
Dynamic Template Generation for Resource Sharing in

Control and Data Flow Graphs

David C. Zaretsky
1
, Gaurav Mittal

1
, Robert P. Dick

1
, and Prith Banerjee

2

1
 Department of Electrical Engg. & Computer Science

Northwestern University

2145 N. Sheridan Road, L324

Evanston, IL 60208-3118

{dcz, mittal, dickrp}@ece.northwestern.edu

2
 College of Engineering

University of Illinois at Chicago

851 South Morgan Street

Chicago, IL 60607-7043

prith@uic.edu

Abstract

High-level synthesis compilers often produce

reoccurring patterns in intermediate CDFGs during

translation. By identifying large reoccurring patterns,

one may reduce area and communication overhead by

efficiently reusing hardware for multiple operations.

This paper presents an algorithm for dynamically

generating templates of reoccurring patterns for

resource sharing in CDFGs. Results show 40-80%

resource reduction using small, incremental template

growth, and variations within a 5% margin among

varying look-ahead depths.

1. Introduction

Traditionally, the high-level synthesis problem is

one of transforming an abstract design into a detailed

hardware specification. The abstract design is

generally converted into an intermediate CDFG that is

optimized to improve design power, frequency,

timing, and area. It is interesting to observe that high-

level synthesis compilers often produce reoccurring

patterns in the resulting CDFG during translation. We

surmise that it is possible to re-associate these

reoccurring patterns of instruction sequences into

collections of operation sets, or templates, that can be

used to share hardware resources to reduce area and

improve placement and routing. The concept of

extracting reoccurring patterns in a CDFG is called

regularity extraction.

Figure 1 illustrates a CDFG with reoccurring

patterns of operations, allowing several possible

resource sharing schemes. Sharing only individual

functional units, such as adders and multipliers, would

result in the removal of 13 operations. However, the

cost of routing and multiplexing logic to share a single

functional unit for an entire design is unacceptably

high. One might assume it is preferable to use a small

number of large templates in sharing resources.

However, growing template T3 only removes 7

operations. Consequently, implementing template T2

would produce the best coverage. This example

illustrates two important aspects in template

generation: (1) a cost function is essential in the

decision factor for growing templates, and (2) template

selection has a direct impact on future growth. For

instance, selecting T1 will prevent the growth of T2

due to overlapping structures.

*

>>

+-

T2

T1

T3

*

+-

T2

*

>>

+-

T2

T1

T3

*

+-

T2

*

+-

T2

*

>>

+-

T2

T1

T3

*

+-

T2

*

>>

+-

T2

T1

T3

*

+-

T2

*

+-

T2

Figure 1. Reoccurring patterns in a CDFG.

The contribution of this work is an area

optimization algorithm that uses regularity extraction

to generate templates of reoccurring patterns for

resource sharing. This work was motivated by our

experience with the FREEDOM compiler [9][10],

which translates software binaries into hardware

descriptions for FPGAs. The proposed approach is

related to the technology mapping and the graph

covering problems. However, in the classical

technology-mapping problem, a static library of

modules is provided with the goal of covering the

CDFG with a mapping of each operation to a gate in

the technology library. For reconfigurable devices, or

at high levels of abstraction, static libraries may not be

readily available, requiring a more dynamic approach.

We use a heuristic to dynamically grow templates

based on a cost function and the frequency of

reoccurring patterns within the CDFG. We apply

backtracking and varying look-ahead depth when

growing templates to evaluate the trade off between

solution quality and run time.

2. Related Work

Many approaches to resource sharing have been

evaluated. The graph-covering problem may be solved

optimally using a binate covering formulation.

However, this problem is NP-Complete. Villa et al. [8]

proposed acceleration techniques based on cost

bounding. However, even at its best, binate covering

can be slow for large CDFGs.

Many researchers have resorted to heuristics in

order to obtain solutions quickly. Memik et al. [2]

proposed a method of resource sharing for FPGAs

using a combination of five heuristics to merge

resources across basic blocks in a CDFG. They

assume a technology library is provided for the target

FPGA and the operation nodes have been annotated

with area and delay measurements. Callahan et al. [1]

described a method for mapping operations to FPGAs

given a library of templates to match. Prior to

performing graph covering, the DAGs are partitioned

into trees. However, this can result in a significant area

penalty. Chowdhary et al. [5] proposed a dynamic

template generation algorithm that considers the

complete set of templates for trees and single-output

DAGs. The complexity of considering all possible

templates can be high. Rao et al. [3] and Kastner et al.

[11] proposed methods for extracting templates from

DAGs based on incremental template matching.

However, these greedy approaches may become

trapped in local minima.

Guo et al. [4] proposed a similar method for the

MONTIUM architecture with a size limit for

generating templates. However, the templates are

grown based on frequency of occurrence; they do not

consider a cost function or discuss the degree to which

their solutions deviate from optimality.

3. Linear DAG Isomorphism

The key to regularity extraction is identifying

common patterns in a CDFG. Unlike trees, for which

dynamic programming may be used to quickly find

optimal solutions for template matching, heuristics are

commonly used to identify isomorphic patterns in

DAGs. Gemini [6] was developed as a means of

validating circuit layout through graph isomorphism

using a graph coloring technique. Rao et al. [3]

proposed a string matching technique for comparing

graphs using very simple string formulas, called

K-formulas. Zibin et al. [7] presented efficient

methods of solving the linear isomorphism problem by

utilizing commutative and associative properties of

operations.

We have implemented a similar linear DAG

isomorphism technique using string matching that

encapsulates additional properties of each operation,

including predicates, sign, precision, and bit-range

select. The algorithm takes as input a nodeset

consisting of a single-rooted DAG, sorted

topologically in order of leaves to root. Beginning

with the leaves, the algorithm calls a hash function on

each node in the nodeset to generate a string

representation of the operation as a function of its

properties and the hash expressions of its input nodes.

The hash function uses the associative and

commutative properties of operations by sorting the

input hash values alphanumerically. Two DAGs are

isomorphic if the hash values of their root nodes are

equivalent.

4. Growing Templates

Templates are grown by first building nodesets

and then matching DAGs. A nodeset is grown by

performing a depth-first traversal of a DAG beginning

at a root node, and incrementally adding the nodes at

each stage of the hierarchy until a maximum

look-ahead level has been reached, which is bounded

by the height of the data flow graph. We consider all

permitted levels of look-ahead simultaneously, e.g., a

look-ahead value of 2 produces nodesets for look-

ahead of 0, 1, and 2. When growing subsequent levels,

two nodesets may only be combined via their root

node. Figure 2 shows the nodesets and corresponding

hash expressions generated from a DAG with a look-

ahead depth of 2.

The order in which templates are grown is

important. If a secondary path exists between a

nodeset and a joining node in which an intermediate

node lies, the joining node may not be added to the set

unless the node on the intermediate path is first

included. Otherwise, a cycle is produced. In Figure 2,

the subtract node has a reconverging path through the

multiply operation to the root. Had the subtract node

been added first, the multiply node would become

both an input and output to the nodeset, resulting in a

cycle. Consequently, the multiply node is added in the

second stage, and the subtract node is added in the

third stage.

In each stage of template growth, we check for

reconverging paths by performing a depth-first

traversal of all paths from a node before adding it to a

nodeset. A path containing a node that does not belong

to the nodeset is said to have diverged. The presence

of any subsequent nodes along the same path that

belong to the nodeset indicates a reconverging path.

SA DD32(S32, S32)

SA DD32(S32, SM ULT32(S32,S32))

SA DD32(SM ULT32(SA DD32(S32,S32), SSUB32(S32,S32)), SSU B32(S32,S32))

*

+

+-

B A 10

Root

=
Reconverging

Path

*

+

+-
*

+

+

LA=0

LA =1

LA=2

SA DD32(S32, S32)

SA DD32(S32, SM ULT32(S32,S32))

SA DD32(SM ULT32(SA DD32(S32,S32), SSUB32(S32,S32)), SSU B32(S32,S32))

*

+

+-

B A 10

Root

=
Reconverging

Path *

+

+-

B A 10

Root

=
Reconverging

Path

*

+

+-

*

+

+-
*

+

*

+

++

LA=0

LA =1

LA=2

Figure 2. Generated nodesets and expressions.

5. Template Matching and Selection

Each nodeset is added to a table of expressions

under its respective hash key value, resulting in a

complete mapping of expressions to a list of

equivalent nodesets. During this procedure it is

necessary to remove any overlapping nodesets that

arise locally within each set of template matches. Villa

et al. [8] describe a method of obtaining a close

approximation of the maximal independent set using

an adjacency matrix, in which the number of nodesets

is maximized by first selecting those that conflict with

the least number of nodesets, and then eliminating any

rows/columns that intersect with a ‘1’. Expressions

with less than two matches are pruned, since there is

no benefit to instantiating single-match templates.

Once the table of possible template matches is

constructed, template matches are selected for

implementation from the table of expressions using a

cost function based on the number of operations

covered, less the cost of implementing the template

with replicated hardware (see Section 6). Different

techniques may be considered when choosing a cost

function. If precise area measurements are available

for operations, it may be feasible to obtain nearly

minimal area solutions. For our purposes, we chose a

wiring cost for several reasons. First, it is often

difficult to approximate the area cost at an abstract

level, since we must predict how the resulting CDFG

will be translated to hardware. Second, we wish to

give preference to large, complex networks in order to

reduce interconnect and simplify routing. Finally,

reducing the nets effectively reduces the area as well.

After selecting a template from the table of

expressions, all remaining nodesets in the table that

conflict with these matches are pruned. This process

continues until the table is either empty or no suitable

matches are found. The next level of nodesets is then

grown and added to the table of expressions, followed

by selection of new template matches. During this

process, some template matches may be combined into

larger ones, possibly resulting in single template

matches. These matches are pruned and its nodes are

added back to the pool for future template matching,

since they produce no cost benefit

6. Building Template Structures

To ensure that a template performs the same

function for all isomorphic DAG structures, it must

have a tree structure. The disadvantage of this

approach is that it may result in an increase in area.

However, this increase is bounded because it is

possible to prune a template if it is deemed too costly

to implement for the number of available matches. The

template tree structure can be constructed from any of

the matched nodesets by decomposing the DAG into a

tree using a post-order traversal, beginning at the root

node. For each template match, we identify all fanin

and fanout nodes with edges to external operations,

adding them as input and output ports to the template.

7. Dynamic Resource Sharing

Figure 3 presents a Resource Sharing algorithm,

comprised of the techniques described in this paper.

The procedure takes as input a graph G, a cost function

for template selection, a look-ahead value for

generating the table of template expressions, and a

backtracking value. As described earlier, each

template selection impacts future template growth.

Thus, the question arises: if the second, third, or fourth

best template expression were chosen first, how would

this affect the end results?

Using backtracking, we can evaluate how well the

solution compares with optimality by selecting the i
th

best template expression first, and then selecting the

implementation of templates with the best cost at the

end of each iteration. The backtracking depth is

bounded by the size of the table of expressions.

 ResourceSharing(G, costfunc, look_ahead, backtrack)

 1 best_T = NULL

 2 best_cost = 0

 3 changes = true

 4 while (changes) do

 5 changes = false

 6 E maps exprs to nodeset lists

 7 T maps templates to nodeset lists

 8 GenerateTableOfExprs(G, E, look_ahead)

 9 for i = 0 to min(backtrack+1, E.size) do

10 SelectTemplateMatches(E, T, i, costfunc)

11 for each template t in T do

12 template_cost += GetCost(t,costfunc)

13 if template_cost > best_cost then

14 best_cost = template_cost

15 best_T = T

16 changes = true

17 BuildTemplates(G, best_T)

Figure 3. Pseudo-code for resource sharing.

8. Experimental Results

This section reports results on ten benchmarks

using the proposed resource sharing algorithm. The

CDFGs were generated from assembly code using the

FREEDOM compiler [9][10], and were unrolled

several times, thereby increasing design complexity.

Table 1 shows results for varying look-ahead and

backtracking depths in terms of the number of

templates generated, the maximum template size, the

percentage resources reduced, and the total run time

for the resource sharing. The percentage resource

reduction is the cost of the operations removed, less

that required for implementing the templates.

Variations in template sizes and resource reduction are

due to the template growth order. Note that the number

of templates generated decreased as the look-ahead

depth increased. This is expected, since larger

templates are discovered initially. However, increasing

the look-ahead depth caused an exponential growth in

the size of the hash values, requiring O(2
d
) time for

string matching. This explains the exponential increase

in execution times with increased look-ahead depth.

The results show quality gains saturate at look-ahead

of approximately 3, with reduction in resource usage

ranging from 40-80%. In the last set, a backtracking

depth of 10 was used to quantify the optimality of the

algorithm. The results show that reduction in resource

usage only varied within a 5% margin, indicating that

our resource sharing algorithm produces efficient

results, even using small, incremental template

growth.

9. Conclusion

This paper presents a regularity extraction

algorithm for resource sharing in CDFGs. We use a

heuristic to dynamically grow templates based on a

cost function and the frequency of reoccurring

patterns, while applying backtracking and varying

look-ahead depth to evaluate the trade off between

solution quality and run time. Experimental results on

ten benchmarks indicate that small, incremental

template growth is preferable for resource sharing to

obtain near-optimal results in reduced CPU time.

10. References

[1] T. Callahan, P. Chong, A. DeHon, J. Wawrzynek, “Fast

Module Mapping and Placement for Datapaths in FPGAs,”

in Proceedings of the International Symposium on FPGAs,

pp 123-132, Monterey, CA, 1998.

[2] S. O. Memik, G. Memik, R. Jafari, E. Kursun, “Global

Resource Sharing for Synthesis of Control Data Flow

Graphs on FPGAs,” in Proceedings of the Conference on

Design Automation, pp 604-609, Anaheim, CA, 2003.

[3] D. Rao and F. Kurdahi, “Partitioning by Regularity

Extraction,” in Proceedings of the Design and Automation

Conference, pp 235-238, Anaheim, CA, 1992.

[4] Y. Guo, G. Smit, H. Broersma, and P. Heysters, “A Graph

Covering Algorithm for a Coarse Grain Reconfigurable

System,” in Proceedings of the Conference on Language,

Compiler, and Tool for Embedded Systems, pp 199-208,

San Diego, CA, 2003.

[5] A. Chowdhary, S. Kale, P. Saripella, N. Sehgal, and R.

Gupta, “A General Approach for Regularity Extraction in

Datapath Circuits,” in Proceedings of the International

Conference on Computer-Aided Design, pp 332-339, San

Jose, CA, 1998.

[6] C. Ebeling and O. Zajicek, “Validating VLSI Circuit

Layout by Wirelist Comparison,” in Proceedings of the

IEEE International Conference on Computer Aided

Design, pp 172-173, 1983.

[7] Y. Zibin, J. Gil, and J. Considine, “Efficient Algorithms

for Isomorphisms of Simple Types,” in Proceedings of the

Symposium on Principles of Programming Languages, pp

160-1 71, New Orleans, LA, 2003.

[8] T. Villa, T. Kam, R. Brayton, and A. Sangiovanni-

Vincentelli, “Explicit and Implicit Algorithms for Binate

Covering Problems,” in IEEE Transactions on Computer-

Aided Design, vol. 16, pp 677-691, 1997.

[9] D. Zaretsky, G. Mittal, X. Tang, and P. Banerjee,

“Overview of the FREEDOM Compiler for Mapping DSP

Software to FPGAs,” in Proceedings of the IEEE

Symposium on Field-Programmable Custom Computing

Machines, pp 37-46, Napa, CA, 2004.

[10] G. Mittal, D. Zaretsky, X. Tang, and P. Banerjee,

“Automatic Translation of Software Binaries onto

FPGAs,” in Proceedings of the Conference on Design

Automation, pp 389-394, San Diego, CA, 2004.

[11] R. Kastner, S. Memik, E. Bozorgzadeh, M. Sarrafzadeh,

“Instruction Generation for Hybrid Reconfigurable

Systems,” in ACM Transactions on Design Automation of

Electronic Systems, vol. 7, issue 4, pp 605-627, 2002.

Table 1. Benchmark results for resource sharing with varying look-ahead and backtracking depth.
Lookahead = 1 Lookahead = 3 Lookahead = 7 Lookahead = INF Lookahead = INF, BT = 10

Benchmark

Tmpls

Max
Size

Perc.
Redc.

T(s)

Tmpls

Max
Size

Perc.
Redc.

T(s)

Tmpls

Max
Size

Perc.
Redc.

T(s)

Tmpls

Max
Size

Perc.
Redc.

T(s)

Tmpls

Max
Size

Perc.
Redc.

T(s)

dot_prod 5 24 69.2 3.6 4 18 75.3 4.8 4 18 75.3 9.0 4 18 75.3 23.7 4 18 75.3 31.5

iir 9 18 78.4 19.5 6 48 76.8 29.8 6 48 76.8 47.6 6 48 76.8 70.8 6 48 76.8 120.6

matmul_32 10 24 61.3 4.2 9 18 64.7 7.1 6 18 59.9 11.3 6 18 59.9 20.7 9 20 61.6 36.9

gcd 7 5 43.6 0.8 6 5 43.6 0.8 5 5 41.0 0.8 5 5 41.0 0.8 5 5 41.0 2.1

diffeq 18 9 55.5 4.4 8 93 45.9 7.3 9 10 50.3 17.3 9 10 50.3 23.6 9 10 50.3 31.4

ellip 4 3 64.6 1.6 2 3 62.7 1.6 2 3 62.7 1.9 2 3 62.7 1.9 2 3 62.7 3.2

laplace 9 5 67.4 6.5 7 5 63.2 8.4 7 5 63.2 15.2 7 5 63.2 20.8 7 5 63.2 31.3

fir16tap 9 24 61.8 4.9 7 18 67.4 6.3 5 18 65.2 9.7 5 18 65.2 17.5 5 18 65.2 29.3

fir_cmplx 15 21 71.3 25.1 12 37 65.7 36.8 8 37 69.3 65.7 8 37 69.3 156.6 12 37 71.8 231.2

sobel 13 8 79.2 38.3 11 8 77.1 49.4 11 13 76.9 54.9 10 13 74.9 48.0 11 13 74.8 164.9

