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Abstract 

In high-level synthesis for FPGA designs, scheduling and 

chaining of operations for optimal performance remain 

challenging problems. In this paper, we present a balanced 

scheduling routine that uniformly distributes operations 

across states to reduce critical timing paths in the absence 

of accurate functional unit delay models. On average, 

results show improvements in frequency and run times for 

balanced scheduling over ASAP, ALAP, and force-directed 

scheduling. Additionally, we provide a methodology for 

precision-based delay modeling of operations. We present a 

balanced chaining routine that, given a target frequency, 

uses this modeling technique to reduce the number of clock 

cycles in the design. Results show approximately 20% 

improvement on average in run times when incorporating 

our balanced chaining routine with scheduling. Applying 

balanced chaining in a high-level synthesis tool allowed 

performance improvements between 8–29× for large, 

complex applications. Our method for modeling operation 

delays is shown to be accurate in estimating delays for 

operation chaining during high-level synthesis. 

1. Introduction 

In recent years, the sizes and complexities of designs 

for Field Programmable Gate Arrays (FPGAs) and other 

reconfigurable hardware devices have increased 

dramatically. As a result, the manual approach to hardware 

design for these systems has become cumbersome, making 

high-level synthesis an increasingly attractive approach for 

reducing the design time of complex systems. Traditionally, 

the high-level synthesis problem is one of transforming an 

abstract model of a high-level application into a set of 

operations for a system, in which scheduling and binding are 

performed to optimize the design in terms of area, cycles, 

frequency, and power. Generally, scheduling is performed 

on a control and data flow graph (CDFG), which is made of 

nodes representing inputs, outputs, and operations. Most 

high-level synthesis tools allow tradeoffs between these 

metrics based on estimates. At high levels of abstraction, 

these estimates are prone to errors, leading to inaccurate 

predictions of the final implementation. Poor decisions due 

to inaccurate high-level estimates have direct impact on all 

future optimizations and the resulting design. 

Accurate estimation plays a particularly important role 

in scheduling operations for hardware implementation on 

FPGAs. The operation nodes in the CDFG are scheduled by 

assigning each operation to a register transfer level (RTL) 

state in a finite state machine using schemes such as As-

Soon-As-Possible (ASAP) and As-Late-As-Possible (ALAP) 

scheduling. When resources are critical, other schemes such 

as list scheduling and force-directed scheduling are applied. 

When targeting FPGAs, infinite resources are often 

assumed. The objective of scheduling is to minimize the 

number of clock cycles (states), while maximizing the 

frequency and parallelism in the design, even at the cost of 

area. While ASAP and ALAP scheduling are quite efficient 

for this task, they generally hamper operation parallelism by 

producing a non-uniform distribution of operations among 

the state cycles. This results in an uneven distribution of 

resource usage, latency, and power. Likewise, force-directed 

scheduling, which balances resource utilization, is inefficient 

in the context of FPGA designs for two reason. Firstly, 

operations are generally mapped to logic blocks on the 

FPGA, which makes the resource optimizations less 

effective. Secondly, most FPGA synthesis tools are timing-

driven; they commonly replicate hardware in order to 

improve timing performance.  

Operation chaining is a technique that reduces cycles in 

a design by allowing the result of an operation to be used in 

the same cycle. It is expected that scheduling without 

operation chaining will produce the best overall frequency at 

the cost of cycles, since the critical path is limited only by 

the single operation in the design with the largest delay. 

Conversely, a naïve approach to operation chaining may 

result in long critical paths, low frequencies, and suboptimal 

performance. An optimal chaining technique is one that 

optimizes both frequency and clock cycles simultaneously. 

In this work, we present a balanced scheduling routine 

in which operations are uniformly distributed across states in 

order to optimize the timing performance of the FPGA 

design; area utilization is not considered here since 

unconstrained resources for FPGA designs are assumed. By 

distributing operations evenly among states, we are 

essentially partitioning the critical path more uniformly by 

inserting registers in strategic places. Unlike existing FPGA 

scheduling algorithms, our balanced scheduling technique 

considers all operation types equally when balancing the 

number of operations per state, allowing a more efficient 

distribution of operations among FPGA logic blocks. We 
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also present a balanced chaining routine that reduces the 

clock cycles while balancing the critical path of the design 

given a target frequency. In order to accurately determine 

the best-fit operation chaining, we require a delay model that 

considers varying bit-width for each operation implemented 

in the target FPGA architecture. The methodology for 

obtaining these models is also presented.  

The remainder of this paper is organized as follows. 

Section 2 discusses related work and our contributions. Our 

balanced scheduling and chaining algorithms are presented 

in detail in Sections 3 and 4, respectively. Section 5 reports 

experimental results on a set of ten benchmarks. We also 

show comparison results for a set of larger applications 

using these scheduling techniques. Finally, conclusions and 

future work are presented in Section 6. 

2. Related Work and Contributions 

Numerous algorithms for scheduling have been 

developed over the years by various researchers. For a given 

data flow graph, scheduling determines the concurrency of 

the resulting implementation by assigning operations in a 

CDFG to specific cycles, assuming either unconstrained or 

constrained resources. In this paper we study the use of 

scheduling in the context of unconstrained resources. Local 

greedy algorithms based on ASAP and ALAP scheduling are 

often used when large problem instances prevent techniques 

with high computational complexity.  Higher-quality, but 

higher computational complexity approaches based on force-

directed approaches have also been proposed. 

Force-directed scheduling was introduced by Paulin 

and Knight [2] as a means of minimizing required resources 

under timing constraints. The algorithm uses the ASAP and 

ALAP times to determine the time frame for each operation, 

whereby a force is computed as a distribution function to 

determine the best schedule for the operation. The worst-

case time complexity for the algorithm is cubic in the 

number of operations. Efficiency improvements in force-

directed scheduling were shown by Verhaegh et al. [4] 

through incremental force calculations that reduce the 

complexity to quadratic in the number of operations. Paulin 

and Knight [2][3] have shown how force-directed scheduling 

can be integrated with list-scheduling, where the force 

calculations are used as the priority function. Although it 

generally produces high-quality solutions, force-directed 

scheduling can be too time-consuming for scheduling large 

problem instances. In contrast to previous force-directed 

techniques, our balanced scheduling approach only considers 

the operation-level parallelism in the design, not resource 

utilization. In other words, it considers all operations equally 

as it attempts to uniformly distribute the number of 

operations per cycle within the ASAP/ALAP time frame.  

Kerns and Eggers [5] introduced a balanced scheduling 

algorithm that schedules instructions based on an estimate of 

the load-level parallelism in the program. The scheduler 

computes load instruction weights based on a measure of the 

number of instructions that may execute in parallel with each 

load instruction. The instructions are then spread out to 

cover the load latency. Our balanced scheduling algorithm 

considers the operation-level parallelism for all single and 

multi-cycle operations, not just load instructions. The weight 

of each instruction is based solely on the number of 

hierarchical dependencies.  Surprisingly, this results in an 

algorithm that efficiently produces significantly better 

quality of results than force-directed scheduling. 

Much research has been conducted on estimating delays 

in high-level synthesis. However, there has been very little 

research in using estimated delays at high levels of 

abstraction in the context of operation chaining during 

scheduling of CDFGs for FPGA designs. Nemani and Najm 

[9] proposed a technique for measuring delays of 

combinational logic circuits, but their work is limited to 

simple Boolean functions and does not consider arithmetic 

operations. Nourani and Papachristou [10] presented a 

method of estimating delays for RTL logic in the context of 

false-path detection, in which they construct a Propagation 

Delay Graph to compute the critical delay in the design. 

Srinivasan et al. [8] described a system for estimating area 

and delay from behavioral RTL logic descriptions using 

best-fit polynomial models. Their method, however, requires 

logic synthesis of the design into a network of simple gates. 

Xu and Kurdahi [11] presented an approach for estimating 

area and timing delays for FPGA designs based on CLB and 

wire modeling, given an input logic netlist. Nayak et al. [12] 

developed an area and delay estimator for a high-level 

synthesis compiler that translates MATLAB code to RTL 

VHDL and Verilog for FPGAs. Their method of prediction 

is formulated as an equation based on constant parameters to 

be determined experimentally for each operation. Jiang et al. 

[13] presented a similar approach in which accurate high-

level macro-model equations are used for estimating area, 

delay, and power of various RTL operations for a target 

FPGA architecture. Experimental values were obtained for 

each operation during high-level synthesis with varying bit-

widths and the macro-model equation for the operations was 

extrapolated from a best-fit curve. Our method of estimating 

critical delays for our balanced chaining algorithm is based 

on their approach. 

There are many other effective approaches to 

optimizing design performance, such as retiming, which is 

generally applied after scheduling. Given a fixed number of 

cycles in the design, retiming relocates registers across logic 

gates in order to reduce the maximum register-to-register 

delay [14][15][16]. In contrast, the proposed balanced 

chaining technique is applied during scheduling to optimize 

the number of cycles in the design given a target frequency. 

In this work, we present a balanced scheduling routine 

that uniformly distributes operations across states to reduce 

critical paths in the absence of accurate functional unit delay 

models. To our knowledge, this is the first scheduling 

algorithm to balance operation execution intervals in order 

to improve timing performance for high-level synthesis of 

FPGA designs. On average, results show improvements in 

frequency and run times over the most closely-related 
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existing techniques when used for FPGA designs. 

Additionally, we present a balanced chaining algorithm for 

use in high-level synthesis. Given a target frequency, this 

algorithm uses precision-based delay modeling of operations 

to balance combinational paths, thereby minimizing the 

critical path while also reducing the number of clock cycles. 

Experimental results using balanced chaining have shown 

approximately 20% increase in performance on average over 

other chaining routines. By incorporating this routine in a 

high-level synthesis tool we have observed 8–29× 

improvements in FPGA performance for large, complex 

applications over a DSP architecture. This supports our 

claim that it is possible to effectively chain operations based 

on high-level predictions of functional unit delays. 

3. Balanced Scheduling 

In conventional FPGA design, performance is often 

optimized without regard for resource requirements. The 

goal is to reduce the number of clock cycles and increase the 

parallelism and frequency of the design, even at the cost of 

area. Typically, a scheduling method such as ASAP or 

ALAP is used, resulting in an imbalance in the number of 

instructions scheduled per clock cycle. In ASAP scheduling, 

a large number of operations are executed within the first 

few cycles, followed by fewer operations in the later cycles. 

In ALAP scheduling, fewer operations are executed early 

on, followed by a large number of operations in the last few 

cycles. Both ASAP and ALAP produce schedules with the 

same number of clock cycles. The benefit of balanced 

scheduling over ASAP and ALAP is a uniform distribution 

of operations among all clock cycles. Balanced operation 

parallelism may also result in improved resource usage, 

latency, power, and heat dissipation characteristics. Figure 1 

illustrates the ASAP, ALAP, and balanced scheduling 

routines. In the diagram, each operation node has a one-

cycle latency. In balanced scheduling, there is an even 

distribution of operations among the four cycles. The other 

methods show imbalanced number of operations per cycle. 

Balanced scheduling is implemented in two stages. In the 

first stage, dependency analysis is performed on each node, 

in which the total number of parent dependencies in the 

DAG hierarchy is determined. In Figure 1, the number of 

node dependencies for each operation is shown for balanced 

scheduling. The second stage uses the number of 

dependencies to selectively forward nodes to later cycles in 

order to balance operation parallelism. 

Figure 2 presents our dependency analysis algorithm. It 

accepts as arguments a block, B, and a mapping, D, of each 

operation node to its number of dependencies. The algorithm 

iterates topologically through the nodes in a block, adding 

all unique predecessors to the node’s dependency list. Note 

that the elements in both DMAP[p] and DMAP[n] are sorted 

in the same order. This allows the addition of new nodes to 

DMAP[p] to DMAP[n] in linear time, thereby preserving 

the uniqueness and order of nodes in DMAP[n]. The size of 

each node’s dependency list is then assigned to the map, D. 

The algorithm has an O(n2) worst-case time complexity. 
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Figure 1. ASAP, ALAP, and Balanced scheduling routines. 

 
 

  Dependency_Analysis( Block: B, Map: D ) 

1  topologically sort the nodes in B 

2  DMAP is a mapping of nodes to their dependencies 

3  for each node n in block B do   

4    for each predecessor node p of n do 

5      if p is an operation then 

6        add each unique node in DMAP[p] to DMAP[n] 

7        add p to DMAP[n] 

8  for each node n in block B do 

9    D[n] = DMAP[n].size() 

 

Figure 2. Dependency analysis algorithm. 

 
 

   Balanced_Scheduling( Graph: G ) 

 1  D is a mapping of nodes to dependency counts 

 2  ASAP_Scheduling( G ) 

 3  for each block b in G do 

 4    Dependency_Analysis( b, D ) 

 5    n_opers = 0       

 6    for each operation node n in b do 

 7      n_opers = n_opers + 1 

 8      add n to T[n->GetTimeStep()] 

 9    cycles = b->GetEndTime() - b->GetStartTime() 

10    avg_load = n_opers / cycles 

11    for each element t in T in reverse order do 

12      time = t.time 

13      ptime = t.time - 1       

14      while T[time].size() < avg_load and  

15            ptime >= b->GetStartTime() do 

16        max_depend = 0 

17        best_node = NULL                 

18        for each node n of T[ptime] do 

19          bool fwd_node = true 

20          wb_time = time + n->getCycles() 

21          if wb_time > b->GetEndTime() then 

22            fwd_node = false 

23          for each successor s of n do   

24            if wb_time >= s->GetTimeStep() then 

25              fwd_node = false 

26          if fwd_node and D[n] > max_depend 

27            max_depend = D[n] 

28            best_node = n 

29        if best_node != NULL then 

30          best_node->SetTimeStep( time ) 

31          T[ptime].remove( best_node ) 

32          add best_node to T[time] 

33        else if T[time].size() < avg_load then 

34          ptime = ptime - 1 

35        else break 

 

Figure 3. Balanced scheduling algorithm. 

 

Our balanced scheduling routine is presented in  

Figure 3, in which operation nodes are uniformly distributed 

among cycles. The timestep for each node in the CDFG is 

first initialized using ASAP scheduling in line 2. In lines 3–

35, it iterates over the CDFG to optimize the load balance in 

each basic block. Dependency analysis is performed on the 
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nodes in the block in line 4. Lines 5–10 count the number of 

operation nodes within the block, while adding each node to 

a map, T, which groups nodes by timestep. The average load 

balance per clock cycle is then computed. Lines 11–35 

traverse T in reverse order, beginning with the latest cycle 

(t). The algorithm searches for the best node to forward to 

that cycle by traversing each preceding cycle (t-1, t-2, t-3, 

etc.) until the earliest cycle in the block is reached. The 

forwarding node is selected based on two criteria: (1) the 

node has the largest number of dependencies and (2) 

forwarding the node does not violate any latency constraints, 

as described in lines 20–28. When a node is forwarded, T is 

updated by remapping the forwarded node to its new cycle. 

Once a cycle is balanced, or if it is not possible to balance it 

after traversing all preceding cycles, the algorithm continues 

on to balance the load in the next cycle in T (t-1).  

An analysis of the algorithm reveals that the worst-case 

situation occurs when forwarding is not possible for any 

node. This results in O(nt) time complexity, where n is the 

number of operations in the block and t is the number of 

cycles after ASAP scheduling. If the DAG is very narrow, 

i.e., there is one node scheduled per state cycle such that  

t ≈ n, the complexity resolves to O(n2). However, since most 

CDFGs consist mainly of tree-like structures, on average we 

can expect t ≈ log n, yielding an average time complexity of 

O(n log n). The worst case time complexity is therefore 

dominated by the O(n2) dependency analysis algorithm. 
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Figure 4. Comparison of chaining methods. 

 

To illustrate balanced scheduling further, refer back to  

Figure 1. The CDFG is initialized with ASAP scheduling, 

assuming each node has a one-cycle latency. Dependency 

analysis is performed on each node, as shown in the figure, 

and the load balance is determined to be 2 (8 nodes/4 states). 

In a bottom-up approach, beginning at the fourth state, one 

node is required to balance the load. The algorithm traverses 

the preceding states to find a node to forward to the fourth 

state. Beginning in the third state, a single subtract operation 

is found, but the 1-cycle latency prevents it from being 

forwarded. In the second state, the multiply and subtract 

operators have the same number of dependencies, but only 

the subtract operation has no latency restriction.  Therefore, 

it is selected and forwarded to the fourth state. Since the 

fourth state is now balanced, we continue on to the third 

state, which also requires a single node. Beginning with state 

two, the multiply operation has the most dependencies and 

no latency restriction, so it is forwarded to state three. Now 

the second state requires a single node to balance. Looking 

to the first state, all three operations have the same number 

of dependencies, but only the add and shift operations have 

no latency restriction. The add operation is encountered first 

and is forwarded to the second state. Finally, the first state is 

already balanced so the procedure is complete. 

4. Balanced Chaining 

While balanced scheduling can significantly improve 

the distribution of operations among cycles compared to 

ASAP and ALAP scheduling, it does not consider variations 

in the operation delays. To obtain optimal performance, it is 

essential to consider the operation delays when scheduling 

and chaining operations. In this section we present our 

balanced chaining algorithm, which uses a delay modeling 

technique to predict the critical path of a design. We also 

present our methodology for obtaining accurate delay 

models of operations during high-level synthesis. These 

models are then used to obtain better timing performance 

during scheduling by efficiently chaining RTL operations 

within each state of a finite state machine.  

Consider the DAGs shown in Figure 4 with three 

different scheduling routines. We assume that multiplication 

operations have delays of 5 ns, while addition and 

subtraction operations have delays of 2 ns. In the first case, 

ASAP scheduling without chaining would require 4 cycles. 

The critical delay, or the worst-case path delay, is 5 ns, 

resulting in a maximum frequency of 200 MHz. It would 

take a total of 20 ns to complete the computations.  

A naïve approach to operation chaining would schedule 

three multiplies within a single cycle, as shown in the second 

figure. The resulting implementation takes 15 ns to 

complete, which is faster than the unchained approach. 

However, after closer inspection, it is apparent that the 

critical path can be balanced by chaining only the add-

subtract operation sequence. This results in 3 cycles and a 

critical delay of 5 ns, as shown in the third figure. It is 

interesting to note that although the balanced chaining 

schedule runs in the same time as the unconstrained chaining 

schedule, it produces a maximum allowed frequency of 200 

MHz compared to 67 MHz in the latter case. This portion of 

the circuit will not operate in isolation: its maximum 

frequency will influence the performance of the entire 

design. Consequently, the higher frequency yielded by the 

proposed balanced chaining technique has the potential to 

improve the performance of the entire design. 

4.1. Modeling Delays 

In order to obtain an optimal scheduling of operations, 

it is essential to accurately model operation delays. 

Generally, operation delays depend on the FPGA 

architecture and the precision of the calculation. It is 

therefore necessary to obtain delay estimates for varying bit-

widths of each operation for each target FPGA architecture. 
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Our method of delay modeling is based on previous 

work by Jiang et al. [13]. This work demonstrates that it is 

possible to accurately model the delay, area, and power of 

operations for ASICs with constant, linear, and quadratic 

equations. This process consists of two steps: acquiring the 

operation delays for varying bit-widths and creating high-

level equations to model the delay of each operation as a 

function of precision.  

In acquiring operation delays, one may use values from 

different stages during the design and synthesis process. For 

the sake of accuracy, values should be obtained at or below 

the synthesis stage. We used delay values after synthesis 

using Synplicity’s Synplify Pro tool. Our goal is to obtain 

frequency results that well approximate those reported by 

the synthesis tool. Since the synthesis tool generally 

performs many transformations on the RTL code, it is 

essential to obtain accurate values for each bit-width. This is 

accomplished by synthesizing each arithmetic and logical 

operation type individually and acquiring delays for bit-

widths of 2, 4, 8, 16, 32, 48, 56, and 64 bits. The delays are 

plotted and a best-fit curve is found to approximate the delay 

model as a function of precision. 

Jiang et al. [13] have categorized their models into 

constant, linear, and quadratic equations. We have chosen to 

use a cubic equation in all delay models for the following 

reasons. We have found through experimentation that the 

delays of many operations in FPGAs were discontinuous 

linear functions of precision. These nonlinear characteristics 

are often due to high-level optimizations. For instance, a  

2-bit add operation can be replaced with a combination of 

simple logic gates, resulting in reduced delay for low 

precision operations. Similarly, operations with higher 

precisions often require additional levels of logic that 

increase the delay. These optimizations often produce 

varying slopes in the model, requiring cubic expressions to 

attain higher-accuracy in the delay models. Piecewise-linear 

models may have also been used, but cubic expressions were 

chosen for the sake of simplicity. Incidentally, operations 

that exhibit constant, linear, or quadratic properties can also 

be modeled with cubic expressions.  

In estimating the operation delays, we can expect a 

certain margin of error. If a consistent method is used to 

obtain the delays for all operations, one can expect the 

margin of error to be similar among all the operation delay 

models. Therefore, even with a margin of error, the critical 

path may nonetheless be identified correctly for determining 

the best chaining of operations. 

4.2. Balanced Chaining Algorithm 

In RTL VHDL and Verilog, operation chaining is 

accomplished by assigning the result of a computation using 

the blocking operator (=) rather than non-blocking operator 

(<=). This allows the resulting value to be used immediately 

instead of in the next clock cycle (state). Operation chaining 

is implemented on an operation node in a CDFG by 

assigning a cycle delay of zero. The cycle delay is used 

when scheduling each node in a finite state machine. 

 

  Balanced_Chaining( Graph: G, double: frequency) 

 1  if frequency < 1.0 then frequency = 1.0 

 2  critical_delay = 1000 / frequency  

 3  D is a mapping of operation nodes to delay 

 4  for each block b in G do 

 5    for each node n in b do 

 6      D[n] = Get_Operation_Delay( n ) 

 7      if D[n] > critical_delay then 

 8        critical_delay = D[n] 

 9      if n has successors and n->getCycles()==1  

10        n->setCycles( 0 ) 

11  for each block b in G do 

12    topologically sort nodes in b 

13    for each node n in b in reverse order do 

14      for each predecessor node p of n do 

15        D[p] = Get_Operation_Delay( p ) 

16        total_delay = D[p] + D[n] 

17        if p->getCycles() == 0 then 

18          if total_delay > critical_delay then 

19            p->setCycles( 1 ) 

20          else if total_delay <= critical_delay  

21               and total_delay > D[p] then  

22            D[p] = total_delay 

 

Figure 5. Balanced chaining algorithm. 

 

Figure 5 presents our balanced chaining algorithm, 

which minimizes the clock cycles and critical path in the 

input graph, G, given an input target frequency. This is 

accomplished by assigning a one-cycle delay to operations 

in a sequence that exceeds the critical delay, thereby 

inserting registers in strategic places to balance the critical 

path. This chaining method uses a uniform cycle delay 

between an operation and each of its successor nodes. 

However, the algorithm can be easily adapted to handle 

varying cycle delays for each outgoing edge. The target 

frequency is upper-bounded by the slowest operation in the 

design and lower-bounded by 1 MHz, which is essentially 

equivalent to running unconstrained chaining. Note that even 

in an unconstrained chaining implementation there may exist 

multi-cycle operations, such as loads and stores, which limit 

the chaining of operations.  

The algorithm begins in lines 3–10 by iterating through 

the nodes in the CDFG. In lines 6–8, each operation node is 

mapped to its predicted delay for the target architecture 

based on the model described above. While doing so, the 

critical delay is updated, which is the worst-case path delay 

of any sequence of chained operations in the CDFG. In lines 

9–10, the CDFG is initialized to unconstrained chaining by 

assigning a cycle delay of zero for each operation node. 

Chaining is performed in lines 11–22. The nodes in the 

CDFG are first topologically sorted, and then traversed 

bottom-up. The delay of each node is recalculated based on 

the delay of its predecessor nodes in lines 15–16. If the 

combined delay of a node and its predecessor is greater than 

the critical delay, the predecessor node is unchained by 

setting its delay to one cycle in lines 18–19. Otherwise, the 

delay of the predecessor node is updated with the total path 

delay in lines 20–22. It is evident that the algorithm runs in 

linear time with the number of nodes in the CDFG. 

5. Experimental Results 

We evaluated the scheduling and chaining techniques 
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proposed in this paper on various benchmarks. The 

benchmarks were originally available in C, and compiled to 

assembly code using the Texas Instruments Code Composer 

StudioTM software suite, targeting the C6211 DSP 

architecture. The assembly codes were compiled to RTL 

VHDL and Verilog using the FREEDOM compiler [6][7], 

while using the scheduling techniques outlined here to target 

the Xilinx Virtex II FPGA. The RTL codes were synthesized 

using the Synplicity Synplify Pro logic synthesis tool. These 

synthesis results were used to obtain estimated frequency 

results for each benchmark. The execution times on the 

FPGAs were measured using the number of clock cycles in 

the simulation and the frequency results from the synthesis 

process. The estimated delay models for balanced chaining 

were based on data gathered for this FPGA architecture 

using the Synplify Pro synthesis tool. 

Table 1 shows timing results for ASAP, ALAP, force-

directed, and balanced scheduling with unconstrained 

chaining, which produces the minimum number of cycles 

possible among the scheduling routines. The objective is 

then to maximize the frequency within this time frame. With 

balanced scheduling, we see that a uniform distribution of 

operations among the cycles improves the frequency 

dramatically over ASAP, ALAP, and force-directed 

scheduling for nearly all benchmarks. This is due to the fact 

that these scheduling routines may often cluster numerous 

time-consuming operations in sequence, resulting in long 

critical paths. Balanced scheduling, however, partitions the 

long critical paths in the design by distributing the 

operations evenly among the states. Variations in frequency 

for laplace and iir are caused by the naïve partitioning of the 

critical path. The minor variations in the data path can cause 

the back-end synthesis tool to make substantial changes in 

design implementations that affect the overall frequency. 

Table 2 shows comparisons of the same benchmarks 

with no chaining, unconstrained chaining, and balanced 

chaining. For the latter case, a target frequency of 500 MHz 

was chosen to achieve the maximum frequency in the 

design. As expected, the number of clock cycles for 

balanced chaining increased over that of unconstrained 

chaining due to reduced chaining. However, we see dramatic 

increases in frequency as well as significant improvements 

in performance over that of an unconstrained chaining 

approach. The delay estimations for ellip, laplace, and sobel 

were hampered by extra logic inserted by the synthesis tool 

in the critical path. However, the difference was within a 

10% margin of error, as compared to the best results. On 

average we observe approximately a 20% speedup over all 

benchmarks as compared to the best results yielded by the 

other chaining methods. It is interesting to note that the 

frequency results for balanced chaining are very close to 

those reported for scheduling without chaining, which one 

would expect to be the maximum achievable frequency for 

each benchmark. This supports our claim that it is indeed 

possible to effectively predict the critical delays of a design 

at an abstract level in order to optimize the chaining of 

operations during scheduling. 

Table 1. Scheduling comparison for Xilinx Virtex II. 
  ASAP ALAP FORCE-DIRECT BALANCED 

 Cycles Freq
(MHz)

Time 
(µs) 

Freq 
(MHz)

Time  
(µs) 

Freq 
(MHz) 

Time 
(µs) 

Freq
(MHz)

Time 
(µs) 

dotprod 1204 54.8 22.0 68.5 17.6 97.5 12.3 111.5 10.8

Iir 2704 54.6 49.5 50.1 54.0 69.6 38.9 61.9 43.7

matmul 111909 103.0 1086.5 70.9 1578.4 90.4 1237.9 103.0 1086.5

Gcd 66 215.6 0.3 211.1 0.3 167.8 0.4 215.6 0.3

Diffeq 58 20.4 2.8 26.6 2.2 28.4 2.0 42.4 1.4

Ellip 53 124.9 0.4 146.8 0.4 129.9 0.4 166.9 0.3

laplace 5528 150.5 36.7 109.7 50.4 120.1 46.0 131.8 41.9

fir16tap 14948 103.7 144.1 71.3 209.6 90.5 165.2 103.7 144.1

fircmplx 2852 54.4 52.4 47.8 59.7 62.3 45.8 78.7 36.2

Sobel 18891 108.8 173.6 80.6 234.4 74.5 253.6 111.7 169.1

 

Table 2. Chaining comparison for Xilinx Virtex II. 
 NO CHAINING UNCONSTR. CHAINING BALANCED CHAINING

 Cycles Freq
(MHz)

Time 
(µs) 

Cycles Freq 
(MHz) 

Time  
(µs) 

Cycles Freq
(MHz)

Time 
(µs) 

Dotprod 1654 145.1 11.4 1204 111.5 10.8 1304 146.2 8.9

Iir 6306 103.8 60.8 2704 58.2 46.5 4204 136.0 30.9

Matmul 171528 146.1 1174.0 111909 103.0 1086.5 120101 146.2 821.5

Gcd 118 187.8 0.6 66 215.6 0.3 67 215.6 0.3

Diffeq 156 143.1 1.1 58 42.4 1.4 94 143.3 0.7

Ellip 66 168.1 0.4 53 166.9 0.3 59 161.4 0.4

Laplace 9221 189.5 48.7 5528 150.5 36.7 6638 173.1 38.3

fir16tap 23386 145.1 161.2 14948 103.7 144.1 15912 145.2 109.6

fircmplx 3924 102.3 38.4 2852 78.7 36.2 3012 102.3 29.4

Sobel 33563 148.0 226.8 18891 111.7 169.1 22611 132.0 171.3

 

Table 3. Performance results in a high-level synthesis tool. 
TI C6211 DSP Xilinx Virtex II FPGA  

 Cycles Time 
(µs) 

Cycles Freq 
(MHz) 

Time 
(µs) 

Speedup 
(Cycles) 

Speedup
(Time) 

MPEG-4 Video Decoder 

Texture_idct 275156 917.2 3584 111.9 32.0 76.8 28.6

Motion_comp 73447 244.8 4176 130.8 31.9 17.6 7.7

memory_ctrl 202294 674.3 4838 148.7 32.5 41.8 20.7

Texture_update 34888 116.3 1105 118.3 9.3 31.6 12.5

Viterbi Decoder 

Decode_acs 2285337 7617.8 71029 131.5 540.1 32.2 14.1

Flush_decoder 36743 122.5 1304 106.4 12.3 28.2 10.0

JPEG 2000 Encoder 

fdct_ifast 313024 1043.4 4850 110.6 43.9 64.5 23.8

fdct_islow 422404 1408.0 6101 116.6 52.3 69.2 26.9

mcu_huff 227206 757.4 5654 119.3 47.4 40.2 16.0

 

In order to verify that the proposed techniques function 

on large, complex problems, we compare their performance 

on three benchmarks, each of which has a complexity on the 

order of many thousands of operations. The designs were 

compiled from C to the TI C6211 DSP architecture, and the 

assembly codes were then compiled to the Xilinx Virtex II 

FPGA with the FREEDOM compiler using our balanced 

chaining routine to optimize the timing performance. Table 3 

shows these results compared to that of the TI C6211 DSP 

with a clock frequency of 300 MHz, the maximum 

frequency for that architecture. Interestingly, the balanced 

chaining technique allowed us to obtain frequency results for 

all kernels in excess of 100 MHz, and speedups ranging 

from 8–29× over the DSP. 

The MPEG-4 decoder showed a performance speedup 

of 29× for the largest block, texture_idct. The algorithms 

implemented in this block are more computationally 

intensive and require fewer memory accesses. The motion 

compensation block contains numerous memory accesses 

that cannot be reduced through optimizations. Hence it 
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shows the least gain: an 8× speedup. The Viterbi decoder 

showed the best-case speedup of 14× for the larger 

decode_acs module. This module is less memory bound and 

has very few conditional control structures. The second 

module is larger in code size and contains some control 

structures that cannot be eliminated. It also makes several 

function calls in order to calculate decision metrics. 

Operations cannot be moved across function boundaries by 

the compiler.  This lowers the amount of fine grain 

parallelism available in the hardware design. Nevertheless, a 

10× speedup has been observed for this block. The JPEG 

2000 encoder showed a speedup of 24× for the fast DCT and 

27× for the slow one, while the Huffman encoder showed a 

speedup of 16×. 

6.  Conclusions 

When good delay estimations are not available for 

FPGAs, high-level synthesis tools often use unconstrained 

chaining in scheduling to reduce the number of cycles in the 

design. In this paper we present a balanced scheduling 

routine that uniformly distributed operations among states in 

O(n2) time, on average. This effectively breaks up large 

critical paths in the design and improves the frequency by 

distributing operations among logic blocks in FPGAs more 

efficiently. Results indicate that this technique performs 

better than ASAP, ALAP, and force-directed scheduling. 

With good delay estimation and modeling methods, 

better-quality chaining is possible. Towards this effort, we 

have developed precision-based delay models to estimate 

operation delays in FPGAs. This technique was incorporated 

in our balance chaining routine. Given a target frequency, 

balanced chaining uses these delay models to reduce the 

cycles and critical path in the design by chaining operations 

within the given critical delay in O(n) time. Results on ten 

benchmarks show that the proposed balanced chaining 

technique significantly improves frequency and run times. 

Furthermore, our method for modeling operation delays is 

shown to accurately identify the critical paths of complex 

designs during high-level synthesis for different FPGA 

architectures. Consequently, when using balanced chaining, 

the balanced scheduling technique is no longer essential. 

Our balanced scheduling technique was tested on a set 

of large applications, including an MPEG-4 decoder, Viterbi 

decoder, and a JPEG 2000 encoder. Experimental Results 

indicate that the balanced chaining technique can 

successfully produce FPGA designs that operate at 

frequencies in excess of 100 MHz even for large 

applications. Balanced chaining have shown approximately 

20% increase in performance on average over other chaining 

routines. By incorporating this routine in a high-level 

synthesis tool we have shown 8–29× improvements in FPGA 

performance for large, complex applications over a DSP 

architecture. This supports our claim that it is indeed 

possible to effectively predict the critical delays of a design 

at an abstract level in order to optimize the chaining of 

operations during scheduling. 

In future work it would be interesting to evaluate the 

effects of balanced scheduling and balanced chaining on the 

power and thermal properties of FPGA designs with varying 

sampling periods. It would also be interesting to explore the 

use of retiming in combination with the proposed delay 

models during early stages of design. 
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