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Abstract 
 

High-level synthesis compilers often produce 

reoccurring patterns in intermediate CDFGs during 

translation. By identifying large reoccurring patterns, 

one may reduce area and communication overhead by 

efficiently reusing hardware for multiple operations. 

This paper presents an algorithm for dynamically 

generating templates of reoccurring patterns for 

resource sharing in CDFGs. Results show 40-80% 

resource reduction using small, incremental template 

growth, and variations within a 5% margin among 

varying look-ahead depths. 

 

1. Introduction 

Traditionally, the high-level synthesis problem is 

one of transforming an abstract design into a detailed 

hardware specification. The abstract design is 

generally converted into an intermediate CDFG that is 

optimized to improve design power, frequency, 

timing, and area. It is interesting to observe that high-

level synthesis compilers often produce reoccurring 

patterns in the resulting CDFG during translation. We 

surmise that it is possible to re-associate these 

reoccurring patterns of instruction sequences into 

collections of operation sets, or templates, that can be 

used to share hardware resources to reduce area and 

improve placement and routing. The concept of 

extracting reoccurring patterns in a CDFG is called 

regularity extraction. 

Figure 1 illustrates a CDFG with reoccurring 

patterns of operations, allowing several possible 

resource sharing schemes. Sharing only individual 

functional units, such as adders and multipliers, would 

result in the removal of 13 operations. However, the 

cost of routing and multiplexing logic to share a single 

functional unit for an entire design is unacceptably 

high. One might assume it is preferable to use a small 

number of large templates in sharing resources. 

However, growing template T3 only removes 7 

operations. Consequently, implementing template T2 

would produce the best coverage. This example 

illustrates two important aspects in template 

generation: (1) a cost function is essential in the 

decision factor for growing templates, and (2) template 

selection has a direct impact on future growth. For 

instance, selecting T1 will prevent the growth of T2 

due to overlapping structures.  
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Figure 1. Reoccurring patterns in a CDFG. 

 

The contribution of this work is an area 

optimization algorithm that uses regularity extraction 

to generate templates of reoccurring patterns for 

resource sharing. This work was motivated by our 

experience with the FREEDOM compiler [9][10], 

which translates software binaries into hardware 

descriptions for FPGAs. The proposed approach is 

related to the technology mapping and the graph 

covering problems. However, in the classical 

technology-mapping problem, a static library of 

modules is provided with the goal of covering the 

CDFG with a mapping of each operation to a gate in 

the technology library. For reconfigurable devices, or 

at high levels of abstraction, static libraries may not be 

readily available, requiring a more dynamic approach. 

We use a heuristic to dynamically grow templates 

based on a cost function and the frequency of 



reoccurring patterns within the CDFG. We apply 

backtracking and varying look-ahead depth when 

growing templates to evaluate the trade off between 

solution quality and run time. 

 

2. Related Work 

Many approaches to resource sharing have been 

evaluated. The graph-covering problem may be solved 

optimally using a binate covering formulation. 

However, this problem is NP-Complete. Villa et al. [8] 

proposed acceleration techniques based on cost 

bounding. However, even at its best, binate covering 

can be slow for large CDFGs.  

Many researchers have resorted to heuristics in 

order to obtain solutions quickly. Memik et al. [2] 

proposed a method of resource sharing for FPGAs 

using a combination of five heuristics to merge 

resources across basic blocks in a CDFG. They 

assume a technology library is provided for the target 

FPGA and the operation nodes have been annotated 

with area and delay measurements. Callahan et al. [1] 

described a method for mapping operations to FPGAs 

given a library of templates to match. Prior to 

performing graph covering, the DAGs are partitioned 

into trees. However, this can result in a significant area 

penalty. Chowdhary et al. [5] proposed a dynamic 

template generation algorithm that considers the 

complete set of templates for trees and single-output 

DAGs. The complexity of considering all possible 

templates can be high. Rao et al. [3] and Kastner et al. 

[11] proposed methods for extracting templates from 

DAGs based on incremental template matching. 

However, these greedy approaches may become 

trapped in local minima.  

Guo et al. [4] proposed a similar method for the 

MONTIUM architecture with a size limit for 

generating templates. However, the templates are 

grown based on frequency of occurrence; they do not 

consider a cost function or discuss the degree to which 

their solutions deviate from optimality. 
 

3. Linear DAG Isomorphism 

The key to regularity extraction is identifying 

common patterns in a CDFG. Unlike trees, for which 

dynamic programming may be used to quickly find 

optimal solutions for template matching, heuristics are 

commonly used to identify isomorphic patterns in 

DAGs. Gemini [6] was developed as a means of 

validating circuit layout through graph isomorphism 

using a graph coloring technique. Rao et al. [3] 

proposed a string matching technique for comparing 

graphs using very simple string formulas, called  

K-formulas. Zibin et al. [7] presented efficient 

methods of solving the linear isomorphism problem by 

utilizing commutative and associative properties of 

operations. 

We have implemented a similar linear DAG 

isomorphism technique using string matching that 

encapsulates additional properties of each operation, 

including predicates, sign, precision, and bit-range 

select. The algorithm takes as input a nodeset 

consisting of a single-rooted DAG, sorted 

topologically in order of leaves to root. Beginning 

with the leaves, the algorithm calls a hash function on 

each node in the nodeset to generate a string 

representation of the operation as a function of its 

properties and the hash expressions of its input nodes. 

The hash function uses the associative and 

commutative properties of operations by sorting the 

input hash values alphanumerically. Two DAGs are 

isomorphic if the hash values of their root nodes are 

equivalent.  

 

4. Growing Templates  

Templates are grown by first building nodesets 

and then matching DAGs. A nodeset is grown by 

performing a depth-first traversal of a DAG beginning 

at a root node, and incrementally adding the nodes at 

each stage of the hierarchy until a maximum  

look-ahead level has been reached, which is bounded 

by the height of the data flow graph. We consider all 

permitted levels of look-ahead simultaneously, e.g., a 

look-ahead value of 2 produces nodesets for look-

ahead of 0, 1, and 2. When growing subsequent levels, 

two nodesets may only be combined via their root 

node. Figure 2 shows the nodesets and corresponding 

hash expressions generated from a DAG with a look-

ahead depth of 2. 

The order in which templates are grown is 

important. If a secondary path exists between a 

nodeset and a joining node in which an intermediate 

node lies, the joining node may not be added to the set 

unless the node on the intermediate path is first 

included. Otherwise, a cycle is produced. In Figure 2, 

the subtract node has a reconverging path through the 

multiply operation to the root. Had the subtract node 

been added first, the multiply node would become 

both an input and output to the nodeset, resulting in a 

cycle. Consequently, the multiply node is added in the 

second stage, and the subtract node is added in the 

third stage. 

In each stage of template growth, we check for 

reconverging paths by performing a depth-first 

traversal of all paths from a node before adding it to a 

nodeset. A path containing a node that does not belong 

to the nodeset is said to have diverged. The presence 

of any subsequent nodes along the same path that 

belong to the nodeset indicates a reconverging path. 
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Figure 2. Generated nodesets and expressions. 

 

 

5. Template Matching and Selection 

Each nodeset is added to a table of expressions 

under its respective hash key value, resulting in a 

complete mapping of expressions to a list of 

equivalent nodesets. During this procedure it is 

necessary to remove any overlapping nodesets that 

arise locally within each set of template matches. Villa 

et al. [8] describe a method of obtaining a close 

approximation of the maximal independent set using 

an adjacency matrix, in which the number of nodesets 

is maximized by first selecting those that conflict with 

the least number of nodesets, and then eliminating any 

rows/columns that intersect with a ‘1’. Expressions 

with less than two matches are pruned, since there is 

no benefit to instantiating single-match templates.  

Once the table of possible template matches is 

constructed, template matches are selected for 

implementation from the table of expressions using a 

cost function based on the number of operations 

covered, less the cost of implementing the template 

with replicated hardware (see Section 6). Different 

techniques may be considered when choosing a cost 

function. If precise area measurements are available 

for operations, it may be feasible to obtain nearly 

minimal area solutions. For our purposes, we chose a 

wiring cost for several reasons. First, it is often 

difficult to approximate the area cost at an abstract 

level, since we must predict how the resulting CDFG 

will be translated to hardware. Second, we wish to 

give preference to large, complex networks in order to 

reduce interconnect and simplify routing. Finally, 

reducing the nets effectively reduces the area as well.  

After selecting a template from the table of 

expressions, all remaining nodesets in the table that 

conflict with these matches are pruned. This process 

continues until the table is either empty or no suitable 

matches are found. The next level of nodesets is then 

grown and added to the table of expressions, followed 

by selection of new template matches. During this 

process, some template matches may be combined into 

larger ones, possibly resulting in single template 

matches. These matches are pruned and its nodes are 

added back to the pool for future template matching, 

since they produce no cost benefit 

 

6. Building Template Structures 

To ensure that a template performs the same 

function for all isomorphic DAG structures, it must 

have a tree structure. The disadvantage of this 

approach is that it may result in an increase in area. 

However, this increase is bounded because it is 

possible to prune a template if it is deemed too costly 

to implement for the number of available matches. The 

template tree structure can be constructed from any of 

the matched nodesets by decomposing the DAG into a 

tree using a post-order traversal, beginning at the root 

node. For each template match, we identify all fanin 

and fanout nodes with edges to external operations, 

adding them as input and output ports to the template.  

 

7. Dynamic Resource Sharing 

Figure 3 presents a Resource Sharing algorithm, 

comprised of the techniques described in this paper. 

The procedure takes as input a graph G, a cost function 

for template selection, a look-ahead value for 

generating the table of template expressions, and a 

backtracking value. As described earlier, each 

template selection impacts future template growth. 

Thus, the question arises: if the second, third, or fourth 

best template expression were chosen first, how would 

this affect the end results?  

Using backtracking, we can evaluate how well the 

solution compares with optimality by selecting the i
th

 

best template expression first, and then selecting the 

implementation of templates with the best cost at the 

end of each iteration. The backtracking depth is 

bounded by the size of the table of expressions. 

 

  
 

 ResourceSharing(G, costfunc, look_ahead, backtrack) 

 1   best_T = NULL 

 2   best_cost = 0 

 3   changes = true 

 4   while ( changes ) do 

 5      changes = false 

 6      E maps exprs to nodeset lists 

 7      T maps templates to nodeset lists 

 8      GenerateTableOfExprs(G, E, look_ahead) 

 9      for i = 0 to min(backtrack+1, E.size) do 

10        SelectTemplateMatches(E, T, i, costfunc) 

11        for each template t in T do 

12          template_cost += GetCost(t,costfunc) 

13        if template_cost > best_cost then 

14          best_cost = template_cost 

15          best_T = T 

16          changes = true 

17    BuildTemplates(G, best_T) 
 

Figure 3. Pseudo-code for resource sharing. 



8. Experimental Results 

This section reports results on ten benchmarks 

using the proposed resource sharing algorithm. The 

CDFGs were generated from assembly code using the 

FREEDOM compiler [9][10], and were unrolled 

several times, thereby increasing design complexity.  

Table 1 shows results for varying look-ahead and 

backtracking depths in terms of the number of 

templates generated, the maximum template size, the 

percentage resources reduced, and the total run time 

for the resource sharing. The percentage resource 

reduction is the cost of the operations removed, less 

that required for implementing the templates. 

Variations in template sizes and resource reduction are 

due to the template growth order. Note that the number 

of templates generated decreased as the look-ahead 

depth increased. This is expected, since larger 

templates are discovered initially. However, increasing 

the look-ahead depth caused an exponential growth in 

the size of the hash values, requiring O(2
d
) time for 

string matching. This explains the exponential increase 

in execution times with increased look-ahead depth. 

The results show quality gains saturate at look-ahead 

of approximately 3, with reduction in resource usage 

ranging from 40-80%. In the last set, a backtracking 

depth of 10 was used to quantify the optimality of the 

algorithm. The results show that reduction in resource 

usage only varied within a 5% margin, indicating that 

our resource sharing algorithm produces efficient 

results, even using small, incremental template 

growth.  

 

9. Conclusion 

This paper presents a regularity extraction 

algorithm for resource sharing in CDFGs. We use a 

heuristic to dynamically grow templates based on a 

cost function and the frequency of reoccurring 

patterns, while applying backtracking and varying 

look-ahead depth to evaluate the trade off between 

solution quality and run time. Experimental results on 

ten benchmarks indicate that small, incremental 

template growth is preferable for resource sharing to 

obtain near-optimal results in reduced CPU time. 
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Table 1. Benchmark results for resource sharing with varying look-ahead and backtracking depth.
Lookahead = 1 Lookahead = 3 Lookahead = 7 Lookahead = INF Lookahead = INF, BT = 10  
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T(s) 

dot_prod 5 24 69.2 3.6 4 18 75.3 4.8 4 18 75.3 9.0 4 18 75.3 23.7 4 18 75.3 31.5 

iir 9 18 78.4 19.5 6 48 76.8 29.8 6 48 76.8 47.6 6 48 76.8 70.8 6 48 76.8 120.6

matmul_32 10 24 61.3 4.2 9 18 64.7 7.1 6 18 59.9 11.3 6 18 59.9 20.7 9 20 61.6 36.9 

gcd 7 5 43.6 0.8 6 5 43.6 0.8 5 5 41.0 0.8 5 5 41.0 0.8 5 5 41.0 2.1 

diffeq 18 9 55.5 4.4 8 93 45.9 7.3 9 10 50.3 17.3 9 10 50.3 23.6 9 10 50.3 31.4 

ellip 4 3 64.6 1.6 2 3 62.7 1.6 2 3 62.7 1.9 2 3 62.7 1.9 2 3 62.7 3.2 

laplace 9 5 67.4 6.5 7 5 63.2 8.4 7 5 63.2 15.2 7 5 63.2 20.8 7 5 63.2 31.3 

fir16tap 9 24 61.8 4.9 7 18 67.4 6.3 5 18 65.2 9.7 5 18 65.2 17.5 5 18 65.2 29.3 

fir_cmplx 15 21 71.3 25.1 12 37 65.7 36.8 8 37 69.3 65.7 8 37 69.3 156.6 12 37 71.8 231.2

sobel 13 8 79.2 38.3 11 8 77.1 49.4 11 13 76.9 54.9 10 13 74.9 48.0 11 13 74.8 164.9

 


