-
tem, which collects the log-files from the ICS
and resides on a computer with higher per-
formance and much looser power consump-
tion constraints than the mobile device. It is
responsible for building mobility models and
performing anomaly detection. Upon building
the user model, the IMS sends it to the mo-
bile device, allowing the detection of attacks
in the absence of wireless connection, at some
computation power consumption penalty.

e (RMS) — the response management system,
which resides on both the mobile device and
the remote server that hosts the IMS. Upon
receiving an alert, the RMS identifies the ap-
propriate action to protect data on the mo-
bile device, e.g., notifying the device owner,
locking the device, or automatically deleting

private data.

In this paper, we focus on the algorithms
and implementation details for the ICS and the
IMS modules, since the RMS consists of user-
dependent actions that should be executed in case
an attack is detected.

3.2 Data Collection and Feature
Extraction

Motion traces are essential for model construction
and anomaly detection. We considered human
motion data which is

e continuous: collected for a long period of time
continuously;

e consistent: collected at the same time every
day; and

e frequent: collected at a high enough frequency
to support fast anomaly detection.

The sampling frequency used by Gonzélez et
al. [10] was too low for our application. The open-
StreetMap [3] data, as well as the data used by
Rhee et al. [17], were neither continuous nor con-
sistent. Hence, we used the Reality Mining data
set [8], which contains data for over 100 users dur-
ing a nine-month period. It consists of phone calls
logs, locations identified by tower IDs and area
IDs, application usage logs, and device-specific
data. The data collection interval ranged from a
few seconds to 15 minutes, with an average of 2.5
minutes, except when the mobile device was off.

Our spatio-temporal analysis techniques de-
pends on extracting the following features from
the Reality Mining log: (1) User ID u;; (2) Lo-
cation information /;, represented by the area ID
in the traces; and (3) Timestamps ¢ of the data
records in the trace. Thus, our input data records
are tuples of the form (u;,{;,tx).

We developed and evaluated two modeling
techniques for anomaly detection: Model #1 con-
siders time—location relationships and Model #2
considers time—location sequences of recently vis-
ited locations. We relate the anomaly detection
rate to the total number of distinct locations for
each user, based on which we propose a method
to adaptively select the best model.

In the next section, we describe each of the
models in greater detail.

3.3 Model #1: Spatio-Temporal
Information

In Model #1, for each user w;, we extract the
location I; and timestamp ?;. For conciseness,



we will sometimes neglect notation for user ID
when it is clear from the context.

3.3.1 Building User Profile

Our goal is to protect private data on mobile de-
vices by detecting attacks based on identification
of unacceptable deviation from the user’s normal
behavior. Our first step is to behaviorally model
each user’s normal behavior. To build the user
profile for the 100 users in the reality mining data
set, we divided the data evenly into two consecu-
tive series: model_data (used for model construc-
tion) and test_data (used for evaluation).

Utilizing the model_data, user profile was con-
structed as follows.

1. Build a list of the user’s distinct locations
(Ls)-

2. Extract from the distinct location list the
user’s common locations list (UCL;), which
consists of locations the user visited more than

1% of the time during the data collection pe-
riod.

3. Construct the LOC-IN-TIME,; table for a
24 hours time period using one-minute in-
tervals. Each entry LOC-IN-TIME;(j, k) is
the weighted probability value Prob;(l;,tx),
which represents the fraction of time in the
model_data the user u; was at location [; at
time t, where 1 < j < |UCL;], and 1 < k <
NT.

As explained above, UCL; denotes the set of
locations visited by u; more than 1% of the time
during the data collection period, and NT de-
notes the number of one-minute intervals.

At any given time tj, the user u; should be
at only one location [; from the location list
L;. Therefore the total probability value calcu-
lated for that time of the day should always be
equal to one. The weighted probability value of
(Prob;(l,t)) is the probability of user u; being
at location [; at time tj, divided by the number of
records in the model_data set that represent the
locations in the UC'L;.

The profile construction process is formally
described in Algorithm 1. This process is re-
peated for each user, as shown in Line 3. The
first step is to constructs a list of all locations vis-
ited by user u;, as shown in Line 4. In Line 8m
we calculate the weighted probability value. All
locations that have been visited less than 1% of
the time are excluded as explained in Lines 9-—
12. In Line 13, Py is calculated as described
in Section 3.3.2.

Algorithm 1 Build User Profile Based on
Spatio-Temporal Information

1: INPUT: model_data log

2: OUTPUT: user Profile LOC-IN-TIMFE

3: for all users u; do

4:  Read each record in the model_data log

5:  Identify the list of distinct locations (L;) vis-
ited by the user

6 Build the infrequent location list (I F;) where

7 if 371 records < 1% size of model_data then

8: lj c IF;

9

0

end if

Let RP represents the total number of records

in the model_data where l; € IF;

11:  Build list of the wuser common locations
UCL, =L; — IF;

12:  Allocate space for table LOC-IN-TIME,; with
UCL; columns and NT rows

13:  Calculate the weighted probability value

14:  LOC-IN-TIME;(j,k)=Prob;(l;,tr)/(size  of

(model_data) — RP)

15:  Calculate the (Pist) value for each user
16: end for
A B C D E
12:00 AM| 0.04 0 0.011 0 0
12:01 AM| 0.04 0 0.01 0 0
12:02 AM| 0.03 0 0.02 0 0
12:03 AM| 0.032 0 0.021| 0O 0
11:58 PM|  0.029 0 0.021 0 0
11:59 PM| 0.04 0 0.019 0 0

Figure 2: User profile for Model #1.

Figure 2 shows the profile for user u;. The user
profile is a two-dimensional matrix with (JUCL| x
NT) elements. Rows correspond to minutes of
the day and columns correspond to locations.

3.3.2 Anomaly Detection

Attacks are detected via mismatches between
limited-duration spatio-temporal traces and the
model of normal user behavior, yielding an at-
tack detection latency < T'. When the probabil-
ity of a specific trace being generated by the user
model drops below the Trust value (Ppryst), our
system concludes that the mobile device is used
by someone other than its owner.

To calculate the Pj,.,¢ associated with a given
user profile we used the test_data set. We ran-
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Figure 3: Example of calculating Py.s: value.

domly selected 100 samples (S1, So, ..., S100) from
the test_data, for which the time span is 7' min-
utes. A random sample S, of span T' corresponds
to a contiguous sequence of records: (u;,l;,tx),
(ui’ljlvth)v B (uivljmvth)v T (ui7ljn7tkn)
satisfying conditions tr < tg, -+ < g, -+ < tg,
and (tg, —tx) =T.

Figure 3 illustrates a T-duration trace se-
quence containing 100 samples. The number of
records per sample varies among samples due to
variation in data collection interval. For each
sample S,,, we calculate the cumulative proba-
bility SP,, of the records in the sequence using
the probability distribution table established on
the model_data representative of the user u; as
follows:

SP,, =

>

(4,k)ESm

LOC-IN-TIME; (I, tx). (1)

Most SP values are similar with few outliers
(see Figure 3). Selecting Pys: equal to the small-
est SP value of zero implies no tolerance of false
rejection, resulting in a False Acceptance Rate
(FAR) of 100%. In contrast, if we have no toler-
ance for errors, then Py should equal the high-
est S P value that would result in a very low FAR,
thus producing a very high False Rejection Rate
(FRR). We use a P resulting in an FRR of
10% based on sensitivity study results, in which
we selected different FRR values, and calculated
the P and the FAR. Table 1 shows the sensi-
tivity results.

After calculating the Py for each user, the
anomaly detection process can start. Algorithm 2
gives a formal description of the anomaly detec-
tion algorithm. Upon receiving the user trajec-
tory in Line 2, the system initializes the cumu-
lative probability value T'P for the received tra-

Table 1: System Sensitivity to False Rejection Rate

FRR | 0% | 10% | 20% | 50% | 80% | 100%

FAR | 28.5% | 19.4% | 14.9% | 11.6% | 1.2% | 0%

jectory as shown in Line 5. In Lines 6-11, the
system calculates the TP value based on every
l; in the trajectory. In Line 13, the system com-
pares the TP value with the Py in order to
detect anomalous behavior.

Algorithm 2 : Detect Mobile Theft Based on
Location Information

1: INPUT: LOC-IN-TIME;

2: INPUT: User trajectory every T minutes

3: OUTPUT: Alarm in case of attack

4: Initialize the Trajectory Probability value T'F;

5. TP, =0

6: for all [; in the obtained trace do

7. ifle UCL; >0 then

8: Get the probability value
LOC-IN-TIME;(l;,t) value

9: Calculate the cumulative proba-
bility value for the trace TP; =
TP, + LOC-IN-TIME;(i;, t1)

10:  end if

11: end for

12:

13: if TPZ S Ptr“ust,i then

14:  Trigger an alarm

15: end if

3.4 Model #2: Trajectory
Analysis

The main feature of Model #2 is that it consid-
ers the probabilities of moves implicitly contained
in the sequence of (time, location) points visited
by the user in the model_data. Conceptually, the
user’s location—duration trace is divided into se-
quences, i.e., trajectories. Each trajectory con-
sists of a start point, a number of intermediate
points, and an end point, and may differ seman-
tically due to the notion of stopping time STP.

e Stopping point (STP) is the time interval
for which the user is stationary. Based on ob-
servations from other researchers [21], we use
STP = 30 minutes for all users.

e Start point (SSP) = (u;,1;,tx) is the first
location identified in the sequence where (tx —
tp—1) > STP.

e Intermediate point (SIP) = (u;,1;,,tx,) is

a point in the sequence where t;, > t; and
(tg, —tr) <T.



Figure 4: State graph representing the user sequences
when the user starts at location A at time ¢;.

e End point SEP = (u,;,lj,,tk,) is the last
location identified in the sequence where
(thyor — th,) = STP.

3.4.1 Building User Profile

During user profile construction, the Model #1
feature extraction technique is used (see Sec-
tion 3.3) and the list UCL, is constructed
as described in Algorithm 1. However,
for Model #2, the user profile is a three-
dimensional table LOC-TIME-MOVE of size
(|JUCL| x |UCL| x NT). Each entry in this ta-
ble, LOC-TIME-MOVE;(j,j1,k, k1), represents
the probability of the user u; moving from loca-
tion [; at time t;, to location I, at time g, .

Similarly to the corresponding struc-
ture wused in Section 3.3, each entry
LOC-TIME-MOVE;(j,j1,k, k1) represents the
weighted probability of Prob;(l; — I, ty — t,).
Figure 4 presents an example of a trace of
sequence information. Figure 5 shows the user
profile data structure.

3.4.2 Anomaly Detection

The computation of trust values (Py.s:) for each
user is similar to that described in Section 3.3;
however, for the Model #2 we calculate the joint
probability value for each trace rather than the
cumulative probability value as follows:

SP,, =
(4,31,k,k1)ESm

LOC-TIME-MOVE;(j, j1, k, k1).

(2
The joint probability value is the product of the
probabilities of all records in the trace, as indi-
cated in the LOC-TIME-MOVE table. Equa-
tion 2 indicates that if any record in the sequence
has a probability of zero, which indicates that the
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Figure 5: Mobility model for user u; (Model #2).

user has never been at that location at that time,
the trace will be considered an attack. To reduce
the penalty of deviation from the normal path, we
introduce the concept of Trace Threat Level (TL),
which represents the percentage of the sequence
that has no representation in the user profile.
Thus, if LOC-TIME-MOVE,(j,j1,k, k1) =0, we
eliminate this value from the calculation of the
trace joint probability value, and increase the
threat level value by one. We use a threat level
threshold of T'Ls: = 10% of the total records
in the trace, based on empirical analysis.

As an example, Figure 6 shows two paths.
The solid curve represents the normal path in
the user’s profile and the dashed curve repre-
sents the currently detected trajectory. In this
example, the user profile indicates that when the
starting point at time ¢ is location B, the normal
path of duration T is B-C—D—E—F—G. In
contrast, the captured user trajectory that starts
at location B at time t consists of the sequence
B—A—B—C—D—E—F. To determine whether
this is an expected or anomalous user behav-
ior, we compare the calculated probability of this
path with the profile of the particular user. The
calculated value should be equal to or greater
than the trust value for that user.

To calculate the captured trace joint prob-
ability TP, we first identify the starting point
SSP = l; and the time t;,. Then we check whether
l; € UCL; or not. If not, we increase the
value of the threat level TL. Otherwise, we
identify the next location [;, at time tp,. If
l;, € UCL;, we obtain the joint probability value
LOC-TIME-MOVE;(j,j1,k,k1). If not, we in-
crease the TL value again. This process is re-
peated for the entire sequence and, upon comple-
tion, if TL > TLy, this sequence is judged to
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Algorithm 3 : Detect Mobile Device Attack
Based on User Trajectory

INPUT: LOC-TIME-MOVE;

INPUT: User trajectory every 71" minutes
OUTPUT: Alarm in case of attack

Initialize the Trace Probability (T'P;) and Trace
Threat Level (T'L;) values

5 TP,=1,TL; =0

6: for all n records in the sequence do

7:  Read l; at time ¢, and [;;, at time ¢,

8.

9

if ((I;) and (1;,)) € UCL; > 0 then
calculate the joint probability value TP; =
TP, x LOC-TIME-MOVE;(j, j1, k, k1)
10: else

11: TL;, =TL; +1
12: end if
13: end for

14: Check for anomaly

15: if (TL-L S TLtmst,i)and(TPi 2 Ptrust,i) then
16:  Continue

17: else

18:  Trigger an alarm

19: end if

have been generated by someone other than the
user, i.e., an attacker. If not, we subsequently
check the TP value. If TP > Py, the sequence
is judged to belong to the user; otherwise, it is
treated as a sequence generated by an attacker.
A formal description of this anomaly detection
technique is presented in Algorithm 3.

4 EXPERIMENTAL RESULTS

We now describe the experimental setup and
present the results from the evaluation of our
techniques.

As discussed in Section 3, we used the Real-
ity Mining mobility traces of students and staff
at a major university. The traces had the follow-
ing sources: 60% graduate students, 27% incom-

Probability

o # ¥ 3 % ¥ 3

Time of the déj in minutes

Probability

20

Time of the déi in minutes

Figure 7: 24-hour probability distribution diagram of
location ID=1 for (a) user w1 and (b) user ur4 based
on 9 months of data.

ing students at the university’s business school,
and 8% staff. The number of distinct locations
per user ranges from 1-100, with an average of
28. We eliminated single-location users and those
with fewer than 1,000 records (i.e., 3.5 records per
day) because it was not possible to build models
for users with very few records, leaving 93 users.

Each wuser log was divided into training
(model_data) and testing (test_data) portions as
described in Section 3.3. For each user, we ran-
domly selected 100 duration 7" samples from the
test_data log. We repeated each test for four dif-
ferent T values (5 min, 15 min, 30 min, and 60
min). The T value is the attack detection latency.

4.1 Results for Spatio-Temporal
Model (Model #1)

For each of the 93 users, we constructed models
and calculated trust values Py ; following the
steps described in Section 3.3. Attacker behav-
ior traces are not presently available. However,
traces for different users are available. We eval-
uated the probability of detecting the anomalous
mobility patterns of other “Reality Mining” study
participants.

The limited number of locations, and the fact
that around 68% of the study participants worked
in the same set of locations (buildings), but dif-
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Figure 8: Histogram of total probability TP, , for
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ferent rooms and floors (lab, library, office, etc.)
made this a challenging dataset for motion-based
anomaly detection. Using the area ID rather
than the cellphone tower ID during feature ex-
traction was necessary to enable this study. Fig-
ure 7 shows that users sharing the same locations
in their profiles can have very different proba-
bility distributions over a 24-hour period. Fig-
ure 7(a) shows the probability distribution for
user u; and location ID = 1, while Figure 7(b)
shows the probability distribution of the same lo-
cation ID =1 over 24 hours for the user uz4.

We calculated the T'P,, , value for all 100
test samples for each user u, where x # i and
1 < m < 100. Subsequently, we calculated
the FAR, value that represents the percentage
of the test samples for which the total probabil-
ity value is T'Pp, y > Piryst,i- Figure 8 illustrates
the TP, , results for a randomly selected user
uso. Specifically, Figure 8(a) shows the probabil-
ity distribution of TPy, 30, where y = ¢ = 30.
Figure 8(b) shows the probability distribution
of TPy, ,, where y # i and i = 30. We ob-
served that for user wgg, only 5% of the sam-
ples have T'P,, 50 < 0.02, while more than 80%
of the samples for each of the other 92 users have
TPy, 30 <0.02.

Figure 9 illustrates the ability to distinguish
the behavior of a given user u; from that of the
other 92 users, given 100 samples each. The
accuracy is (100 — FAR,) when T'=5 minutes.

Accuracy in detecting attack - Spatio — Temporal Analysis
T=5 minutes, and FRR=10%
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Figure 9: Accuracy in detecting theft according
to allowed delay using the spatio-temporal model
(Model #1).

For example, Figure 11(a) shows that the aver-
age accuracy of Model #1 is in the same range
(76.08%—76.6%) for all sample sizes. Therefore,
we conclude that the sample size does not have
a large impact on attach detection accuracy for
Model #1. Figure 11(b) shows a standard de-
viation above 20%, which is also clear from Fig-
ure 9, in which detection accuracy for some users
was 100% (e.g., users usa, us7, urs, and ugq) and
in which others have detection accuracies ranging
from 9%—-47% (e.g., u10, u20, us7, and ugg). High
accuracy is possible for users with few distinct
locations (3-8). Accuracy is low for users with
many distinct locations (69-100). Section 4.3 pro-
vides more details.

4.2 Results Based on Trajectory
Analysis (Model # 2)

We followed the same steps described in the pre-
vious section to calculate FAR, values. Figure 10
shows the results of the trajectory analysis for dif-
ferent test sample lengths. In Model #2, detec-
tion accuracy is affected by test sequence length,
with T' = 15 minutes yielding the highest accu-
racy and 7' = 60 minutes yielding the lowest ac-
curacy (see Figure 11(a)). Lower Py values are
associated with the longer traces, which indicates
that it is uncommon for normal users to make
large day-to-day changes in motion patterns af-
fecting short intervals within a trace. However,
longer intervals are more likely to change from
day to day.

4.3 Model Comparison

As illustrated in Figure 11(a), the average ac-
curacy is slightly better for Model #2 than for
Model #1 for small sample intervals (less than
30 min). However, the standard deviation is sig-
nificantly better, as shown in Figure 11(b). It
can be observed that there is improvement in ac-
curacy for users with many distinct location and
degradation in accuracy for users with few dis-
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Figure 10: Accuracy in detecting theft according
to allowed delay using the trajectory-based model
(Model #2).
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Figure 11: Average (a) accuracy and (b) standard
deviation values for Models #1 and #2.

tinct locations. Hence, Model #1 is more accu-
rate in the cases when the users have few distinct
locations and Model #2 is more accurate for users
with many distinct locations. Thus, a combined
approach might be useful.

NL is the discrete location count threshold at
which Models #1 and #2 have equal accuracies.
If the size of UCL; < NL, then Model #1 should
be used. Otherwise, Model #2 should be used.
To determine NL, we tested a combined approach
with several values (5, 6, 7, ---, 30), where 28 is
the average number of distinct locations in the
data set. Figure 12 illustrates the average accu-
racies for each NL value depending on time 7.
NL = 10 allowed the highest accuracy: 80.59%
when 7" = 15 minutes. Therefore our recommen-
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Figure 12: Detection accuracy according to number

of distinct locations.

Table 2: Comparison with Existing Theft Detection

Systems
Our Gadget- Recovery Laptop
System | Trak [1] Cop [16] Cop |2]
Detection Latency | 15 min N/A N/A N/A
Accuracy 81% N/A N/A N/A
Data Protection Yes No No Yes
User Intervension No Yes Yes Yes

dation is to use a combined approach to permit

e faster detection if there are few distinct loca-
tions and

e lower energy consumption due to decreased
calculations.

5 CONCLUDING REMARKS

We presented an approach for detecting anoma-
lous use of mobile devices. Our system uses
spatio-temporal mobility data to build models
that have high anomaly detection accuracy. Com-
bining the spatio-temporal model (for users with
few locations) and trajectory-based model (for
users with many locations) allowed an average
attack detection rate of 81%, with a latency of
15 minutes. The simplicity of the resulting user
models resulted in an efficient anomaly detection
process supporting an average detection time 0.02
seconds, as shown in Figure 13. A comparison be-
tween our results and those of existing systems is
given in Table 2.

In the future, we plan to expand this study to
cover additional mobile computing data sources
such as phone and application logs in order to
determine the change in detection accuracy when
more user-specific data are acquired.
Acknowledgments: We thank Prof. Ruoming
Jin for his insightful comments. This work was
supported in part by the National Science Foun-
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