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ABSTRACT

Mobile devices are becoming a primary medium for per-
sonal information gathering, management, and sharing. Man-
aging personal image data on mobile platforms is a difficult
problem due to large data set size, content diversity, hetero-
geneous individual usage patterns, and resource constraints.
This article presents a user-centric system, called iScope,
for personal image management and sharing on mobile de-
vices. iScope uses multi-modality clustering of both content
and context information for efficient image management and
search, and online learning techniques for predicting images
of interest. It also supports distributed content-based search
among networked devices while maintaining the same intu-
itive interface, enabling efficient information sharing among
people. We have implemented iScope and conducted in-field
experiments using networked Nokia N810 portable Internet
tablets. Energy efficiency was a primary design focus during
the design and implementation of the iScope search algo-
rithms. Experimental results indicate that iScope improves
search time and search energy by 4.1× and 3.8× on average,
relative to browsing.

Categories and Subject Descriptors

C.5 [COMPUTER SYSTEM IMPLEMENTATION]:
Portable Devices; H.3 [INFORMATION STORAGE
AND RETRIEVAL]: Information Search and Retrieval

General Terms

Algorithms, Design, Management

Keywords

Retrieval, Management, Energy, Performance

1. Introduction

Personal, portable communication and computation de-
vices are now part of hundreds of millions of lives, often
in the form of smart-phones. Emerging mobile applications
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and services are the main driving forces behind the increas-
ing prevalence of personal mobile systems. From Daniel
Henderson’s 1993 prototype, intellect, which can receive and
display images and video media [1], to the first photo taken
by Philippe Kahn in 1997 using a camera phone and shared
instantly with more than 2,000 families [2], the functional-
ity and adoption of personal portable devices have contin-
uously increased. Today’s personal portable devices, such
as the iPhone from Apple, Blackberry from RIM, and An-
droid phone from Google, have integrated a variety of system
functions, such as global positioning system (GPS), cam-
eras, sensors, large touch screens, and easy-to-use interfaces.
Global mobile phone subscriptions have reached 3.3 billion
in 2007 [3]. Users are able to capture information anywhere
and anytime. In addition, these devices are heavily used for
information sharing and social interaction.

Mobile devices are the first-level interface for capturing
and sharing multimedia data such as images. They are
therefore a natural image data management platform. Man-
aging image data on mobile devices, however, is a challeng-
ing problem. A picture may be worth a thousand words, but
without knowing the words that describe it, search can be
difficult. Manual image annotation is tedious and time con-
suming. Content-based image retrieval (CBIR), which au-
tomatically extracts representative features from raw data
and uses the extracted features to locate content of interest,
largely automates managing and exploring image data [4].
Despite the recent progress in CBIR, managing image data
on personal mobile systems is challenging due to large data
set size, content diversity, heterogeneous user interests and
usage patterns, and resource constraints.
• Energy-induced constraints: Energy consumption is
a foremost design concern in battery-powered mobile sys-
tems. Scarce energy resources largely limit the performance
and functionality of software applications running on portable
devices. Existing CBIR techniques have high computation
complexity and storage requirements. User interaction and
communication bring high time and energy cost during per-
sonal image search. Energy-induced design constraints in-
troduce serious challenges to the design and implementation
of image management systems on personal mobile devices.

• User-specific search scenarios: Unlike general-purpose
search techniques developed for the World Wide Web, im-
age management on personal mobile devices is a highly per-
sonal, user-centric task. Typically, a mobile device has one
owner; the data captured and stored on a device depend on
its owner’s interests. Search patterns are also user specific.
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Figure 1: Overview of iScope’s system architecture.

iScope adapts to an individual user’s data characteristics
and search patterns to improve search performance, quality,
and energy efficiency.

• Distributed data sharing: Supporting data sharing
in distributed mobile environments requires efficient, dis-
tributed data management and search techniques. Communi-
cation-induced energy overhead is of great importance. We
investigate the time and energy overhead of remote image re-
trieval and propose collaborative search and metadata cach-
ing techniques to allow efficient image sharing and retrieval
in distributed mobile environments.

In this work, we propose iScope, a personal content man-
agement platform. iScope is a user-centric design target-
ing energy-constrained distributed mobile environments. It
leverages both personal context information and efficient
content search techniques, as well as online learning tech-
niques, to deliver personalized, energy-efficient content search
services. It provides a collaborative search environment, en-
abling distributed image search on mobile devices, thus fa-
cilitating information discovery and social interaction. We
have implemented a prototype of iScope and conducted in-
field experiments using Nokia N810 portable Internet tablet
devices. The proposed software platform will soon be pub-
licly released for free academic and personal usage.

The rest of this article is organized as follows. Section 2
provides an overview of the iScope system architecture. Sec-
tion 3 presents multi-modality image data management. Sec-
tion 4 conducts resource characterization of portable plat-
form and investigates the resource usage of image search
process. Section 5 and Section 6 describe the benefits of
personalized and collaborative image search. Sections 7, 8,
and 9 describe the result of experiments with the iScope
prototype, survey related work, and conclude.

2. Overview of the iScope System Architecture

This section presents an overview of iScope’s system ar-
chitecture. Figure 1 illustrates the system architecture of
iScope, which consists of the following components.
• Multi-modality data management: Personal image data
contains a rich set of content information, such as color, tex-
ture and shape, and user-specific context information, such
as location, time and ownership. In iScope, the context and
content information of personal image data are used in uni-
son to enable efficient image management. Images are parti-
tioned based on content features and context metadata. The
proposed hierarchical clustering-based multi-modality data

management design allows efficient traversal of the data set
across different feature dimensions and resolutions, enabling
efficient management of personal data sets and run-time user
queries. (Section 3)

• User-centric adaptive image search: iScope offers person-
alized image search by leveraging content-based search algo-
rithms with user-specific context information. Users differ
from each other on image interests and performance expecta-
tions. iScope incorporates run-time learning techniques for
online prediction and adaptation of the search process based
on implicit user feedback, improving search quality and min-
imizing search costs, e.g., energy consumption. (Section 5)

• Distributed collaborative search: iScope supports remote
image search and metadata caching among distributed im-
age data sets spanning multiple mobile devices, with the goal
of enabling efficient information sharing and effective social
interaction in mobile social networks. (Section 6)

iScope supports personal image search on mobile devices
through an iterative search process. Personal images are or-
ganized using the clustering-based multi-modality data man-
agement on a local mobile device or multiple distributed
devices. At each retrieval step, given a user’s feedback,
e.g., a query image or context information, iScope traverses
through the hierarchical multi-modality data clusters stored
either locally or remotely, predicts and identifies a potential
match, and returns the candidate thumbnail images of the
matched cluster to the user. The search process continues
until the target image(s) are found. Figure 2 illustrates the
interactive search process. In this example, a user looks for
a photo taken during his hiking trip last year. Starting with
a photo of his recent paint-ball trip, the user conducts three
context search operations based on location, time, and again
on location. The returned photo contains content similar to
the target image. The user then uses content-based search
to find the target hiking-trip photo.

3. Multi-Modality Data Management

iScope uses a multi-modality image management scheme
that uses both content and context (e.g., time, location, and
ownership) information associated with images. This section
explains how these data are obtained and used in multi-
dimensional, multi-scale image clustering to support rapid
browsing and run-time user queries.

3.A Content-Based Image Clustering

Given the raw content of an image, various types of image
features may be extracted, such as color, texture, and shape.
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Figure 2: The image search example using iScope.

Functions of these features can be used to quantify image
similarity. In this work, we consider the following image
features:
• Color histogram: For each image, a color histogram is
extracted in the hue–saturation–value color space. A Eu-
clidean distance function is used. We experimented with two
different setups, one using 162-dimensional (18× 3× 3) his-
tograms, and the other using more compact 32-dimensional
(8 × 2 × 2) histograms.

• Wavelet coefficients: [5] This technique performs multi-
resolution wavelet decomposition on each image and ex-
tracts the most significant coefficients (363 coefficients in
our study). Similarity between two images is measured by
the number of coefficients they have in common.

• Region-based features: [6] This method segments each im-
age into regions and extracts a 14-dimensional feature vector
(9-dimensional color moments and 5-dimensional bounding
box) from each region. The distance between two region
feature vectors is defined as ℓ1 distance and the distance be-
tween two images is defined by the improved Earth Mover’s
Distance (EMD), a metric used to evaluate the similarity
of two multi-dimensional distributions. EMD measures the
minimal amount of work needed in order to transform one
distribution into the other. Due to the high complexity of
EMD calculation, we also studied a simplified distance com-
putation, called Region-abc, which is defined as the sum of
the best-matched distances for each individual region.

• SIFT: [7] This method detects hundreds of local salient
regions and extracts a 128-dimensional, scale-invariant fea-
ture vector for each local region. Euclidean distance is used
to determine the feature vector difference, and the distance
between two images is measures by the total number of
matched local feature vectors.

For each of the six content-based image features (Color-
162, Color-32, Wavelet, Region-EMD, Region-abc, and SIFT),
we apply the following modified agglomerative hierarchical
clustering algorithm. Our approach yields a clustering tree
structure with hierarchical levels of resolutions instead of
a single-layer clustering structure, which enables compact
data management and efficient search process. Starting with
single-image clusters, this algorithm recursively merges the
two closest clusters if the merged cluster has at most M im-
ages, where M is the number of thumbnail images that can
be displayed on the screen of a portable device. M is set to
24 in our study. On top of the content-based clusters, we
also construct a content-based cluster relationship graph in
which each node represents a content cluster and each edge
represents the distance between the centroids of two clusters.
Using this graph, we can quickly identify other clusters that
are likely to contain images with similar content to those in a
given cluster, thus permitting efficient content-based image
browsing and retrieval.

3.B Context-Based Image Clustering

In addition to image content information, our system also
uses various types of context metadata to improve image
data management quality and efficiency.

Figure 3: Geographical distribution of a personal
image data set.

Geographical location information of images can be cap-
tured by mobile devices equipped with GPS receivers, per-
mitting easy computation of the spatial correlation among
images. Figure 3 shows an example geographical distribu-
tion of a user’s image data set. Using agglomerative hier-
archical clustering, we start with single-image clusters and
recursively merge the closest pair of clusters until all images
belong to the root cluster. Unlike the content-based cluster-
ing technique described above (which maintains a set of flat
clusters), context-based clustering maintains the entire clus-
ter hierarchy, except for small clusters whose parent clusters
have few enough (M) images to be displayed on the screen
of a mobile device.

Similarly, hierarchical time clusters can be constructed,
each containing images captured within a certain time pe-
riod. Temporal correlation among images has been observed
in many scenarios and can help identify images of certain
activities (e.g., wedding) or images taken at a certain time
(e.g., Macy’s Thanksgiving day parade). In this work, dis-
tance in the time domain is measured as the absolute time
difference between pairs of images.

For distributed image sharing, ownership information also
plays an important role. A user may obtain images from
other users, and through the ownership information, identify
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other users with similar interest (e.g., classic cars). This can
be used to restrict image browsing or searching to a specific
set of friends, improving the efficiency of image search and
enabling more effective social interaction.

3.C Interactions of Multi-Modality Clusters

Context-based clustering

Content-based clustering

Figure 4: Interactions of content-based and context-
based clusters.

Figure 4 illustrates the iScope multi-modality image clus-
tering method, using metadata information such as content,
location, and time. At the bottom of the figure, images
are clustered based on their content similarity. There are
also links between content clusters indicating the closeness
of cluster centroids. At the top of this figure, hierarchical
geographical clusters (solid-line ellipses) and time clusters
(dotted-line ellipses) are maintained at different resolutions,
reflecting spatial or temporal correlations among images.
Images belonging to the same content cluster may reside in
different geographical or time clusters, and vice versa. For
instance, a user may take a set of similar (or dissimilar) pic-
tures at the same location during a certain period of time.
Or, a user may have taken a lot of pictures of her dog at var-
ious time and locations. As a result, using inter-connected
multi-modality clusters makes it easier to capture higher-
level image semantics. A user can quickly navigate these
clusters by following different types of correlations (simi-
lar content, location, time, or ownership) in order to locate
the images of interest. In addition, through adaptive user
prediction (Section 5), iScope may automatically determine
the most promising correlation without explicit user specifi-
cation.

Clustering large amounts of image data using different
types of metadata can be time consuming and memory in-
tensive. To improve efficiency, a hybrid approach is used in
which expensive clustering (re)computation is performed on
wall-powered server machines when a mobile device synchro-
nizes with a server, and small incremental cluster updates
are performed on mobile devices as new images are being
added to a data set.

4. Mobile Platform Characterization

This section describes the performance and energy char-
acterization of image search in personal mobile systems.

4.A Measurement Setup

The measurement platform includes a Nokia N810 portable
Internet tablet, HP Harrison 6201B direct current power

supply, NI-PC-6034E acquisition card, and hosting worksta-
tion. iScope has been prototyped on Nokia N810, which is
representative of modern personal mobile networked multi-
media embedded systems. In particular, N810’s 4.3 in LCD
touch screen allows the design and evaluation of user-inter-
active search techniques for personal mobile devices. To
measure energy and power consumption, we replace the bat-
tery of the mobile platform under test with an HP Harrison
6201B direct-current power supply. Current is computed
by measuring the voltage across a 5W, 250mΩ, Ohmite Lo-
Mite 15FR025 molded silicone wire element resistor in series
with the power supply. This resistor was designed for cur-
rent sensing applications. High-frequency voltage samples
are taken using a National Instruments 6034E data acquisi-
tion board attached to the PCI bus of a host workstation.
The maximum sampling rate of the data acquisition card
is 200,000 samples per second. This allows high-resolution
power and energy analysis of the mobile system.

4.B Algorithm Characterization

Most content-based search algorithms are computation
intensive. This section characterizes the running time of
content-based search algorithms on the mobile platform. Ta-
ble 1 shows the measurement results of the six content-based
search algorithms (Section 3) on the mobile platform and
a wall-powered Intel quad-core server. The N810’s per-
formance is more than an order of magnitude lower than
that of the wall-powered server. Therefore, direct use of
existing content-based search algorithms in mobile systems
would result in high energy consumption and high laten-
cies, thus the need to develop content-based search algo-
rithms for mobile platforms with high energy efficiency and
good performance. Table 1 also demonstrates that different
search algorithms have dramatically different resource re-
quirements. In iScope, content-based clustering is performed
offline, and online content-based search involves only simple
cluster lookup operations. As a result, computation time
and energy consumption of content-based search is negligi-
ble compared with user interactions (see further analysis and
results in Section 7). Therefore, more computation-intensive
but more accurate algorithms can be selected in order to op-
timize the overall performance and energy efficiency of the
personal content search process.

4.C Hardware Power Characterization

This section presents the power consumptions of the ma-
jor components in Nokia N810, including the TI OMAP
embedded microprocessor, LCD touch screen, and Wi-Fi
interface. The results are shown in Table 2. The peak
(idle) power consumption of the microprocessor is 0.80W
(0.01W). The power consumption of the touch screen is
1.04W or 0.47W, depending on whether or not it is be-
ing touched. The send (receive) power consumption of the
wireless interface is 2.00W (1.76W). This study shows that
the power consumption of the display is comparable to that
of the microprocessor and wireless interface. This observa-
tion is critical in a user-interactive search process, in which
the search system iteratively refines its search results based
on user feedback until a satisfactory image is found. During
the interactive search process, the energy consumption of
human-machine interface components, e.g., the LCD touch
screen, can be significant. On the other hand, the energy
consumption of the wireless interface must also be carefully
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Table 1: Feature Extraction and Search Performance Comparison
Algorithms Color-32 Color-162 Wavelet Region-abc Region-EMD SIFT

N810: 2.95 9.74 79.69 250.32 1010.75 652442.40
Search Intel quad-core: 0.10 0.25 1.69 9.04 33.97 8647.95
(ms) Ratio: 29.50 38.96 47.15 27.69 29.75 75.44

N810: 311.45 309.03 1137.55 833.50 833.50 32460.27
Extraction Intel quad-core: 5.13 5.06 20.26 32.68 32.68 934.42

(ms) Ratio: 60.71 61.07 56.15 25.50 25.50 34.74

considered during distributed collaborative image search and
sharing among multiple mobile devices.

Table 2: Power Consumption (W)

Processor Processor Display w/o Display w Wireless
active idle touch touch send/receive
0.80 0.01 0.47 1.04 2.00/1.76

4.D Time and Energy Characterization of Image
Retrieval

Next, we characterize the performance and energy con-
sumption of the image search process. This study helps
clarify the time breakdown and energy consumption distri-
bution among the various steps of the image search pro-
cess. Given an initial query image, users look for a target
image using content-based search algorithms through an in-
teractive search process. A performance comparison of the
content-based search algorithms is shown in Table 1. The
image data set includes approximately 2,000 images gath-
ered using Nokia N810 portable Internet tablets.

Table 3 and Table 4 show the time breakdown and en-
ergy consumption distribution of the search process, which
has the following components: (1) the initialization stage,
including user interface initialization and query image se-
lection; (2) online processing of the content-based search
algorithm, including inter-image similarity calculation; and
(3) user exploration, including browsing, thinking, and se-
lection. The measured time and energy breakdowns among
these three components are 10.4%–18.7%–70.9% and 8.0%–
36.6%–55.4%, respectively. Note that, in this study, im-
age similarity is calculated at run time; this could also be
done offline. Therefore, the user exploration stage domi-
nates in both latency and energy consumption. This study
demonstrates that personal image management and search
should focus on reducing the energy consumed in the user
exploration stage by minimizing its latency. To this end,
iScope employs multi-modality data management and user-
centric adaptive search algorithms, which are explained in
Sections 5 and 6.

5. User-Centric Adaptive Image Search

This section describes the proposed user-centric image
search techniques which leverage content and context in-
formation, as well as online adaptive user prediction during
image search.

5.A User Interface

One of the main difficulties standing in the way of greater
benefit from any intelligent search algorithm is difficulty of
use. Most existing browsing-based user interfaces, although
inefficient, are straightforward to use. iScope has the goal of
making content-based image search accessible to large pop-
ulation of mobile system users spanning different age groups

Table 3: Time Distribution of One Image Search
Process

Total time: 80.4 s
Query dialog Algorithm User exploration

8.4 s computing 57.0 s
Query Query 15.0 s Screen Screen
idle click idle click
8.0 s 0.4 s 53.3 s 3.7 s

Table 4: Power Distribution of One Image Search
Process

Total energy 52.2 J
Query dialog Algorithm User exploration

4.2 J computing 28.9 J
Query Query 19.1 J Screen Screen
idle click idle click
3.8 J 0.4 J 25.0 J 3.9 J

with different interests and technical backgrounds: an easy-
to-use interface is essential.

We have designed a user interface that is accessible to
people with no technical background. It supports queries
via a straightforward search process. Figure 5 shows the
prototype user interface implemented on a Nokia N810 de-
vice. The figure on the left shows the starting page, which
displays the list of the social group members and the ge-
ographical distribution of the image data set. Two types
of navigation are supported: (1) navigation across differ-
ent dimensions, e.g., time, location, content, and ownership,
corresponding to the search algorithm’s traversal across dif-
ferent dimensions of metadata clustering and (2) zooming
in/out along a particular dimension, corresponding to search
traversal along a cluster hierarchy. Using this interface, an
end user can conduct image search through an interactive
navigation process. For instance, using a query image of a
person running in Boulder, a user can search for a stadium
in Toronto. First, content-based search is used to look for
photos with people running. Then, location-based search is
used by selecting Toronto on the map to reduce the candi-
date data set. Manual browsing is then used to find one
candidate image containing running people in a stadium.
Finally, content-based search is used to search for stadiums
in Toronto.

5.B Search Process

To search for an image, a user starts with an existing
query image, related context information, or browses in an
initial cluster to identify a specific query image. The user
then selects a search domain (e.g., content, location, or time)
and issues a query. Given the initial query, iScope quickly
locates the corresponding cluster that contains the query
image in that domain. As described in Section 3, images as-
signed to the same cluster are similar in a particular domain.
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Figure 5: User interface running on Nokia N810. (Left) starting page. (Right) search results with last row
based on adaptive prediction, and new query specification.

Promising images can be easily identified by returning other
images residing in the query image’s cluster. These tempo-
rary results are presented to the user, who checks the im-
ages’ context information and provides feedback on whether
they are relevant. The user can then continue the interac-
tive search in two different ways. The user may stay in the
same search domain and check the upper-level cluster (for
geographical or time clustering) or the neighboring clusters
(for content-based clustering). Alternatively, the user may
pick one of the positive examples as the new query image
and start another query, switching to another search domain
if needed. This iterative search process continues until the
desired image is located.

All the search steps and user feedback are recorded by
iScope and used to tune the automatically-generated clus-
tering structures as follows.
• If an image is selected as the target image or an interme-
diate target image, it is merged into the same cluster as the
query image.

• If the number of images of a cluster exceeds the number
of images that can be displayed on the touch screen, the
least relevant images will be identified and removed from
the original cluster thereby forming a new cluster.

• An empty cluster will be removed from the clustering
structure.

5.C Adaptive User Prediction

In addition to explicit user feedback on relevant or ir-
relevant images, other types of implicit user feedback may
also be captured, such as the overall search and navigation
path, backtracking operations, etc. This information can be
used to guide the run-time learning techniques and provide
adaptive user prediction to optimize the user search process.
Specifically, iScope makes user-specific prediction based on
previous search history, current query image, and interme-
diate search results, in order to return images that are likely
to be of interest.

Our method works as follows. After each round of search,
the system records the trace (q, h1, h2, . . . , hx, p), in which q
is the initial query image, h1, h2, . . . , hx are the intermediate
images, and p is the final target image. This image-level
trace is then converted to a cluster-level trace, i.e., each
image is converted to its corresponding cluster and search
domain. Cluster-level traces, instead of image-level traces,
are used for prediction because users are unlikely to search
for the same image repeatedly, but are likely to search for
different images in a cluster (e.g., a specific event or a trip).
Given a set of cluster-level traces, at runtime, iScope uses
the images selected by the user so far in this round of search

as a basis for prediction. Let (i1i2i3) be the corresponding
clusters. Using Bayes’ theorem, we calculate the conditional
probability of each candidate cluster C containing the target
image:

P (C|i1i2i3) =
P (i1i2i3|C)P (C)

P (iii2i3)
. (1)

Since P (i1i2i3) is the same for all candidate clusters C, we
only need to compute P (i1i2i3|C)P (C). Again, using Bayes’
theorem, we have

P (i1i2i3|C) = P (i1|C)P (i2|i1C)P (i3|i1i2C). (2)

Using the näıve Bayes probabilistic model, i.e., i1i2i3 are
conditionally independent of each other, we have

P (i1i2i3|C) = P (i1|C)P (i2|C)P (i3|C). (3)

We first locate all the cluster-level traces that contain C,
then check how many times i1, i2, and i3 have co-occurred
with C in these traces. To compute P (C), we count the
number of occurrences of C in all the cluster-level traces OC ,
and the total number of cluster occurrences in the traces O.
Thus,

P (C) = OC/O. (4)

Using the formulas above, we can compute the probability
of each candidate cluster containing the target image. In
iScope, the two images most frequently used in the image-
level traces are then selected from each of the top three
clusters. These six suggested images are presented as the
bottom row in the search results (see example in Figure 5).

6. Collaborative Image Search

iScope supports collaborative image search targeting dis-
tributed mobile environments. The proposed design allows
individual users to share their image data sets within their
social groups, e.g., friends and family members. It thus al-
lows each member to search a much larger data set than
a single mobile device can hold, thereby facilitating infor-
mation sharing and stimulating social interaction. Previous
work has shown that collaborative search utilizing social net-
works (e.g., friends or social groups) can improve search ef-
ficiency and generate more relevant search results [8, 9, 10,
11, 12]. While previous work focused mostly on keyword-
based search of Web data, iScope focuses on collaborative
content-based and context-based search in distributed mo-
bile systems. Privacy and security are important for data
sharing systems. Although this is not the focus of our work,
iScope can leverage existing third-party infrastructures for
authentication and privacy/data protection [13, 14, 15, 16].
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The proposed collaborative search technique conducts par-
allel search among the socially-associated mobile devices.
A search query may be processed by multiple mobile de-
vices, each of which hosts a different image data set man-
ually shared by its owner or automatically cached by the
device itself. Each member of a social group shares a subset
of her image data set with the whole group. The shared
data set is initially stored on her own device and organized
separately from the rest of her personal data. More specifi-
cally, the metadata management using the proposed multi-
modality clustering method is separated from the rest of the
owner’s personal data for better privacy and security. This
approach yields smaller data set, potentially allowing more
efficient image search. The distributed shared data sets are
ready to support collaborative image search within a social
group. After a group member issues a query, her local de-
vice conducts local search within her own data set. In the
meantime, the query is broadcast to other devices within the
social group. Each remote device collaboratively conducts
local search within its shared data set and return the results,
e.g., metadata and/or the raw images, to the querying de-
vice. The user interface for distributed search is identical to
that of local search; the remote search process is transparent
to the end user.

When a sufficient proportion of data are shared, collab-
orative search can increase speed relative to local search
because the shared data are partitioned and processed in
parallel on multiple devices. However, the improvement is
bounded by communication overhead. Using the collabora-
tive search scheme, the latency of each remote query is con-
strained by the communication latency. In addition, collab-
orative search imposes energy overheads on remote devices.
If this overhead is not carefully controlled, individuals may
be reluctant to share their data with others, over fear of
reduced battery life due to hosting the searches of others.

In this work, we propose an online metadata caching me-
thod to minimize the communication overhead of collabora-
tive search. We observed that individual users tend to show
more interest in specific subsets of the shared data, and the
subsets of interest vary among users. For instance, Alice and
her friend Bob took a hiking trip. Alice may be more inter-
ested in the photos taken by Bob during the trip than Bob’s
other shared data. The proposed caching method leverages
the “data locality” property, and caches the metadata re-
ceived remotely at run time, merging the metadata into the
user’s own data set for future reference. In addition, to sup-
port collaborative search, image ownership is introduced as
a dimension in the multi-modality data clustering method.
When local search requires access to a remote image, it first
checks metadata referencing remote storage and then issues
a fetch request to the corresponding device, which in turn
returns the raw image.

As described in the previous section, metadata clustering
is hierarchical. The proposed metadata caching method fol-
lows a bottom-up approach, i.e., when all the sub-clusters
of a remote cluster has been cached locally, the remote clus-
ter itself is then cached. In addition, each cached remote
metadata item and the corresponding cluster also maintain
an access history, which tracks how many times, and the
most recent time, the corresponding image(s) have been ac-
cessed. This information is used to determine the caching
policy for the raw images, which are much larger than meta-
data. When a device has insufficient storage, the raw images

with low accesses counts, or long durations since their most
recent access, are deleted.

Caching raw images can further speed up the search pro-
cess and minimize communication energy consumption. How-
ever, it raises the concern that a query may result in multiple
hits and replies, hence introducing unnecessary network traf-
fic and energy overhead. Our current solution works as fol-
lows: when a cache hit occurs, if the locally stored raw image
belongs to a remote device, a query and the corresponding
image ID are issued to the owner device, which then fetches
the image from its local storage (no image search is neces-
sary) and sends the raw image back to the querying device.
Our experimental evaluation in Section 7 indicates that the
proposed metadata caching method improves system perfor-
mance and energy efficiency.

7. Experimental Evaluation

In this section, we evaluate iScope, the proposed person-
alized image management and search system. Section 7.A
summarizes the implementation of our prototype and de-
scribes the image data sets used in the experiments. Sec-
tion 7.B evaluates multi-modality data clustering algorithm.
Section 7.C evaluates personalized image search on an indi-
vidual device. Section 7.D evaluates collaborative search in
a distributed mobile environment.

7.A Implementation and Image Data Sets

iScope has been implemented on a Nokia N810 device.
The multi-modality image data management method, as
well as content-based and context-based search techniques
are implemented in C and Python. The GTK+ library was
used to develop the graphical user interface. The implemen-
tation consists of 23,925 lines of C code and 669 lines of
Python code.

Sets of images captured using personal portable devices,
such as camera phones, are significantly different from general-
purpose image data sets. We have constructed an image
data set with 7,923 Flickr images captured by six different
camera phone users. The Flickr data set is used in the eval-
uation of content-based search techniques in Section 7.B,
because it is more comprehensive (requiring that user study
participants gather 8,000 images each would be costly) and
this evaluation does not require any context information.
However, these Flickr images lack personal context informa-
tion, such as location and time stamps. In order to evaluate
the impact of this context metadata, it was necessary to
gather our own image data sets. We developed a software
tool for Nokia N810 portable Internet tablets that allows
users to manually or automatically take photos using the
built-in camera. The software uses the built-in GPS device
and clock to tag photographs with locations and timestamps.
Ten volunteers took photos during their daily activities. In
total, they gathered more than 9,000 images during a pe-
riod of four months. The images were taken in six cities of
three different countries: Canada (Kingston, Ottawa, and
Toronto), the United States (Boulder, and San Jose), and
the United Kingdom (London). The gathered image data
sets, along with the location, time, and ownership informa-
tion, are stored on N810 devices. They are used to evaluate
the impact of distance measurement on content and context
clustering quality, as shown in Section 7.B and in the user
study shown in Sections 7.C and 7.D.
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Table 5: Quality–Speed–Space Comparison of Different Content-Based Search Algorithms
Search quality Speed (ms) Space (feature vectors)

Recall Average precision Feature extraction Search #dimensions size (byte)

Color-32 0.44 0.25 311.45 2.95 32 128
Color-162 0.46 0.27 309.03 9.74 162 648
Wavelet 0.40 0.32 1137.55 79.69 363 1,452

Region-abc 0.61 0.46 833.50 250.32 14 640
Region-EMD 0.62 0.46 833.50 1010.75 14 640

SIFT 0.43 0.33 32460.27 652442.40 128 84,480

Table 6: Clustering Quality Comparison of the min, max, and avg Distance Measures
Content Location Time

min max avg min max avg min max avg

InterDist 1200.8 124.2 218.2 46.7 30.7 45.7 720.3 ×106 549.8 ×106 750.7 ×106

IntraDist 0.122 0.454 0.413 0.003 0.004 0.003 81 100 67

InterDist/IntraDist 9876.3 273.8 527.8 17928.4 8369.1 15740.1 8.89 ×106 5.50 ×106 11.20 ×106

7.B Multi-Modality Data Management

iScope combines both content-based image features and
context metadata to support efficient image data manage-
ment. We first evaluate the effectiveness of the six content-
based algorithms described in Section 3, using the 8,000
Flickr image data set captured by six different users with
their camera phones. For each user’s subset, we selected
10 query images, and for each query image, we manually
identified its set of similar images within the same subset
(i.e., taken by the same user). Table 5 compares the qual-
ity, speed, and space requirements of the six algorithms.
The following quality measures are used: recall and average
precision [6]. Higher quality values indicate better search
quality. Region-abc and Region-EMD have the best search
quality and are reasonably compact. Region-abc is much
faster than Region-EMD due to its simplified distance com-
putation. The combination of multiple content-based fea-
tures was also experimented, but the search quality was only
marginally better than Region-abc. Therefore, Region-abc
was used as the representative content-based technique for
the other experiments.

According to the results, the precision and recall for state-
of-the-art content-based image retrieval (CBIR) techniques
still need to be further improved. iScope, on the other hand,
leverages both content-based and context-based techniques
to optimize the personal image search. This study demon-
strates the importance of leveraging the context information
during personal image search.

Next, we evaluate the impact of distance measures on
content and context clustering quality using our own im-
age data sets. In our hierarchical clustering algorithm, a
distance measure is needed to determine which sub-clusters
should be merged. We experimented with three different dis-
tance measures: min, max, and avg, which measure the min-
imum, maximum, and average distances of objects belong-
ing to two different clusters, respectively. A good clustering
algorithm should generate clusters that are compact (small
intra-cluster distance) and have good separation (large inter-
cluster distance). Given a set of k clusters X1, X2, . . . , Xk,
we define the average intra- and inter-cluster distances.

IntraDist =
1

k

X

1≤i≤k

0

@

1

|Xi|

X

x∈Xi

dist(x, X̄i)

1

A (5)

InterDist =
2

k(k − 1)

X

1≤i≤j≤k

dist(X̄i, X̄j) (6)

where X̄i is the centroid of cluster Xi and dist() is the dis-
tance function for two objects. Table 6 shows the quality
of different clustering algorithms for content- and context-
based clustering. A higher InterDist to IntraDist ratio indi-
cates better separation and compactness, i.e., better cluster-
ing quality. Although the min distance measure results in
a better ratio, it generates skewed hierarchies with many
levels, and is therefore impractical. Instead, we use the
avg distance measure for our hierarchical clustering algo-
rithms, which has good clustering quality and generates well-
balanced hierarchies.

7.C Personalized Image Search

Here, we describe our user study based evaluation of the
proposed personalized local image search on the Nokia N810
platform. Ten individuals from Queens University and the
University of Colorado at Boulder volunteered for the stud-
ies. Most were daily mobile device users with basic com-
puter skills. All the participants were graduate students
and between 20–28 years old, two were female and eight
were male. It was our goal to compare the performance of
different search algorithms (1) when used by individuals on
image data sets they had gathered themselves, but also (2)
when used on large data sets. Due to practical constraints on
user time demands, we designed two studies, each of which
had five participants.

In the first study, the image data sets (Section 7.A) were
contributed by the same volunteers who would later search
for images within them. These data sets contained 1079,
1235, 1497, 1542, and 2100 images, respectively. The size
variations resulted from the differences in the rate at which
individuals gathered images. Although the sizes of these
data sets differ, the study protocol was identical. In the sec-
ond study, a larger image data set containing 4,389 images
drawn from three participants in the first study was used.

For each participant, 30 query images were randomly se-
lected from the corresponding image data set, and the 30
target images corresponding to the query images were then
manually specified. It is possible to select a set of images to
be targets for one query image. However, using query–target
image pairs provides a simple, more deterministic evaluation
process of the proposed technique. The time spent by each
study participant ranged from four to eight hours. To eval-
uate the proposed design, we further consider the following
cases:
• Browsing-based search: To date, browsing is the most
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Table 7: Time Usage of Browsing-Based Search
user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10

Computation time (s) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

User time (s) 130.5 51.3 41.0 120.9 125.2 449.4 137.1 141.1 595.7 219.0

Overall time (s) 130.8 51.7 41.3 121.3 125.6 449.8 137.5 141.5 596.0 219.4
Avg. steps per image 31.4 40.1 20.2 18.8 86.9 104.7 101.7 111.7 112.7 107.7

Table 8: Energy Usage of Browsing-Based Search
user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10

Computation energy (J) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

User energy (J) 68.7 26.3 20.8 58.1 63.6 216.2 69.4 70.9 292.9 114.4

Overall energy (J) 69.1 26.7 21.2 58.5 64.0 216.6 69.9 71.3 293.4 114.9

common image search method in commercial mobile plat-
forms. In this experiment, images are sorted by time. Given
a query image, the user searches for the target image by
browsing through the image data set.

• Clustering-based search: This approach leverages the pro-
posed multi-modality clustering data, content, and context-
based search techniques. However, the proposed adaptive
user prediction technique is disabled.
In this study, iScope was configured to display 24 (4 × 6)
thumbnail images at a time on the N810 touch screen.

Table 7 and Table 8 show the overall performance and
energy consumption, as well as the time and energy usage
breakdown, of browsing-based search. As described in Sec-
tion 4, the time and energy usage of an image search pro-
cess can be divided into algorithm processing (Computation
time) and user’s operation (User time) components. Us-
ing manual browsing, the time and energy overhead of the
search algorithm (image index computation) is negligible.
User operations dominate the search process. On average,
more than 99% of time and energy is consumed by manual
browsing. Table 7 also shows the average number of steps
required by each user per image search. The manual brows-
ing based search process is tedious and slow (on average
>100 steps per image for each of the five large image sets),
resulting in significant time and energy overhead. We con-
clude that in the image search process, user interaction is
the most time and energy consuming stage. Therefore, min-
imizing the number of required search steps has the greatest
potential of for minimizing the time and energy usage.

Figures 6 and 7 compare the time and energy usage of
the browsing-based method, clustering-based method, and
clustering+prediction (iScope). Compared to the browsing-
based method, clustering-based search reduces search time
and energy usage by 48.3% and 46.2% (on average), 9.3%
and 10.3% (minimum), and 90.5% and 90.0% (maximum).
Leveraging the proposed adaptive user prediction technique,
iScope further reduces the search time and energy usage
by another 22.1% and 21.6% on average, compared to the
clustering-based approach. Overall, compared to the brows-
ing based approach, iScope achieves performance improve-
ments of 4.1× (on average), 1.3× (minimum), and 11.1×
(maximum). It reduces energy consumption by 3.8× (on
average), 1.3× (minimum), and 10.4× (maximum). These
experiments also suggest that the benefits of iScope increase
when it is used on larger data sets. It enabled 1.9× latency
reduction and 2.0× energy reduction when used for a 1,079
image data set and 11.1× latency reduction and 10.4× en-
ergy reduction when used for a 4,389 image data set. Note

that the user studies were conducted on different volunteers,
and the content of different image data sets also vary signif-
icantly.

Figure 8 and Figure 9 show the required number of search
steps and the average duration of each search step for the
three search techniques. The performance improvements
and energy savings of iScope are primarily due to the signifi-
cant reduction in the required number of steps for each image
search query. In order to estimate the statistical confidence
in our hypotheses about the impact of search algorithm on
time and energy, we use the two-tailed Student’s t-test. The
results of this analysis imply that the mean times for iScope
and browsing mode differ with 97.3% probability and that
the mean energy consumptions differ with 97.0% probabil-
ity. Note that the t-test requires some assumptions, e.g.,
that the variances of the two populations are equal.

The proposed multi-modality clustering and adaptive con-
tent and context based searching techniques allow use of the
implicit connections between the query and target images,
thereby improving search quality and time. Consider the
search processes shown in Figure 10. In this case, the query
image shows User 3’s apartment in Kingston, and the target
image shows User 5’s apartment in Boulder. Starting from
the query image, through context (location), content, and
context (location) search operations, User 5 reached an im-
age containing a business building in Boulder. At this point,
one context (location) search followed by a predictive con-
tent search (done automatically by iScope) was sufficient to
reach the desired image. Note that, in this case, even though
both the query image and the target image contain similar
“content”, i.e., apartment, using only the content-based ap-
proach would result in an excessively long search process due
to the significant differences in color scheme and background
content.

This study raises an interesting research question. We
have often heard people complaining, “I have seen this some-
where, but just cannot remember where.” Recent studies,
such as the SenseCam project [17], show that using image
recording to enable review of one’s daily life can ameliorate
human memory loss symptoms. iScope explicitly leverages
underlying connections among images. Its use may therefore
have the potential to help people strengthen these connec-
tions. Currently, we are in the process of evaluating the pos-
sibility of applying iScope to related medical applications.

7.D Collaborative Image Search

The distributed, collaborative image search technique de-
scribed in Section 6 was also evaluated. Communication
latency and energy overhead are of primary concern in col-
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Figure 6: Time comparison of search techniques.
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Figure 7: Energy comparison of search techniques.
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Figure 8: Average number of search per query image.
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Figure 9: Average time usage per search step.

laborative search. The proposed caching technique aims to
minimize these overheads by limiting remote access during
collaborative search.

The following experiments consider N810 devices connected
via a campus 802.11b network. The user studies described
in the previous section were extended to the distributed en-
vironment. Detailed image search traces were gathered dur-
ing the preceeding local search experiments. These traces
contain detailed timing information for the interactive im-
age search processes, e.g., the number of search steps of
each image query, the time usage of each search step and
the breakdown between algorithm processing time and user
time. The traces were replayed in the distributed, networked
system composed of N810 devices. This technique has the
benefits of eliminating ordering effects and random variation
between the two studies. It also allows a more direct com-
parison of local search with distributed collaborative search
than would be possible by repeating the study with a new
set of users. Timing and system state information was gath-
ered at run time. For instance, networking latency and en-
ergy consumption are gathered when remote device accesses
are invoked. The power consumption of the N810 in each
system state (e.g., receiving data via the 802.11b interface,
running a search algorithm, and waiting for user input) was
measured using the equipment described in Section 4. These
system state dependent power consumption values were used
in combination with the timing and system state values mea-
sured during trace execution to determine the energy con-
sumption during distributed collaborative search.

We first evaluate the potential communication performance
and energy overhead introduced by remote access. In this
experiment, the image data set is placed on remote devices
and the proposed caching technique is disabled. Therefore,
every image search step requires remote device access. Fig-
ure 11 and Figure 12 show the energy usage and latency

breakdown of the remote search scenario. Compared to im-
age search on a local standalone device, remote image search
introduces significant latency and energy overheads. The la-
tency increases by 65.5% on average (27.1% minimum and
96.4% maximum) for the ten participants in user studies.
The corresponding total energy consumption increases by
607.5% (275.5% minimum to 877.7% maximum), which in-
cludes the energy consumption of the querying device and
the remote devices. Note that, since all the remote devices
can potentially respond to each query, the worst-case la-
tency and energy overhead increases linearly with the num-
ber of mobile devices (four devices are used in this exper-
iment). This study illustrates the importance of reducing
the communication overhead during distributed collabora-
tive search.

The proposed caching technique was designed to improve
the performance and energy efficiency of collaborative search.
More specifically, local caching can reduce the frequency of
remote queries, thus minimizing network latency and opti-
mizing overall performance. Caching improves energy con-
sumption for remote devices, because fewer requests require
remote processing. It also reduces communication time and
energy consumption. However, caching increases the amount
of local metadata and raw data, thereby potentially increas-
ing the local costs of search. Since the energy consump-
tion during communication generally dominates that during
computation, caching improves the net energy efficiency.

Figures 13 and 14 compare the performance and energy
usage of collaborative search with (right bars) and without
(left bars) the proposed metadata caching technique. These
results demonstrate that metadata caching improves system
performance and energy efficiency. When both five-member
user studies are considered, the latency reduction is 34.4%
on average (18.9% minimum and 43.7% maximum) and the
energy consumption reduction is 71.2% on average (59.2%
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Figure 12: Energy breakdown, local (left bars)
remote (right bars) retrieval.

minimum and 78.7% maximum). These performance and
energy consumption improvements result from high cache
hit rates during the search processes. Table 9 shows the av-
erage cache hit rates over the user studies, which average
81% and range from 69% to 90%. This study also demon-
strates that the cache hit rate decreases with increasing data
set size – image search of a larger data set tends to be more
diverse, lowering the cache hit rate. Note that the cache hit
rate is affected by the query image distribution within the
image data set. In practice, we believe that personalized
queries generally have content and/or context correlation,
which is reflected as data locality during image search, en-
abling a high cache hit rate. In contrast, the query images
used in this experiment are randomly selected. Therefore,
we believe iScope’s caching techniques will be even more ef-
fective in real usage scenarios. Figure 15 shows the cache hit
rate profiles of the ten participants in user studies; the cache
hit rate increases during the study for each participant – ini-
tially, the local device only contains its own data set and its
cache is empty, resulting in a low cache hit rate. As queries
are processed, more metadata is cached, improving the cache
hit rate.

8. Related Work

Our work draws upon research in several areas concerning
image management: content-based image retrieval, multi-
modality image management, power-aware image retrieval,
user feedback, and distributed image sharing. In this sec-
tion, we survey work most related to our work.

Content-based image retrieval (CBIR) has been an active
research area for over a decade [4]. Kim et al. used CBIR
for a visual-content recommender [18]. Yeh et al. used mo-
bile images for content-based object search [19]. The Mo-
bile MUVIS project studied content-based image retrieval
on mobile devices [20]. CLOVER [21] searches leaf images
(sketched or photographed on a mobile device) on a remote
server. Photo-to-Search [22] queries the Web directly using

images taken on a mobile device. These systems typically
use a client-server model where the server does most of the
work and the client simply takes queries from the user and
displays search results from the server. In this work, we
envision more active roles for portable devices.

In addition to the raw content of image data, researchers
have also considered other types of information in order to
augment image management and search tasks. Fogarty et
al. proposed CueFlik, a web image search system [23]. Cue-
Flik allows user-specified search rules based on image vi-
sual characteristics to facilitate web image search. Sacco
surveys recent research on dynamic taxonomies and faceted
search [24]. Jeon and Manmatha used cross-media relevance
models for automatic image annotation and retrieval [25].
Yeh et al. used mobile images to search the Web for location
recognition through both CBIR and keyword search [26].
Cai et al. [27] describe the use of visual, textual, and link
information for clustering Web image search results. Me-
diAssist [28] manages personal image collection based on
context, content, and semi-automatic annotation. Wang et
al. proposed using multi-modality ontolog for web image re-
trieval [29]. Veeraraghavan et al. [30] proposed a unifying file
system abstraction, called quFile for mobile data manage-
ment. Location-aware sensing and computation is supported
by the Place Lab toolkit [31]. Horozov et al. [32], used loca-
tion information for recommending pictures to mobile users.
Gurrin et al. [33] used GPS information to label images and
derive context metadata such as weather and daylight condi-
tions. Jesus et al. [34], used geographical queries to retrieve
personal pictures when visiting points of interest. Nokia pro-
posed a sensor-based mobile augment reality system called
MARA [35], which utilizes both camera and GPS informa-
tion. The SenseCam project [36] combines image content
with Bluetooth and GPS contextual information to facili-
tate activity classification. MAMI [37] allows users to anno-
tate and search for digital photos via speech input combined
with time, date and location information. Although the past
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Figure 13: Time breakdown, w. (right bars) w.o.
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Figure 14: Energy breakdown, w. (right bars) w.o.
(left bars) caching.

Table 9: Average Cache Hit Rate for Collaborative Image Search
user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 average

Cache hit rate (%) 90 85 84 86 79 69 75 81 85 76 81
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Figure 15: Collaborative search: cache hit rate profile for the ten users.

work utilizes context information, it failed to carefully con-
sider the energy issue, which is the primary constraint of
battery-powered systems.

Energy consumption is of primary concern for mobile de-
vices, especially with integrated GPS and sensors. A vari-
ety of energy optimization techniques have been proposed
for portable devices. Chakraborty et al. evaluated several
heuristics for delaying communication via GPS-based move-
ment prediction, in order to reduce energy consumption of
wireless communication [38]. Korhonen and Wang stud-
ied data packet transmission in WLANs and proposed an
energy-saving streaming mechanism in [39]. Karagiannis et
al. [40] examined the distribution of inter-contact times be-
tween mobile devices, human mobility patterns, and their
effect on the performance of forwarding schemes. Recently,
Kumar et al. characterized the relationship between query

accuracy and energy consumption for CBIR in a mobile sys-
tem, and proposed an adaptive feature loading scheme to
save energy [41]. This work focused on the energy consump-
tion of CBIR processing. However, our study has shown
that for image search on mobile devices, power consumption
is mainly due to various components such as touch screen
and GPS, instead of processor or storage.

Relevance feedback has attracted much attention in the in-
formation retrieval community, and has been shown to pro-
vide improved performance in many search systems. Yang et
al. [42] proposed a semantic feedback mechanism for image
retrieval. Hoi et al. [43] proposed a unified framework which
incorporates both log data of user’s feedback and regular
relevance feedback. Liu et al. [44] proposed a new method
called relevance aggregation projections (RAP) Most user
feedback mechanisms aim at precision/recall improvement
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and ignore speed, which is an important factor for perfor-
mance measurement and energy consumption in mobile sys-
tems. Saha et al. [45] presented a human perception based
similarity measure along with a relevance feedback indexing
scheme. In contrast with past work, our study shows that,
in many cases, the adjacent user search steps show little cor-
relation. Therefore, a naive Bayes classifier based prediction
algorithm is designed and used for user prediction.

Distributed data sharing for mobile devices has been a
popular research topic. One of the early systems is Bayou [46,
47]. Some recent systems have utilized the peer-to-peer
model for data sharing and information discovery [48, 49].
Smith et al. has developed AURA, a mobile platform for ob-
taining object information via bar code scanning and sharing
that information with others [50]. Gaonkar et al. [51] pre-
sented a system called Micro-Blog, in which geo-tagged mul-
timedia and sensing data can be shared and queried for mo-
bile social collaboration. Pering et al. [52, 53] have studied
personal media sharing on mobile devices. Miluzzo et al. [54]
developed CenceMe, an application that derives personal ac-
tivity information using mobile sensing devices and share
that information at social networking websites. Context-
sensitive information sharing needs were studied in [55]. In
our work, a caching technique is proposed to minimize the
communication overhead during collaborative search.

In contrast with past work, iScope is a user-centric, energy-
efficient personal content management platform. Energy op-
timization is a primary focus of this work. Our study shows
that user interaction and communication dominate system
energy consumption. iScope leverages both content and con-
text information, as well as learning techniques, for person-
alized, energy-efficient image management, search, and shar-
ing.

9. Conclusions and Future Work

User-centric, energy-efficient multimedia content manage-
ment is of great importance for personal mobile systems. In
this work, we have described and evaluated iScope, a user-
centric system for personal image data management, search,
and sharing on mobile devices. iScope uses new techniques
for multi-modality clustering of both content and context
information for efficient image data management, as well
as user-centric search algorithms with adaptive prediction
tailored to individual users. It also supports distributed im-
age sharing and search with online metadata caching. We
have implemented a prototype of iScope on networked Nokia
N810 portable Internet tablets, and experimentally evalu-
ated it via user studies. Our results show that, on average,
iScope improves on the search speed and energy consump-
tion of browsing by 4.1× and 3.8×, respectively. We also
found that the use of metadata caching in distributed image
search reduces search latency by 34.4% and reduces energy
consumption by 71.2%.

The future work includes exploration of more efficient par-
allel search algorithms to further reduce the communication
overhead of collaborative search. In addition, we are inter-
ested in determining whether implicit multi-modality search
techniques, such as iScope, have the potential to improve
human memory or counteract memory loss. Finally, we will
further investigate prediction algorithms to incorporate the
sequential dependencies of user feedback during personal im-
age search.
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